Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea
Abstract
1. Introduction
2. Renewable-Energy Applications in Water-Supply Systems
3. Overview of Analytical Framework
3.1. Solar Power Generation at WTPs
3.2. MHP Generation at WTPs
- Turbine Power Output (Pt, in kW):
- 2.
- Generator Power Output (Pg, in kW):
- 3.
- Annual Power Generation (kWh):
3.3. In-Pipe MHP Generation in Distribution Networks
4. Application Results
4.1. Study Area: Incheon Metropolitan City (IMC)
4.2. Assessment of Site-Specific RE Generation
4.2.1. Estimated Solar Power Generation at WTPs
4.2.2. Estimated MHP Generation at WTP Inlets
4.2.3. Estimated In-Pipe MHP Generation in Distribution Pipelines
4.3. Energy Self-Sufficiency Evaluation in IMC WSSs
- 18,830 MWh from solar PV systems installed in available areas at WTPs.
- 4938 MWh from inlet-based MHP utilizing residual head prior to WTPs.
- 9043 MWh from in-pipe MHP recovery downstream of WSTs in the distribution network.
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WSS | Water supply system |
RE | Renewable energy |
PV | Photovoltaic |
WTP | Water treatment plant |
MHP | Micro-hydropower |
IMC | Incheon Metropolitan City |
GHG | Greenhouse gas |
WST | Water supply tank |
PRV | Pressure-reducing valve |
PAT | Pump-as-turbine |
References
- United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement. United Nations. 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 20 March 2025).
- Chen, J.M. Carbon neutrality: Toward a sustainable future. Innovation 2021, 2, 100127. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Su, C.W.; Umar, M.; Shao, X.; Lobonţ, O.R. The race to zero emissions: Can renewable energy be the path to carbon neutrality? J. Environ. Manag. 2022, 308, 114648. [Google Scholar] [CrossRef]
- Gil, L.; Bernardo, J. An approach to energy and climate issues aiming at carbon neutrality. Renew. Energy Focus 2020, 33, 37–42. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Ahshan, R.; Al Abri, R.; Al-Abri, M. Renewable energy integration in sustainable water systems: A review. Cleaner Eng. Technol. 2024, 18, 100722. [Google Scholar] [CrossRef]
- Lam, K.L.; Liu, G.; Motelica-Wagenaar, A.M.; van der Hoek, J.P. Toward carbon-neutral water systems: Insights from global cities. Engineering 2022, 14, 77–85. [Google Scholar] [CrossRef]
- Englehardt, J.D.; Wu, T.; Bloetscher, F.; Deng, Y.; Du Pisani, P.; Eilert, S.; Elmir, S.; Guo, T.; Jacangelo, J.; LeChevallier, M.; et al. Net-zero water management: Achieving energy-positive municipal water supply. Environ. Sci. Water Res. Technol. 2016, 2, 250–260. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. An analysis of energy consumption and the use of renewables for a small drinking water treatment plant. Water 2019, 12, 28. [Google Scholar] [CrossRef]
- Saavedra, A.; Galvis, N.A.; Castaneda, M.; Zapata, S.; Mesa, F.; Aristizábal, A.J. Feasibility of using photovoltaic solar energy for water treatment plants. Int. J. Electr. Comput. Eng. 2021, 11, 1962. [Google Scholar] [CrossRef]
- Soshinskaya, M.; Crijns-Graus, W.H.J.; van der Meer, J.; Guerrero, J.M. Application of a microgrid with renewables for a water treatment plant. Appl. Energy 2014, 134, 20–34. [Google Scholar] [CrossRef]
- Amoroso, F.; Hidalgo-León, R.; Muñoz, K.; Urquizo, J.; Singh, P.; Soriano, G. Techno-economic assessment of PV power systems to power a drinking water treatment plant for an on-grid small rural community. Energies 2023, 16, 2027. [Google Scholar] [CrossRef]
- Bukhary, S.; Weidhaas, J.; Ansari, K.; Mahar, R.B.; Pomeroy, C.; VanDerslice, J.A.; Burian, S.; Ahmad, S. Using distributed solar for treatment of drinking water in developing countries. In World Environmental and Water Resources Congress; University of Nevada: Reno, NV, USA, 2017; pp. 264–276. [Google Scholar]
- Su, P.A.; Karney, B. Micro hydroelectric energy recovery in municipal water systems: A case study for Vancouver. Urban Water J. 2015, 12, 678–690. [Google Scholar] [CrossRef]
