Enantiomerically Pure ansa-η5-Complexes of Transition Metals as an Effective Tool for Chirality Transfer
Abstract
1. Introduction
2. Synthesis of Enantiomerically Pure ansa-bis-η5-Complexes of Group III and IV Transition Metals
2.1. Path A: Resolution of Racemic Complexes into Enantiomers via Derivatization
2.2. Path B: Stereoselective Synthesis of ansa-Metallocenes via Metalation of Chiral η5-Ligand Precursors
2.3. Path C: Stereoselective Synthesis of ansa-Metallocenes via Enantiomerically Pure σ-Complexes
3. Application of Enantiomerically Pure ansa-η5-Complexes in Asymmetric Catalysis
3.1. Carbomagnesation of Unsaturated Compounds
3.2. Carbo- and Cycloalumination of Unsaturated Compounds
3.3. Asymmetric Oligo- and Polymerization of Alkenes and Dienes
3.4. The Diels–Alder Cycloaddition
3.5. Reactions of Imine ansa-Zirconocenes—Zirconaaziridines
3.6. Cyclization Reactions
3.7. Asymmetric Hydrosilylation of Ketones
3.8. Asymmetric Hydrogenation of N-Substituted Compounds
3.9. Enantioselective Hydrogenation of Olefins
3.10. Hydroamination and Cyclization of Amino- and Phosphinoalkenes
3.11. Other Applications of Enantiomerically Enriched ansa-Complexes in Asymmetric Catalysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marek, I. Titanium and Zirconium in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002; p. 537. [Google Scholar]
- Takahashi, T. Metallocenes in Regio- and Stereoselective Synthesis; Springer: Berlin/Heidelberg, Germany, 2005; p. 244. [Google Scholar]
- Zohuri, G.H.; Albahily, K.; Schwerdtfeger, E.D.; Miller, S.A. 3.21—Metallocene Alkene Polymerization Catalysts. In Polymer Science: A Comprehensive Reference; Moeller, M., Matyjaszewski, K., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2012; Volume 3, pp. 673–697. [Google Scholar] [CrossRef]
- Vaughan, A.; Davis, D.S.; Hagadorn, J.R.; Salwani, M.S. Industrial Catalysts for Alkene Polymerization. Ref. Modul. Mater. Sci. Mater. Eng. 2017, 1–18. [Google Scholar] [CrossRef]
- Kaminsky, W. Discovery of Methylaluminoxane as Cocatalyst for Olefin Polymerization. Macromolecules 2012, 45, 3289–3297. [Google Scholar] [CrossRef]
- Chen, E.Y.X.; Marks, T.J. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure−Activity Relationships. Chem. Rev. 2000, 100, 1391–1434. [Google Scholar] [CrossRef]
- Coates, G.W. Precise Control of Polyolefin Stereochemistry Using Single-Site Metal Catalysts. Chem. Rev. 2000, 100, 1223–1252. [Google Scholar] [CrossRef]
- Atiqullah, M.; Tinkl, M.; Pfaendner, R.; Akhtar, M.N.; Hussain, I. Synthesis of Functional Polyolefins using Metallocenes: A Comprehensive Review. Polym. Rev. 2010, 50, 178–230. [Google Scholar] [CrossRef]
- Collins, R.A.; Russell, A.F.; Mountford, P. Group 4 metal complexes for homogeneous olefin polymerisation: A short tutorial review. Appl. Petrochem. Res. 2015, 5, 153–171. [Google Scholar] [CrossRef]
- Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem. Inter. Ed. Engl. 1995, 34, 1143–1170. [Google Scholar] [CrossRef]
- Brintzinger, H.H.; Fischer, D. Development of ansa-Metallocene Catalysts for Isotactic Olefin Polymerization. Adv. Polym. Sci. 2013, 258, 29–42. [Google Scholar] [CrossRef]
- Janiak, C. Metallocene and related catalysts for olefin, alkyne and silane dimerization and oligomerization. Coord. Chem. Rev. 2006, 250, 66–94. [Google Scholar] [CrossRef]
- Janiak, C.; Blank, F. Metallocene Catalysts for Olefin Oligomerization. Macromol. Symp. 2006, 236, 14–22. [Google Scholar] [CrossRef]
- Kaminsky, W.; Arndt, M. Chapter 2.3: Reactions of Unsaturated Compounds Polymerization, Oligomerization, and Copolymerization of Olefins Chemical Background. In Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W.A., Eds.; Wiley-VCH: Weinheim, Germany, 1996; pp. 213–385. [Google Scholar] [CrossRef]
- Skupinska, J. Oligomerization of α-olefins to higher oligomers. Chem. Rev. 1991, 91, 613–648. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Bikmeeva, A.K.; Kovyazin, P.V.; Khalilov, L.M. The Dimerization and Oligomerization of Alkenes Catalyzed with Transition Metal Complexes: Catalytic Systems and Reaction Mechanisms. Molecules 2024, 29, 502. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.P. Applications of light olefin oligomerization to the production of fuels and chemicals. Appl. Catal. A Gen. 2017, 543, 82–97. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P.; Tavtorkin, A.; Vinogradov, A.; Vinogradov, A. Non-traditional Ziegler-Natta catalysis in α-olefin transformations: Reaction mechanisms and product design. Pure Appl. Chem. 2017, 89, 1017–1032. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P. Fair look at coordination oligomerization of higher α-olefins. Polymers 2020, 12, 1082. [Google Scholar] [CrossRef]
