Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (702)

Search Parameters:
Keywords = hydrogenation catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 72
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Viewed by 131
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

32 pages, 3004 KiB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Viewed by 135
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

16 pages, 4017 KiB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 128
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

23 pages, 3019 KiB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Viewed by 205
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

13 pages, 2697 KiB  
Communication
Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing
by Qingmei Zhong, Xiaomei Rong, Tingting Wu and Chuan Yan
Biosensors 2025, 15(8), 490; https://doi.org/10.3390/bios15080490 - 29 Jul 2025
Viewed by 284
Abstract
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While [...] Read more.
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While conventional colorimetric determination methods predominantly employ enzymatic or nanozyme catalysts, we present an innovative non-catalytic approach utilizing the redox-responsive properties of organic neutral radicals. Specifically, we designed and synthesized a novel radical TTM-DMODPA based on the tris (2,4,6-trichlorophenyl) methyl (TTM) scaffold, which exhibits remarkable optical tunability and oxidative sensitivity. This system enables dual-mode H2O2 quantification: (1) UV-vis spectrophotometry (linear range: 2.5–250 μmol/L, LOD: 1.275 μmol/L) and (2) smartphone-based visual analysis (linear range: 2.5–250 μmol/L, LOD: 3.633 μmol/L), the latter being particularly suitable for point-of-care testing. Validation studies using urine samples demonstrated excellent recovery rates (96–104%), confirming the method’s reliability for real-sample applications. Our work establishes a portable, instrument-free platform for urinary H2O2 determination, with significant potential in clinical diagnostics and environmental monitoring. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

16 pages, 1382 KiB  
Article
The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion
by Yitong Zhao, Meng Liu, Yao Ning, Ying Zhang and Zhijie Wu
Catalysts 2025, 15(8), 703; https://doi.org/10.3390/catal15080703 - 24 Jul 2025
Viewed by 370
Abstract
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to [...] Read more.
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to the confinement effect, the as-encapsulated nickel species appears in the form of Ni0 and Niδ+, which implies its feasibility in metal catalysis and coordination catalysis. In the study reported herein, we further explored the hydrogen production and olefin oligomerization performance of Ni1@Beta-NO3. It was found that Ni1@Beta-NO3 demonstrated a high H2 generation turnover frequency (TOF) and low activation energy (Ea) in a sodium borohydride (NaBH4) hydrolysis reaction, with values of 331 min−1 and 30.1 kJ/mol, respectively. In ethylene dimerization, it exhibited a high butylene selectivity of 99.4% and a TOF as high as 5804 h−1. In propylene oligomerization, Ni1@Beta-NO3 demonstrated high selectivity (75.21%) of long-chain olefins (≥C6+), overcoming the problem of cracking reactions that occur during oligomerization using H-Beta. Additionally, as a comparison, the influence of the metal precursor (NiCl2) on the performance of the encapsulated Ni catalyst was also examined. This research expands the application scenarios of non-noble metal single-atom catalysts and provides significant assistance and potential for the production of H2 from hydrogen storage materials and the production of valuable chemicals. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

22 pages, 1438 KiB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 334
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

35 pages, 3949 KiB  
Review
The Influence of Defect Engineering on the Electronic Structure of Active Centers on the Catalyst Surface
by Zhekun Zhang, Yankun Wang, Tianqi Guo and Pengfei Hu
Catalysts 2025, 15(7), 651; https://doi.org/10.3390/catal15070651 - 3 Jul 2025
Cited by 1 | Viewed by 708
Abstract
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry [...] Read more.
Defect engineering has recently emerged as a cutting-edge discipline for precise modulation of electronic structures in nanomaterials, shifting the paradigm in nanoscience from passive ‘inherent defect tolerance’ to proactive ‘defect-controlled design’. The deliberate introduction of defect—including vacancies, dopants, and interfaces—breaks the rigid symmetry of crystalline lattices, enabling new pathways for optimizing catalysis performance. This review systematically summarizes the mechanisms underlying defect-mediated electronic structure at active sites regulation, including (1) reconstruction of the electronic density of states, (2) tuning of coordination microenvironments, (3) charge transfer and localization effects, (4) spin-state and magnetic coupling modulation, and (5) dynamic defect and interface engineering. These mechanisms elucidate how defect-induced electronic restructuring governs catalytic activity and selectivity. We further assess advanced characterization techniques and computational methodologies for probing defects-induced electronic states, offering deeper mechanistic insights at atomic scales. Finally, we highlight recent breakthroughs in defect-engineered nanomaterials for catalytic applications, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and beyond, while discussing existing challenges in scalability, defect stability, and structure–property causality. This review aims to provide actionable principles for the rational design of defects to tailor electronic structures toward next-generation energy technologies. Full article
Show Figures