- Giugni, M.; Fontana, N.; Ranucci, A. Optimal location of PRVs and turbines in water distribution systems. J. Water Resour. Plann. Manag. 2014, 140, 06014004. [Google Scholar] [CrossRef]
- Morani, M.C.; Carravetta, A.; D’Ambrosio, C.; Fecarotta, O. A new mixed integer non-linear programming model for optimal PAT and PRV location in water distribution networks. Urban Water J. 2021, 18, 394–409. [Google Scholar] [CrossRef]
- Fecarotta, O.; Ramos, H.M.; Derakhshan, S.; Del Giudice, G.; Carravetta, A. Fine tuning a PAT hydropower plant in a water supply network to improve system effectiveness. J. Water Resour. Plann. Manag. 2018, 144, 04018038. [Google Scholar] [CrossRef]
- Sitzenfrei, R.; von Leon, J. Long-time simulation of water distribution systems for the design of small hydropower systems. Renew. Energy 2014, 72, 182–187. [Google Scholar] [CrossRef]
- Latifi, M.; Farahi Moghadam, K.; Naeeni, S.T. Pressure and energy management in water distribution networks through optimal use of Pump-As-Turbines along with pressure-reducing valves. J. Water Resour. Plan. Manag. 2021, 147, 04021039. [Google Scholar] [CrossRef]
- Pugliese, F.; Giugni, M. An operative framework for the optimal selection of centrifugal pumps as turbines (PATs) in water distribution networks (WDNs). Water 2022, 14, 1785. [Google Scholar] [CrossRef]
- Sari, M.A.; Badruzzaman, M.; Cherchi, C.; Swindle, M.; Ajami, N.; Jacangelo, J.G. Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. J. Environ. Manag. 2018, 228, 416–428. [Google Scholar] [CrossRef]
- Berrada, A.; Bouhssine, Z.; Arechkik, A. Optimisation and economic modeling of micro hydropower plant integrated in water distribution system. J. Clean. Prod. 2019, 232, 877–887. [Google Scholar] [CrossRef]
- Vilanova, M.R.N.; Balestieri, J.A.P. Hydropower recovery in water supply systems: Models and case study. Energy Convers. Manag. 2014, 84, 414–426. [Google Scholar] [CrossRef]
- Giudicianni, C.; Mitrovic, D.; Wu, W.; Ferrarese, G.; Pugliese, F.; Fernández-García, I.; Campisano, A.; De Paola, F.; Malavasi, S.; Maier, H.R.; et al. Energy recovery strategies in water distribution networks: Literature review and future directions in the net-zero transition. Urban Water J. 2024, 21, 1185–1200. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, Z.; Wang, Q.; Du, J.; Lu, L.; Yang, H. Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines. Appl. Energy 2023, 329, 120263. [Google Scholar] [CrossRef]
- Alawadhi, G.; Almehiri, M.; Sakhrieh, A.; Alshwawra, A.; Al Asfar, J. Cost analysis of implementing in-pipe hydro turbine in the United Arab Emirates water network. Sustainability 2022, 15, 651. [Google Scholar] [CrossRef]
- Ani, E.C.; Olajiga, O.K.; Sikhakane, Z.Q.; Olatunde, T.M. Renewable energy integration for water supply: A comparative review of African and US initiatives. Eng. Sci. Technol. J. 2024, 5, 1086–1096. [Google Scholar] [CrossRef]
- Min, K.; Lee, G.; Kim, H.; Hwang, T.; Kim, E.; Lee, J.; Kang, D. Identifying water–energy–carbon links in urban water sectors: A case study of Incheon metropolitan City, Republic of Korea. Water 2024, 16, 2473. [Google Scholar] [CrossRef]
- Syahputra, R.; Soesanti, I. Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Rep. 2021, 7, 472–490. [Google Scholar] [CrossRef]
- Rahman, M.F.A.; Kamal, N.A.; Abdullah, J.; Quaranta, E.; Shin, S. Unlocking the potential of micro-hydropower in water distribution networks: A comprehensive systematic review for Malaysia’s sustainable energy future. Discov. Sustain. 2025, 6, 56. [Google Scholar] [CrossRef]
- Jawahar, C.P.; Michael, P.A. A review on turbines for micro hydro power plant. Renew. Sustain. Energy Rev. 2017, 72, 882–887. [Google Scholar] [CrossRef]
- National Center for Appropriate Technology (NCAT). (n.d.). Micro-Hydro Power: A Beginner’s Guide to Design and Installation. Available online: https://attra.ncat.org/publication/micro-hydro-power-a-beginners-guide-to-design-and-installation/ (accessed on 22 February 2025).
- Energypedia. (n.d.). How to Plan a Mini Hydro Power Project. Available online: https://energypedia.info/wiki/How_to_Plan_a_Mini_Hydro_Power_Project (accessed on 22 February 2025).