- Schwartz, J.; Labinger, J.A. Hydrozirconation: A New Transition Metal Reagent for Organic. Angew. Chem. Inter. Ed. Engl. 1976, 15, 333–340. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Ibragimov, A.G. Metal complex catalysis in the synthesis of organoaluminium compounds. Russ. Chem. Rev. 2000, 69, 121–135. [Google Scholar] [CrossRef]
- Guiry, P.J.; Coyne, A.G.; Carroll, A.M. C-E bond formation through hydroboration and hydroalumination. In Comprehensive Organometallic Chemistry III; Michael, D., Mingos, P., Crabtree, R.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 10, pp. 839–869. [Google Scholar] [CrossRef]
- Sato, F. Organic Syntheses via Hydroalumination of Olefins Catalyzed by Titanium or Zirconium Compounds. J. Synth. Org. Chem. 1980, 38, 234–243. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Khalilov, L.M.; Dzhemilev, U.M. Mechanisms of reactions of organoaluminium compounds with alkenes and alkynes catalyzed by Zr complexes. Russ. Chem. Rev. 2012, 81, 524–548. [Google Scholar] [CrossRef]
- Hoveyda, A.H.; Morken, J.P. Enantioselective C-C and C-H Bond Formation Mediated or Catalyzed by Chiral ebthi Complexes of Titanium and Zirconium. Angew. Chem. Inter. Ed. Engl. 1996, 35, 1262–1284. [Google Scholar] [CrossRef]
- Negishi, E.I. Discovery of ZACA reaction: Zr-catalyzed asymmetric carboalumination of Alkenes. Arkivoc 2011, 2011, 34–53. [Google Scholar] [CrossRef]
- Tanaka, K. Chapter 18: Asymmetric carbometallations including carbocyclizations. In Catalytic Asymmetric Synthesis, 4th ed.; Akiyama, T., Ojima, I., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 705–726. [Google Scholar] [CrossRef]
- D’yakonov, V.A. Dzhemilev reaction for the synthesis of cyclic and acyclic organometallic compounds. In Organometallic Compounds: Preparation, Structure and Properties; Nova Science Publishers: Hauppauge, NY, USA, 2011; p. 96. [Google Scholar]
- Beweries, T.; Haehnel, M.; Rosenthal, U. Recent advances in the chemistry of heterometallacycles of group 4 metallocenes. Catal. Sci. Technol. 2013, 3, 18–28. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Ibragimov, A.G. Catalytic cyclometalation reaction of unsaturated compounds in synthesis of magnesa- and aluminacarbocycles. J. Organomet. Chem. 2010, 695, 1085–1110. [Google Scholar] [CrossRef]
- Caruso, F.; Rossi, M.; Opazo, C.; Pettinari, C. Structural features of antitumor titanium agents and related compounds. Bioinorg. Chem. Appl. 2005, 2005, 317–329. [Google Scholar] [CrossRef]
- Pradines, B.; Orlandi-Pradines, E.; Henry, M.; Bogreau, H.; Fusai, T.; Mosnier, J.; Baret, E.; Durand, C.; Bouchiba, H.; Penhoat, K.; et al. Métallocènes et paludisme: Une nouvelle approche thérapeutiqueMetallocenes and malaria: A new therapeutic approach. Ann. Pharm. Fr. 2005, 63, 284–294. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Meléndez, E. Metallocenes as target specific drugs for cancer treatment. Inorg. Chim. Acta 2012, 393, 36–52. [Google Scholar] [CrossRef]
- Erker, G. Group 4 metallocenes in bioorganometallic chemistry. J. Organomet. Chem. 2007, 692, 1187–1197. [Google Scholar] [CrossRef]
- Paley, R.S. Enantiomerically Pure Planar Chiral Organometallic Complexes via Facially Selective π-Complexation. Chem. Rev. 2002, 102, 1493–1524. [Google Scholar] [CrossRef]
- Shapiro, P.J. The evolution of the ansa-bridge and its effect on the scope of metallocene chemistry. Coord. Chem. Rev. 2002, 231, 67–81. [Google Scholar] [CrossRef]
- Wang, B. Ansa-metallocene polymerization catalysts: Effects of the bridges on the catalytic activities. Coord. Chem. Rev. 2006, 250, 242–258. [Google Scholar] [CrossRef]
- Halteman, R.L. Chapter 8: Synthesis of Chiral Titanocene and Zirconocene Dichlorides. In Metallocenes: Synthesis Reactivity Applications; Togni, A., Halterman, R.L., Eds.; Wiley-VCH: Weinheim, Germany, 1998; pp. 455–544. [Google Scholar] [CrossRef]
- Bau, M.A.; Wiesler, S.; Younas, S.L.; Streuff, J. Strategies for the Synthesis of Chiral Carbon-Bridged Group IV ansa-Metallocenes. Chem. Eur. J. 2019, 25, 10531–10545. [Google Scholar] [CrossRef] [PubMed]
- Halterman, R.L. Synthesis and applications of chiral cyclopentadienylmetal complexes. Chem. Rev. 1992, 92, 965–994. [Google Scholar] [CrossRef]