Graphical abstract

15 pages, 6317 KiB  
Article
Long-Range Allosteric Communication Modulated by Active Site Mn(II) Coordination Drives Catalysis in Xanthobacter autotrophicus Acetone Carboxylase
by Jenna R. Mattice, Krista A. Shisler, Jadyn R. Malone, Nic A. Murray, Monika Tokmina-Lukaszewska, Arnab K. Nath, Tamara Flusche, Florence Mus, Jennifer L. DuBois, John W. Peters and Brian Bothner
Int. J. Mol. Sci. 2025, 26(13), 5945; https://doi.org/10.3390/ijms26135945 - 20 Jun 2025
Viewed by 337
Abstract
Acetone carboxylase (AC) from Xanthobacter autotrophicus is a 360 KDa α2β2γ2 heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of X. autotrophicus [...] Read more.
Acetone carboxylase (AC) from Xanthobacter autotrophicus is a 360 KDa α2β2γ2 heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of X. autotrophicus AC (XaAC) with and without nucleotides reveal that the binding and phosphorylation of the two substrates occurs ~40 Å from the Mn(II) active sites where acetoacetate is formed. Based on the crystal structures, a significant conformational change was proposed to open and close a tunnel that facilitates the passage of reaction intermediates between the sites for nucleotide binding and phosphorylation of substrates and Mn(II) sites of acetoacetate formation. We have employed electron paramagnetic resonance (EPR), kinetic assays, and hydrogen/deuterium exchange mass spectrometry (HDX-MS) of poised ligand-bound states and site-specific amino acid variants to complete an in-depth analysis of Mn(II) coordination and allosteric communication throughout the catalytic cycle. In contrast with the established paradigms for carboxylation, our analyses of XaAC suggested a carboxylate shift that couples both local and long-range structural transitions. Shifts in the coordination mode of a single carboxylic acid residue (αE89) mediate both catalysis proximal to a Mn(II) center and communication with an ATP active site in a separate subunit of a 180 kDa α2β2γ2 complex at a distance of 40 Å. This work demonstrates the power of combining structural models from X-ray crystallography with solution-phase spectroscopy and biophysical techniques to elucidate functional aspects of a multi-subunit enzyme. Full article
(This article belongs to the Special Issue Emerging Topics in Macromolecular Crystallography)
Show Figures

Figure 1

22 pages, 3175 KiB  
Article
Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts
by Yibin Bu, Kasper Wenderich, Nathália Tavares Costa, Kees-Jan C. J. Weststrate, Annemarie Huijser and Guido Mul
Molecules 2025, 30(12), 2577; https://doi.org/10.3390/molecules30122577 - 13 Jun 2025
Viewed by 909
Abstract
Ru/TiO2 catalysts are well known for their high activity in the hydrogenation of CO2 to CH4 (the Sabatier reaction). This activity is commonly attributed to strong metal–support interactions (SMSIs), associated with reducible oxide layers partly covering the Ru-metal particles. Moreover, [...] Read more.
Ru/TiO2 catalysts are well known for their high activity in the hydrogenation of CO2 to CH4 (the Sabatier reaction). This activity is commonly attributed to strong metal–support interactions (SMSIs), associated with reducible oxide layers partly covering the Ru-metal particles. Moreover, isothermal rates of formation of CH4 can be significantly enhanced by the exposure of Ru/TiO2 to light of UV/visible wavelengths, even at relatively low intensities. In this study, we confirm the significant enhancement in the rate of formation of methane in the conversion of CO2, e.g., at 200 °C from ~1.2 mol gRu−1·h−1 to ~1.8 mol gRu−1·h−1 by UV/Vis illumination of a hydrogen-treated Ru/TiOx catalyst. The activation energy does not change upon illumination—the rate enhancement coincides with a temperature increase of approximately 10 °C in steady state (flow) conditions. In-situ DRIFT experiments, performed in batch mode, demonstrate that the Ru–CO absorption frequency is shifted and the intensity reduced by combined UV/Vis illumination in the temperature range of 200–350 °C, which is more significant than can be explained by temperature enhancement alone. Moreover, exposing the catalyst to either UV (predominantly exciting TiO2) or visible illumination (exclusively exciting Ru) at small intensities leads to very similar effects on Ru–CO IR intensities, formed in situ by exposure to CO2. This further confirms that the temperature increase is likely not the only explanation for the enhancement in the reaction rates. Rather, as corroborated by photophysical studies reported in the literature, we propose that illumination induces changes in the electron density of Ru partly covered by a thin layer of TiOx, lowering the CO coverage, and thus enhancing the methane formation rate upon illumination. Full article
(This article belongs to the Special Issue Metallic Nanoclusters and Their Interaction with Light)
Show Figures