- Razan, J.I.; Islam, R.S.; Hasan, R.; Hasan, S.; Islam, F. A comprehensive study of micro-hydropower plant and its potential in Bangladesh. Int. Sch. Res. Not. 2012, 2012, 635396. [Google Scholar] [CrossRef]
- Lavrič, H.; Rihar, A.; Fišer, R. Assessment of electrical energy production in small hydropower plant with ultra-low head. In Proceedings of the 2013 International Conference-Workshop Compatibility and Power Electronics, Ljubljana, Slovenia, 5–7 June 2013; IEEE: New York, NY, USA, 2013; pp. 103–108. [Google Scholar] [CrossRef]
- Incheon Metropolitan Operational Status of Water Treatment Plants. 2023. Available online: https://www.incheon.go.kr/water/WA060302 (accessed on 19 September 2024).
- Kim, C.K.; Kim, H.G.; Kang, Y.H.; Yun, C.Y.; Kim, B.; Kim, J.Y. Solar resource potentials and annual capacity factor based on the Korean solar irradiance datasets derived by the satellite imagery from 1996 to 2019. Remote Sens. 2021, 13, 3422. [Google Scholar] [CrossRef]
- Korean Statistical Information Service (KOSIS). Electricity Consumption by Usage Type. 2023. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=213&tblId=DT_21303_G000018 (accessed on 19 October 2024).
Intake Facilities | Water Treatment Plants | Water Supply Tanks |
---|---|---|
Pungnap (352,854 /day) | Gongchon (260,914 /day) | Geomdan, Airport New Town, Yeonhui, Cheongna, Songsan, Seoknam |
Paldang 1 (137,910 /day) | Bupyeong (273,606 /day) | Cheonmasan, Huimangcheon, Wonjeoksan, Gajwa |
Paldang 2 (253,991 /day) | Namdong (253,991 /day) | Subongsan, Songhyeon, Manwolsan, Jayu Park, Mansu, Jangsu |
Paldang 3 (313,847 /day) | Susan (313,847 /day) | Munhak, Ssukgol, Pureun Songdo, Seochang |
Water Treatment Plants | Installation Type | Process Facility | Area ) | Installed Capacity (kW) | Annual Power Generation (MWh) |
---|---|---|---|---|---|
Gongchon | Existing | Chemical Sedimentation | 16,956 | 1470 | 1932 |
Etc. * | 40 | 53 | |||
New | Rapid Sand Filter | 3584 | 360 | 473 | |
Clear Water Reservoir | 5407 | 540 | 710 | ||
Activated Carbon Filter | 1500 | 150 | 197 | ||
Administration Building | 1000 | 100 | 131 | ||
Total | 3495 | ||||
Bupyeong | Existing | Rapid Sand Filter | 2707 | 100 | 131 |
New | Chemical Sedimentation | 12,984 | 1300 | 1708 | |
Clear Water Reservoir | 2443 | 244 | 321 | ||
Etc. * | 7000 | 700 | 920 | ||
Total | 3080 | ||||
Namdong | Existing | Rapid Sand Filter | 799 | 120 | 158 |
Chemical Sedimentation and Clear Water Reservoir | 20,014 | 2936 | 3858 | ||
Behind the Administration Building | 244 | 41 | 54 | ||
Rooftop of the Water Promotion Center | 334 | 30 | 39 | ||
New | Rapid Sand Filter | 2000 | 200 | 263 | |
Etc. * | 5000 | 500 | 657 | ||
Total | 5029 | ||||
Susan | Existing | Rapid Sand Filter, Clear Water Reservoir | 6690 | 1000 | 1314 |
Chemical Sedimentation | 28,260 | 2600 | 3416 | ||
Sludge Dewatering Facility, Effluent Basin | 400 | 526 | |||
New | Rapid Sand Filter | 10,000 | 1000 | 1314 | |
Clear Water Reservoir | |||||
Etc.* | 5000 | 500 | 657 | ||
Total | 7227 |
Water Treatment Plants | Maximum Installed | Average Daily Water | Effective Head (m) | Turbine Power Output (kW) | Generator Power Output (kW) | Annual Power Generation (MWh) | ||
---|---|---|---|---|---|---|---|---|
Gongchon | 413,000 | 271,200 | 3.20 | 1.29 | 32.4 | 30.5 | 224 | |
Bupyeong | Paldang | 375,000 | 219,500 | 0.20 | 2.11 | 2.9 | 2.7 | 22 |
Pungnap | 2.40 | 40.1 | 37.7 | 280 | ||||
Namdong | 542,000 | 248,400 | 2.95 | 14.67 | 339.4 | 319.0 | 2347 | |