- Hoveyda, A.H. Chapter 6: Chiral Zirconium Catalysts for Enantioselective Synthesis. In Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim, Germany, 2002; pp. 180–229. [Google Scholar] [CrossRef]
- Schnutenhaus, H.; Brintzinger, H.H. 1,1′-Trimethylenebis(η5-3-tert-butylcyclopentadienyl)-titanium(IV)Dichloride, a Chiral ansa-Titanocene Derivative. Angew. Chem. Inter. Ed. Engl. 1979, 18, 777–778. [Google Scholar] [CrossRef]
- Kuntz, B.A.; Ramachandran, R.; Taylor, N.J.; Guan, J.; Collins, S. Addition of a sterically hindered, chiral crotyl ansa-titanocene complex to aldehydes. J. Organomet. Chem. 1995, 497, 133–142. [Google Scholar] [CrossRef]
- Schmidt, K.; Reinmuth, A.; Rief, U.; Diebold, J.; Brintzinger, H.H. Photochemical Isomerization of Me2Si-Bridged Zirconocene Complexes. Application to Stereoselective Syntheses of ansa-Zirconocene Binaphtholate Stereoisomers. Organometallics 1997, 16, 1724–1728. [Google Scholar] [CrossRef]
- Wild, F.R.W.P.; Zsolnai, L.; Huttner, G.; Brintzinger, H.H. ansa-Metallocene derivatives IV. Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands. J. Organomet. Chem. 1982, 232, 233–247. [Google Scholar] [CrossRef]
- Schäfer, A.; Karl, E.; Zsolnai, L.; Huttner, G.; Brintzinger, H.H. ansa-Metallocene derivatives: XII. Diastereomeric derivatisation and enantiomer separation of ethylenebis(tetrahydronindenyl)-titanium and -zirconium dichlorides. J. Organomet. Chem. 1987, 328, 87–99. [Google Scholar] [CrossRef]
- Collins, S.; Kuntz, B.A.; Hong, Y. Additions of chiral allyltitanocenes to aldehydes: Diastereoselective synthesis of homoallylic alcohols with a recyclable chiral transition metal reagent. J. Org. Chem. 1989, 54, 4154–4158. [Google Scholar] [CrossRef]
- Collins, S.; Hong, Y.; Taylor, N.J. General synthetic routes to chiral, ethylene-bridged ansa-titanocene dichlorides. Organometallics 1990, 9, 2695–2703. [Google Scholar] [CrossRef]
- Grossman, R.B.; Davis, W.M.; Buchwald, S.L. Enantioselective, zirconium-mediated synthesis of allylic amines. J. Am. Chem. Soc. 1991, 113, 2321–2322. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Zakirova, I.V.; Kovyazin, P.V.; Karchevsky, S.G.; Istomina, G.P.; Khalilov, L.M.; Dzhemilev, U.M. Intramolecular mobility of η5-ligands in chiral zirconocene complexes and the enantioselectivity of alkene functionalization by organoaluminum compounds. Dalt. Trans. 2016, 45, 12814–12826. [Google Scholar] [CrossRef] [PubMed]
- Huttenloch, M.E.; Dorer, B.; Rief, U.; Prosenc, M.H.; Schmidt, K.; Brintzinger, H.H. ansa-metallocene derivatives XXXIX biphenyl-bridged metallocene complexes of titanium, zirconium, and vanadium: Syntheses, crystal structures and enantioseparation. J. Organomet. Chem. 1997, 541, 219–232. [Google Scholar] [CrossRef]
- Ringwald, M.; Stürmer, R.; Brintzinger, H.H. Asymmetric Thermal Transformation, a New Way to Enantiopure Biphenyl-Bridged Titanocene and Zirconocene Complexes: Efficient Catalysts for Asymmetric Imine Hydrogenation. J. Am. Chem. Soc. 1999, 121, 1524–1527, Erratum in J. Am. Chem. Soc. 1999, 121, 1524–1527. https://doi.org/10.1021/ja9955161. [Google Scholar] [CrossRef]
- Chin, B.; Buchwald, S.L. An Improved Procedure for the Resolution of (rac)-Ethylenebis(tetrahydroindenyl)Titanium Derivatives. J. Org. Chem. 1996, 61, 5650–5651. [Google Scholar] [CrossRef]
- Chin, B.; Buchwald, S.L. Improved Procedure for the Preparation of Enantiomerically Pure Ethylenebis(tetrahydroindenyl)zirconium Derivatives. J. Org. Chem. 1997, 62, 2267–2268. [Google Scholar] [CrossRef]
- Habaue, S.; Sakamoto, H.; Okamoto, Y. Optical Resolution of Chiral Ethylenebis(4,5,6,7-tetrahydro-1-indenyl)zirconium Derivatives by High-Performance Liquid Chromatography. Chem. Lett. 1996, 25, 383–384. [Google Scholar] [CrossRef]
- Habaue, S.; Sakamoto, H.; Baraki, H.; Okamoto, Y. Chiral ethylenebis(4,5,6,7-tetrahydro-1-indenyl) complexes of zirconium and hafnium: Separation and application to asymmetric polymerization. Macromol. Rapid. Commun. 1997, 18, 707–713. [Google Scholar] [CrossRef]
- Hong, Y.; Kuntz, B.A.; Collins, S. Asymmetric induction in the Diels-Alder reaction using chiral metallocene catalysts. Organometallics 1993, 12, 964–969. [Google Scholar] [CrossRef]
- Jaquith, J.B.; Guan, J.; Wang, S.; Collins, S. Asymmetric Induction in the Diels-Alder Reaction Catalyzed by Chiral Metallocene Triflate Complexes: Dramatic Effect of Solvent Polarity. Organometallics 1995, 14, 1079–1081. [Google Scholar] [CrossRef]