Graphical abstract

14 pages, 2197 KiB  
Article
Bulky Ligand-Induced Hindrance in Photocatalytic CO2 Reduction over Various Tris(bipyridine)cobalt(II) Chloride Complexes
by Jinliang Lin, Rongying Liao, Li Li, Shuli Yao, Shengkai Li, Yun Zheng and Fei Fei
Molecules 2025, 30(12), 2573; https://doi.org/10.3390/molecules30122573 - 13 Jun 2025
Viewed by 736
Abstract
Photocatalytic CO2 conversion is one of the ideal approaches to address both topics of solar energy shortage and carbon neutrality. Cobalt(II) centers coordinated with bipyridines have been designed and evaluated as catalysts for CO2 conversion under light irradiation. Herein, we report [...] Read more.
Photocatalytic CO2 conversion is one of the ideal approaches to address both topics of solar energy shortage and carbon neutrality. Cobalt(II) centers coordinated with bipyridines have been designed and evaluated as catalysts for CO2 conversion under light irradiation. Herein, we report a series of pyridine-based cobalt complexes with alkyl substituents as molecular photocatalysts, aiming to elucidate the effects of alkyl type and substitution position on catalytic performance through spectroscopic and electrochemical measurements. The substitution of the hydrogen at 4,4′-positions on the bipyridine ring with a methyl group, a tert-butyl group, and a nonyl group led to a decrease in the conversion rate of CO2 by 13.2%, 29.6%, and 98%, respectively. The methyl substituents at the 5, 5′-positions of the bipyridine ring resulted in a 71.1% decrease in the CO2 conversion rate. The usage of either 6, 6′-Me2-2,2′-bipy, 2,4-bipy, or 3,3′-bipy resulted in no detectable activity for CO2 conversion in the current system. Both photo- and electrochemical analyses have been employed to reveal the relationship between changing ligands and photocatalytic performance on the molecular scale. These results demonstrate that bulky ligands significantly hinder CO2 reduction by cobalt complexes due to steric interference with coordination and active-site accessibility. This study demonstrates that the substituent effect of ligands on photocatalytic reactions for CO2 conversion provides valuable insight into a deeper understanding of molecular catalysis. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

13 pages, 3578 KiB  
Article
Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects
by Shaorui Jia, Xinbo Zhang, Junhong Ma, Chaoyun Ma, Xue Yu and Yuanhao Wang
Nanomaterials 2025, 15(12), 904; https://doi.org/10.3390/nano15120904 - 11 Jun 2025
Viewed by 349
Abstract
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA [...] Read more.
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA (SC), synthesized via controlled pyrolysis of high crystalline Prussian blue analogues (PBA) precursor, which integrates CuCo alloy, ZnO, N-doped carbon (NC), and ZnII-CoIIIPBA into a synergistic architecture. This unique configuration offers dual functional advantages: (1) the abundant heterointerfaces provide highly active sites for enhanced CO2 and H2 adsorption/activation, and (2) the engineered energy band structure optimizes charge separation and transport efficiency. The optimized T-C3Z1-PBA (SC) achieves exceptional photothermal catalytic performance, demonstrating a CO2 conversion rate of 126.0 mmol gcat⁻1 h⁻1 with 98.8% CO selectivity under 350 °C light irradiation, while maintaining robust stability over 50 h of continuous operation. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) investigations have identified COOH* as a critical reaction intermediate and elucidated that photoexcitation accelerates charge carrier dynamics, thereby substantially promoting the conversion of key intermediates (CO2* and CO*) and overall reaction kinetics. This research provides insights for engineering high-performance heterostructured catalysts by controlling interfacial and electronic structures. Full article
Show Figures

Graphical abstract

36 pages, 1130 KiB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Viewed by 1440
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

67 pages, 16344 KiB  
Review
Enantiomerically Pure ansa-η5-Complexes of Transition Metals as an Effective Tool for Chirality Transfer
by Pavel V. Kovyazin, Leonard M. Khalilov and Lyudmila V. Parfenova
Molecules 2025, 30(12), 2511; https://doi.org/10.3390/molecules30122511 - 8 Jun 2025
Cited by 1 | Viewed by 614
Abstract
Chiral ansa-η5-complexes of transition metals have shown remarkable efficacy in organometallic synthesis and catalysis. Additionally, enantiomerically pure ansa-complexes hold promise for the development of novel chiral materials and pharmaceuticals. The discovery and synthesis of a diverse range of [...] Read more.
Chiral ansa-η5-complexes of transition metals have shown remarkable efficacy in organometallic synthesis and catalysis. Additionally, enantiomerically pure ansa-complexes hold promise for the development of novel chiral materials and pharmaceuticals. The discovery and synthesis of a diverse range of group IVB and IIIB metal complexes represents a significant milestone in the advancement of stereoselective catalytic methods for constructing metal-C, C-C, C-H, and C-heteroatom bonds. The synthesis of enantiomerically pure metallocenes can be accomplished through several strategies: utilizing optically active precursors of η5-ligands, separation of diastereomers of complexes with enantiomerically pure agents, and synthesis via the stereocontrolled reactions of enantiomerically pure σ-complexes with prochiral anions of η5-ligands. This review focuses on the analysis of various nuances of the synthesis of enantiomerically pure ansa-η5-complexes of titanium and lanthanum families. Their applicability as effective catalysts in asymmetric carbomagnesiation, carbo- and cycloalumination, oligo- and polymerization, Diels–Alder cycloaddition, reactions of zirconaaziridines, cyclization, hydrosilylation, hydrogenation, hydroamination, and other processes are highlighted as well. Full article
(This article belongs to the Special Issue Advances in Metallocene Chemistry)
Show Figures

Scheme 1

Back to TopTop