Susan | 623,000 | 308,900 | 3.81 | 2.0 | 59.7 | 56.1 | 413 | |
5.0 | 149.2 | 140.3 | 1032 | |||||
10.0 | 298.5 | 280.6 | 2065 |
Water Treatment Plants | Water Supply Tanks | Residual Head (m) | Design Flow Rate | Installed Generator Capacity (kW) | Daily Power Generation Potential (kWh) | Annual Power Generation (MWh) | Estimated Household Coverage |
---|---|---|---|---|---|---|---|
Gongchon | Geomdan | 16.28 | 0.27 | 30.59 | 734 | 225 | 75 |
Airport New Town | 6.24 | 0.08 | 3.56 | 86 | 26 | 9 | |
Yeonhui | 31.94 | 0.28 | 63.54 | 1525 | 468 | 156 | |
Cheongna | 13.56 | 0.38 | 32.18 | 772 | 237 | 79 | |
Songsan | 10.51 | 0.13 | 10.07 | 242 | 74 | 25 | |
Seoknam | 22.17 | 0.72 | 102.36 | 2457 | 753 | 252 | |
Bupyeong | Cheonmasan | 14.31 | 0.85 | 70.46 | 1691 | 519 | 173 |
Huimangcheon | 12.79 | 0.41 | 32.58 | 782 | 240 | 80 | |
Wonjeoksan | 17.24 | 1.17 | 116.90 | 2806 | 860 | 288 | |
Gajwa | 27.43 | 0.30 | 58.75 | 1410 | 432 | 145 | |
Namdong | Subongsan | 28.66 | 0.38 | 78.98 | 1896 | 581 | 194 |
Songhyeon | 27.84 | 0.37 | 74.80 | 1795 | 550 | 184 | |
Manwolsan | 8.83 | 0.50 | 28.65 | 688 | 211 | 71 | |
Jayu Park | 9.02 | 0.04 | 2.70 | 65 | 20 | 7 | |
Mansu | 22.39 | 0.15 | 22.98 | 552 | 169 | 57 | |
Jangsu | 31.78 | 1.34 | 292.00 | 7008 | 2149 | 719 | |
Susan | Munhak | 27.38 | 0.25 | 49.25 | 1182 | 362 | 121 |
Ssukgol | 31.28 | 0.33 | 75.41 | 1810 | 555 | 186 | |
Pureun Songdo | 10.31 | 0.83 | 53.54 | 1285 | 394 | 132 | |
Seochang | 21.47 | 0.19 | 29.72 | 713 | 219 | 73 |
Generation Method | Facility Type | Facility Capacity (kW) | Annual Power Generation (MWh) | |
---|---|---|---|---|
Solar PV at water treatment plants | Gongchon | 2660.0 | 3495 | |
Bupyeong | 2344.0 | 3080 | ||
Namdong | 3827.0 | 5028 | ||
Susan | 5500.0 | 7227 | ||
Subtotal | 14,331.0 | 18,830 | ||
Micro-hydropower at water treatment plants | Gongchon | 31.0 | 224 | |
Bupyeong | 41.0 | 302 | ||
Namdong | 319.0 | 2347 | ||
Susan (H = 10 m) | 281.0 | 2065 | ||
Subtotal | 672.0 | 4938 | ||
In-pipe micro-hydropower at water supply tank zones | Gongchon WTP Zone | Geomdan | 30.6 | 225 |
Airport New Town | 3.6 | 26 | ||
Yeonhui | 63.5 | 467 | ||
Cheongna | 32.2 | 236 | ||
Songsan | 10.1 | 74 | ||
Seolnam | 102.4 | 753 | ||
Bupyeong WTP Zone | Cheonmasan | 70.5 | 518 | |
Huimangcheon | 32.6 | 239 | ||
Wonjeoksan | 116.9 | 860 | ||
Gajwa | 58.7 | 432 | ||
Namdong WTP Zone | Subongsan | 79.0 | 581 | |
Songhyeon | 74.8 | 550 | ||
Manwolsan | 28.6 | 210 | ||
Jayu Park | 2.7 | 19 | ||
Mansu | 23.0 | 169 | ||
Jangsu | 292.0 | 2148 | ||
Susan WTP Zone | Munhak | 49.3 | 362 | |
Ssukgol | 75.4 | 554 | ||
Pureun Songdo | 53.5 | 394 | ||
Seochang | 29.7 | 218 | ||
Subtotal | 1229.0 | 9043 | ||
Total | 16,232.0 | 32,811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, K.; Kim, H.; Lee, G.; Kang, D. Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea. Water 2025, 17, 2511. https://doi.org/10.3390/w17172511
Min K, Kim H, Lee G, Kang D. Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea. Water. 2025; 17(17):2511. https://doi.org/10.3390/w17172511
Chicago/Turabian StyleMin, Kyoungwon, Hyunjung Kim, Gyumin Lee, and Doosun Kang. 2025. "Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea" Water 17, no. 17: 2511. https://doi.org/10.3390/w17172511
APA StyleMin, K., Kim, H., Lee, G., & Kang, D. (2025). Assessment of Renewable Energy Potential in Water Supply Systems: A Case Study of Incheon Metropolitan City, Republic of Korea. Water, 17(17), 2511. https://doi.org/10.3390/w17172511