- Jaquith, J.B.; Levy, C.J.; Bondar, G.V.; Wang, S.; Collins, S. Diels−Alder Reactions of Oxazolidinone Dienophiles Catalyzed by Zirconocene Bis(triflate) Catalysts: Mechanism for Asymmetric Induction. Organometallics 1998, 17, 914–925. [Google Scholar] [CrossRef]
- Ellis, W.W.; Hollis, T.K.; Odenkirk, W.; Whelan, J.; Ostrander, R.; Rheingold, A.L.; Bosnich, B. Synthesis, structure, and properties of chiral titanium and zirconium complexes bearing biaryl strapped substituted cyclopentadienyl ligands. Organometallics 1993, 12, 4391–4401. [Google Scholar] [CrossRef]
- Halterman, R.L.; Ramsey, T.M. Asymmetric synthesis of a sterically rigid binaphthyl-bridged chiral metallocene: Asymmetric catalytic epoxidation of unfunctionalized alkenes. Organometallics 1993, 12, 2879–2880. [Google Scholar] [CrossRef]
- Burk, M.J.; Colletti, S.L.; Halterman, R.L. C2-symmetric 2,2′-dimethyl-1,1′-binaphthyl-bridged ansa-bis(1-indenyl)metal complexes. Organometallics 1991, 10, 2998–3000. [Google Scholar] [CrossRef]
- Halterman, R.L.; Combs, D.; Kihega, J.G.; Khan, M.A. Synthesis of ansa-2,2′-bis[(4,7-dimethyl-inden-1-yl)methyl]-1,1′-binaphthyl and ansa-2,2′-bis[(4,5,6,7-tetrahydroinden1-yl)methyl]-1,1′-binaphthyltitanium and -zirconium dichlorides. J. Organomet. Chem. 1996, 520, 163–170. [Google Scholar] [CrossRef]
- Rheingold, A.L.; Robinson, N.P.; Whelan, J.; Bosnich, B. Preparation and properties of chiral titanocene and zirconocene dichloride complexes of a chiral ligand. Organometallics 1992, 11, 1869–1876. [Google Scholar] [CrossRef]
- Halterman, R.L.; Zhu, C.; Chen, Z.; Dunlap, M.S.; Khan, M.A.; Nicholas, K.M. Preparation of [2,5-Diisopropylcyclohexane-1,4- bis(indenyl)]titanium Dichloride and [2,5-Diisopropylcyclohexane-1,4-bis(tetrahydroindenyl)]- titanium Dichloride and Their Comparison as Catalysts for the Enantioselective Pinacol Coupling of Benzaldehyde. Organometallics 2000, 19, 3824–3829. [Google Scholar] [CrossRef]
- Hollis, T.K.; Robinson, N.P.; Whelan, J.; Rhelngold, A.L.; Bosnich, B. Preparation and properties of (S,S)-[Ti((R,R)-cyclacene)Cl2], a chiral strapped bent metallocene. Organometallics 1992, 11, 2812–2816. [Google Scholar] [CrossRef]
- Bandy, J.A.; Green, M.L.H.; Gardiner, I.M.; Prout, K. Polymerisation of ethylene and propene using new chiral zirconium derivatives. Crystal structure of [ZrL1Cl2][H2L1 = (4S,5S)-trans-4,5-bis(1H-inden-1-ylmethyl)-2,2-dimethyl-1,3-dioxolane]. J. Chem. Soc., Dalton Trans. 1991, 8, 2207–2216. [Google Scholar] [CrossRef]
- Thiele, S.; Erker, G.; Fritze, C.; Psiorz, C.; Fröhlich, R. Synthesis of a Chiral Meso-Like Ansa-Zirconocene Complex and its Use for the Catalytic Formation of Low Molecular Weight Polypropylene. Z. Naturforschung Sect. B J. Chem. Sci. 1995, 50, 982–989. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Rausch, M.D.; Chien, J.C.W. Heptane-soluble homogeneous zirconocene catalyst: Synthesis of a single diastereomer, polymerization catalysis, and effect of silica supports. J. Polym. Sci. A Polym. Chem. 1995, 33, 2093–2108. [Google Scholar] [CrossRef]
- Halterman, R.L.; Chen, Z.; Khan, M.A. Synthesis, Structure Determination, and Reactivity of C2-Symmetrical Ethylene-Bridged ansa-Bis(DiMeBCOCp)titanium Dichlorides. Organometallics 1996, 15, 3957–3967. [Google Scholar] [CrossRef]
- Taber, D.F.; Balijepalli, B.; Liu, K.K.; Kong, S.; Rheingold, A.L.; Askham, F.R. Designing the Chiral Ligand Space around an Early Transition Metal: Myrtanyl Zirconocene. J. Org. Chem. 1999, 64, 4525–4527. [Google Scholar] [CrossRef]
- Wiesler, S.; Bau, M.A.; Younas, S.L.; Luu, H.T.; Kratzert, D.; Streuff, J. A Unified Approach to Customized Chiral Carbon-Bridged ansa-Metallocenes. Chem. Eur. J. 2018, 24, 16532–16536. [Google Scholar] [CrossRef]
- Beagley, P.; Davies, P.; Adams, H.; White, C. Chiral metallocenes: The synthesis and X-ray crystal structures of TiCl2η5:η5-C5Me4SiMe2C5H3R*) (R* = menthyl or neomenthyl) and related compounds. Can. J. Chem. 2001, 79, 731–741. [Google Scholar] [CrossRef]
- Giardello, M.A.; Eisen, M.S.; Stern, C.L.; Marks, T.J. Chiral C1-Symmetric Group 4 Metallocenes as Catalysts for Stereoregular.alpha.-Olefin Polymerization. Metal, Ancillary Ligand, and Counteranion Effects. J. Am. Chem. Soc. 1995, 117, 12114–12129. [Google Scholar] [CrossRef]
- Obora, Y.; Stern, C.L.; Marks, T.J.; Nickias, P.N. Ancillary Ligand Effects in Chiral C1-Symmetric ansa-Metallocene Catalysts for Stereoregular α-Olefin Polymerization. “Wingspan” Modification with Octahydrofluorene. Organometallics 1997, 16, 2503–2505. [Google Scholar] [CrossRef]
- Halterman, R.L.; Fahey, D.R.; Marin, V.P.; Dockter, D.W.; Khan, M.A. Synthesis, characterization and polymerization properties of isopropylidene(η5-3-neomenthylcyclopentadienyl)(η5-fluorenyl)zirconium dichloride. J. Organomet. Chem. 2001, 625, 154–159. [Google Scholar] [CrossRef]
- Baker, R.W.; Foulkes, M.A.; Turner, P. Enantiospecific synthesis of a planar chiral fluorenylzirconium ansa-metallocene: Synthesis and structures of [1-(9-fluorenyl)- and [1-(1-methyl-9-fluorenyl)-2-(2-indenyl)naphthalene]zirconium dichloride. J. Chem. Soc. Dalton Trans. 2000, 4, 431–433. [Google Scholar] [CrossRef]
- Rieger, B.; Jany, G. A Convenient Synthesis of Enantiomerically Pure Ethylene-Bridged Metallocene Complexes Bearing Fluorenyl- and Octahydrofluorenyl Ligands. Chem. Ber. 1994, 127, 2417–2419. [Google Scholar] [CrossRef]
- Jany, G.; Fawzi, R.; Steimann, M.; Rieger, B. Synthesis of Enantiomerically Pure Ethylene-Bridged ansa-Zirconocene and -Hafnocene Complexes Bearing Fluorenyl, Indenyl, Octahydrofluorenyl, and Tetrahydroindenyl Ligands. Organometallics 1997, 16, 544–550. [Google Scholar] [CrossRef]
- Baar, C.R.; Levy, C.J.; Min, E.Y.J.; Henling, L.M.; Day, M.W.; Bercaw, J.E. Kinetic Resolution of Chiral α-Olefins Using Optically Active ansa-Zirconocene Polymerization Catalysts. J. Am. Chem. Soc. 2004, 126, 8216–8231. [Google Scholar] [CrossRef] [PubMed]
- Aspinall, H.C. Chiral Lanthanide Complexes: Coordination Chemistry and Applications. Chem. Rev. 2002, 102, 1807–1850. [Google Scholar] [CrossRef] [PubMed]
- Conticello, V.P.; Brard, L.; Giardello, M.A.; Tsuji, Y.; Sabat, M.; Stern, C.L.; Marks, T.J. Chiral organolanthanide complexes for enantioselective olefin hydrogenation. J. Am. Chem. Soc. 1992, 114, 2761–2762. [Google Scholar] [CrossRef]
- Giardello, M.A.; Conticello, V.P.; Brard, L.; Sabat, M.; Stern, C.L.; Marks, T.J.; Rheingold, A.L. Chiral Organolanthanides Designed for Asymmetric Catalysis. Synthesis, Characterization, and Configurational Interconversions of Chiral, C1-Symmetric Organolanthanide Halides, Amides, and Hydrocarbyls. J. Am. Chem. Soc. 1994, 116, 10212–10240. [Google Scholar] [CrossRef]
- Douglass, M.R.; Ogasawara, M.; Hong, S.; Metz, M.V.; Marks, T.J. “Widening the Roof”: Synthesis and Characterization of New Chiral C1-Symmetric Octahydrofluorenyl Organolanthanide Catalysts and Their Implementation in the Stereoselective Cyclizations of Aminoalkenes and Phosphinoalkenes. Organometallics 2002, 21, 283–292. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Hajela, S.; Brookhart, S.K.; Hardcastle, K.I.; Henling, L.M.; Bercaw, J.E. Preparation and Structural Characterization of an Enantiomerically Pure, C2-Symmetric, Single-Component Ziegler−Natta α-Olefin Polymerization Catalyst. J. Am. Chem. Soc. 1996, 118, 1045–1053. [Google Scholar] [CrossRef]
- LoCoco, M.D.; Jordan, R.F. Enantioselective Synthesis of ansa-Zirconocenes. J. Am. Chem. Soc. 2004, 126, 13918–13919. [Google Scholar] [CrossRef]
- Xu, L.; Mikami, K. Diastereo- and enantioselective syntheses of ansa-metallocenes from metal halide complexes with tropos biphenol and atropos binaphthol ethers. Tetrahedron Lett. 2004, 45, 9215–9217. [Google Scholar] [CrossRef]
- Vaughan, A.; Davis, D.S.; Hagadorn, J.R. Industrial Catalysts for Alkene Polymerization. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3, pp. 657–672. [Google Scholar] [CrossRef]
- Kaminsky, W. Highly active metallocene catalysts for olefin polymerization. J. Chem. Soc. Dalton Trans. 1998, 9, 1413–1418. [Google Scholar] [CrossRef]
- Kaminsky, W. The discovery of metallocene catalysts and their present state of the art. J. Polym. Sci. A Polym. Chem. 2004, 42, 3911–3921. [Google Scholar] [CrossRef]
- Kaminsky, W.; Funck, A.; Hähnsen, H. New application for metallocenecatalysts in olefinpolymerization. Dalton Trans. 2009, 41, 8803–8810. [Google Scholar] [CrossRef] [PubMed]
- Shamiri, A.; Chakrabarti, M.H.; Jahan, S.; Hussain, M.A.; Kaminsky, W.; Aravind, P.V.; Yehye, W.A. The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing Ability. Materials 2014, 7, 5069–5108. [Google Scholar] [CrossRef]
- Hlatky, G.G. Heterogeneous Single-Site Catalysts for Olefin Polymerization. Chem. Rev. 2000, 100, 1347–1376. [Google Scholar] [CrossRef]
- Alt, H.G.; Köppl, A. Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. Chem. Rev. 2000, 100, 1205–1222. [Google Scholar] [CrossRef]
- Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Selectivity in Propene Polymerization with Metallocene Catalysts. Chem. Rev. 2000, 100, 1253–1346. [Google Scholar] [CrossRef]
- Suzuki, N. Stereospecific Olefin Polymerization Catalyzed by Metallocene Complexes. In Metallocenes in Regio- and Stereoselective Synthesis, 1st ed.; Takahashi, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 177–215. [Google Scholar] [CrossRef]
- Scheirs, J.; Kaminsky, W. Metallocene-Based Polyolefins—Preparation, Properties and Technology; Wiley: New York, NY, USA, 2000; p. 560. [Google Scholar]
- Guerra, G.; Cavallo, L.; Corradini, P. Chirality of Catalysts for Stereospecific Polymerizations. In Materials-Chirality, 1st ed.; Green, M.M., Nolte, R.J.M., Meijer, E.W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 24, pp. 1–69. [Google Scholar] [CrossRef]
- Nakayama, Y.; Shiono, T. Molecules Developments of Chiral Metallocenes as Polymerization Catalysts. Molecules 2005, 10, 620–633. [Google Scholar] [CrossRef]
- Resconi, L.; Chadwick, J.C.; Cavallo, L. Olefin Polymerizations with Group IV Metal Catalysts. In Comprehensive Organometallic Chemistry III; Mingos, D.M.P., Crabtree, R.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 4, pp. 1005–1166. [Google Scholar] [CrossRef]
- Zaccaria, F.; Sian, L.; Zuccaccia, C.; Macchioni, A. Chapter One—Ion pairing in transition metal catalyzed olefin polymerization. In Advances in Organometallic Chemistry; Pérez, P.J., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 1–78. [Google Scholar] [CrossRef]
- Osakada, K. Organometallic Reactions and Polymerization. In Lecture Notes in Chemistry 85; Springer: Berlin/Heidelberg, Germany, 2014; p. 301. [Google Scholar]
- Corma, A.; Iborra, S. Oligomerization of Alkenes. In Microporous and Mesoporous Solid Catalysts; Derouane, E.G., Roberts, S.M., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 125–140. [Google Scholar]
- Bryliakov, K.P.; Talsi, E.P. Frontiers of mechanistic studies of coordination polymerization and oligomerization of α-olefins. Coord. Chem. Rev. 2012, 256, 2994–3007. [Google Scholar] [CrossRef]
- Christoffers, J.; Bergman, R.G. Zirconocene-alumoxane (1:1)—A catalyst for the selective dimerization of α-olefins. Inorg. Chim. Acta 1998, 270, 20–27. [Google Scholar] [CrossRef]
- Negishi, E.I.; Huo, S. Synthesis and Reactivity of Zirconocene Derivatives. In Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley: Hoboken, NJ, USA, 2002; pp. 1–49. [Google Scholar] [CrossRef]
- Negishi, E.I. Asymmetric Carbometallations. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 165–189. [Google Scholar] [CrossRef]
- Xu, S.; Oda, A.; Kamada, H.; Negishi, E.I. Highly enantioselective synthesis of γ-, δ-, and ɛ-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling. Proc. Natl. Acad. Sci. USA 2014, 111, 8368–8373. [Google Scholar] [CrossRef]
- Xu, S.; Oda, A.; Bobinski, T.; Li, H.; Matsueda, Y.; Negishi, E.I. Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid. Angew. Chem. Inter. Ed. 2015, 54, 9319–9322. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lee, C.T.; Wang, G.; Negishi, E.I. Widely Applicable Synthesis of Enantiomerically Pure Tertiary Alkyl-Containing 1-Alkanols by Zirconium-Catalyzed Asymmetric Carboalumination of Alkenes and Palladium- or Copper-Catalyzed Cross-Coupling. Chem. Asian J. 2013, 8, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Oda, A.; Negishi, E.I. Enantioselective Synthesis of Chiral Isotopomers of 1-Alkanols bya ZACA–Cu-Catalyzed Cross-Coupling Protocol. Chem. Eur. J. 2014, 20, 16060–16064. [Google Scholar] [CrossRef] [PubMed]
- Hoveyda, A.H.; Morken, J.P. Regio- and stereoselective carbon-carbon bond formation through transition metal catalysis. The influence of catalyst chirality on selective ethylmagnesiation of chiral, nonracemic alcohols and ethers. J. Org. Chem. 1993, 58, 4237–4244. [Google Scholar] [CrossRef]
- Morken, J.P.; Didiuk, M.T.; Hoveyda, A.H. Zirconium-catalyzed asymmetric carbomagnesation. J. Am. Chem. Soc. 1993, 115, 6997–6998. [Google Scholar] [CrossRef]
- Visser, M.S.; Heron, N.M.; Didiuk, M.T.; Sagal, J.F.; Hoveyda, A.H. Catalytic and Enantioselective Route to Medium-Ring Heterocycles. Asymmetric Zirconium-Catalyzed Ethylmagnesation of Seven- and Eight-Membered Rings. J. Am. Chem. Soc. 1996, 118, 4291–4298. [Google Scholar] [CrossRef]
- Morken, J.P.; Didiuk, M.T.; Visser, M.S.; Hoveyda, A.H. Zirconium-Catalyzed Kinetic Resolution of Pyrans. J. Am. Chem. Soc. 1994, 116, 3123–3124. [Google Scholar] [CrossRef]
- Visser, M.S.; Hoveyda, A.H. Zirconocene-catalyzed kinetic resolution of dihydrofurans. Tetrahedron 1995, 51, 4383–4394. [Google Scholar] [CrossRef]
- Adams, J.A.; Heron, N.M.; Koss, A.M.; Hoveyda, A.H. Stereoselective Chelate-Controlled Addition of Grignard Reagents to Unsaturated Medium-Ring Heterocycles. J. Org. Chem. 1999, 64, 854–860. [Google Scholar] [CrossRef]
- Visser, M.S.; Harrity, J.P.A.; Hoveyda, A.H. Zirconium-Catalyzed Kinetic Resolution of Cyclic Allylic Ethers. An Enantioselective Route to Unsaturated Medium Ring Systems. J. Am. Chem. Soc. 1996, 118, 3779–3780. [Google Scholar] [CrossRef]
- Johannes, C.W.; Visser, M.S.; Weatherhead, G.S.; Hoveyda, A.H. Zr-Catalyzed Kinetic Resolution of Allylic Ethers and Mo-Catalyzed Chromene Formation in Synthesis. Enantioselective Total Synthesis of the Antihypertensive Agent (S,R,R,R)-Nebivolol. J. Am. Chem. Soc. 1998, 120, 8340–8347. [Google Scholar] [CrossRef]
- Adams, J.A.; Ford, J.G.; Stamatos, P.J.; Hoveyda, A.H. Zr-Catalyzed Kinetic Resolution of Aliphatic Cyclic Allylic Ethers. Carbocycles to Heterocycles by Ru- and Mo-Catalyzed Ring-Opening and Ring-Closing Metathesis. J. Org. Chem. 1999, 64, 9690–9696. [Google Scholar] [CrossRef]
- Bell, L.; Whitby, R.J.; Jones, R.V.H.; Standen, M.C.H. Catalytic asymmetric carbomagnesiation of unactivated alkenes. A new, effective, active, cheap and recoverable chiral zirconocene. Tetrahedron Lett. 1996, 37, 7139–7142. [Google Scholar] [CrossRef]
- Bell, L.; Brookings, D.C.; Dawson, G.J.; Whitby, R.J.; Jones, R.V.H.; Standen, M.C.H. Asymmetric ethylmagnesiation of alkenes using a novel zirconium catalyst. Tetrahedron 1998, 54, 14617–14634. [Google Scholar] [CrossRef]
- Sato, F.; Urabe, H.; Okamoto, S. Synthesis of Organotitanium Complexes from Alkenes and Alkynes and Their Synthetic Applications. Chem. Rev. 2000, 100, 2835–2886. [Google Scholar] [CrossRef]
- Collins, S.; Dean, W.P.; Ward, D.G. Addition of crotyltitanocenes to aldehydes: Influence of cyclopentadienyl substituents on the diastereoselective formation of homoallylic alcohols. Organometallics 1988, 7, 2289–2293. [Google Scholar] [CrossRef]
- Urabe, H.; Yoshikawa, K.; Sato, F. Generation of chiral (η5-indenyl)2(η3-allyl)Ti complex and its highly enantioselective reaction with carbonyl compounds. Tetrahedron Lett. 1995, 36, 5595–5598. [Google Scholar] [CrossRef]
- Justicia, J.; Sancho-Sanz, I.; Álvarez-Manzaneda, E.; Oltra, J.E.; Cuerva, J.M. Efficient Propargylation of Aldehydes and Ketones Catalyzed by Titanocene(III). Adv. Synth. Catal. 2009, 351, 2295–2300. [Google Scholar] [CrossRef]
- Rosales, A.; Oller-López, J.L.; Justicia, J.; Gansäuer, A.; Oltra, J.E.; Cuerva, J.M. Unprecedented Barbier-type reactions catalysed by titanocene(III). Chem. Commun. 2004, 22, 2628–2629. [Google Scholar] [CrossRef]
- Estévez, R.E.; Justicia, J.; Bazdi, B.; Fuentes, N.; Paradas, M.; Choquesillo-Lazarte, D.; García-Ruiz, J.M.; Robles, R.; Gansäuer, A.; Cuerva, J.M.; et al. Ti-Catalyzed Barbier-Type Allylations and Related Reactions. Chem. Eur. J. 2009, 15, 2774–2791. [Google Scholar] [CrossRef]
- Kondakov, D.Y.; Negishi, E.I. Zirconium-catalyzed enantioselective methylalumination of monosubstituted alkenes. J. Am. Chem. Soc. 1995, 117, 10771–10772. [Google Scholar] [CrossRef]
- Kondakov, D.Y.; Negishi, E.I. Zirconium-Catalyzed Enantioselective Alkylalumination of Monosubstituted Alkenes Proceeding via Noncyclic Mechanism. J. Am. Chem. Soc. 1996, 118, 1577–1578. [Google Scholar] [CrossRef]
- Negishi, E.I. Magical Power of Transition Metals: Past, Present, and Future (Nobel Lecture). Angew. Chem. Int. Ed. 2011, 50, 6738–6764. [Google Scholar] [CrossRef] [PubMed]
- Petros, R.A.; Camara, J.M.; Norton, J.R. Enantioselective methylalumination of α-olefins. J. Organomet. Chem. 2007, 692, 4768–4773. [Google Scholar] [CrossRef]
- Millward, D.B.; Cole, A.P.; Waymouth, R.M. Catalytic Carboalumination of Olefins with Cyclopentadienylamidotitanium Dichloride Complexes. Organometallics 2000, 19, 1870–1878. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Berestova, T.V.; Tyumkina, T.V.; Kovyazin, P.V.; Khalilov, L.M.; Whitby, R.J.; Dzhemilev, U.M. Enantioselectivity of chiral zirconocenes as catalysts in alkene hydro-, carbo- and cycloalumination reactions. Tetrahedron Asymmetry 2010, 21, 299–310. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Kovyazin, P.V.; Tyumkina, T.V.; Makrushina, A.V.; Khalilov, L.M.; Dzhemilev, U.M. Catalytic enantioselective ethylalumination of terminal alkenes: Substrate effects and absolute configuration assignment. Tetrahedron Asymmetry 2015, 26, 124–135. [Google Scholar] [CrossRef]
- Dawson, G.; Durrant, C.A.; Kirk, G.G.; Whitby, R.J.; Jones, R.V.H.; Standen, M.C.H. Zirconium-catalysed enantioselective 2-aluminoethylalumination of alkenes. Tetrahedron Lett. 1997, 38, 2335–2338. [Google Scholar] [CrossRef]
- Pino, P.; Cioni, P.; Wei, J. Asymmetric hydrooligomerization of propylene. J. Am. Chem. Soc. 1987, 109, 6189–6191. [Google Scholar] [CrossRef]
- Pino, P.; Cioni, P.; Galimberti, M.; Wei, J.; Piccolrovazzi, N. Asymmetric Hydrooligomerization of Propylene. In Transition Metals and Organometallics as Catalysts for Olefin Polymerization; Kaminsky, W., Sinn, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 269–279. [Google Scholar] [CrossRef]
- Pino, P.; Galimberti, M. Asymmetric deuteration and deuteriooligomerization of 1-pentene. J. Organomet. Chem. 1989, 370, 1–7. [Google Scholar] [CrossRef]
- Kaminsky, W.; Ahlers, A.; Möller-Lindenhof, N. Asymmetric Oligomerization of Propene and 1-Butene with a Zirconocene/Alumoxane Catalyst. Angew. Chem. Int. Ed. Engl. 1989, 28, 1216–1218. [Google Scholar] [CrossRef]
- König, W.A. Eine neue Generation chiraler Trennphasen für die Gaschromatographie. Nachrichten Chem. Tech. Lab. 1989, 37, 471–476. [Google Scholar] [CrossRef]
- König, W.A.; Lutz, S.; Wenz, G. Modified Cyclodextrins—Novel, Highly Enantioselective Stationary Phases for Gas Chromatography. Angew. Chem. Int. Ed. Engl. 1988, 27, 979–980. [Google Scholar] [CrossRef]
- Kaminsky, W.; Niedoba, S.; Moeller-Lindenhof, N.; Rabe, O. Chapter 4: Isotactic olefin polymerization with optically active catalysts. In Catalysis in Polymer Synthesis; Vandenberg, E.J., Salamone, J.C., Eds.; American Chemical Society: Washington, DC, USA, 1991; pp. 63–71. [Google Scholar] [CrossRef]
- Song, W.; Yu, Z.; Chien, J.C.W. Error formation in ansa-zirconocene catalyzed isotactic propylene polymerization. J. Organomet. Chem. 1996, 512, 131–140. [Google Scholar] [CrossRef]
- Chien, J.C.W.; Vizzini, J.C.; Kaminsky, W. Difference in stereoselective polymerization of 4-methyl-1-hexene by homogeneous and heterogeneous Ziegler-Natta catalysts. Makromol. Chem. Rapid Commun. 1992, 13, 479–484. [Google Scholar] [CrossRef]
- Coates, G.W.; Waymouth, R.M. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: A novel strategy for the synthesis of optically active polymers with chirality in the main chain. J. Am. Chem. Soc. 1993, 115, 91–98. [Google Scholar] [CrossRef]
- Galdi, N.; Della Monica, C.; Spinella, A.; Oliva, L. Enantioselective C–C bond formation in styrene dimerization with chiral ansa zirconocene-based catalyst. J. Mol. Catal. A Chem. 2006, 243, 106–110. [Google Scholar] [CrossRef]
- Wolczanski, P.T.; Chirik, P.J. A Career in Catalysis: John, E. Bercaw. ACS Catal. 2015, 5, 1747–1757. [Google Scholar] [CrossRef]
- Min, E.Y.J.; Byers, J.A.; Bercaw, J.E. Catalyst Site Epimerization during the Kinetic Resolution of Chiral α-Olefins by Polymerization. Organometallics 2008, 27, 2179–2188. [Google Scholar] [CrossRef]
- Byers, J.A.; Bercaw, J.E. Kinetic resolution of racemic α-olefins with ansa-zirconocene polymerization catalysts: Enantiomorphic site vs. chain end control. Proc. Natl. Acad. Sci. USA 2006, 103, 15303–15308. [Google Scholar] [CrossRef]
- Ota, Y.; Murayama, T.; Nozaki, K. One-step catalytic asymmetric synthesis of all-syn deoxypropionate motif from propylene: Total synthesis of (2R,4R,6R,8R)-2,4,6,8-tetramethyldecanoic acid. Proc. Natl. Acad. Sci. USA 2016, 113, 2857–2861. [Google Scholar] [CrossRef] [PubMed]
- Murayama, T.; Nozaki, K. Single-Step Construction of the anti-Deoxypropionate Motif from Propylene: Formal Total Synthesis of the Cuticular Hydrocarbons Isolated from Antitrogus parvulus. Angew. Chem. Int. Ed. 2018, 57, 11394–11398. [Google Scholar] [CrossRef] [PubMed]
- Kovyazin, P.V.; Mukhamadeeva, O.V.; Parfenova, L.V. Stereoselective synthesis of functionalized hexene oligomers catalyzed by chiral ansa-zirconocene in the presence of Al- and B-containing activators. Mendeleev Commun. 2024, 34, 61–63. [Google Scholar] [CrossRef]
- Corradini, P.; Guerra, G.; Cavallo, L. Do New Century Catalysts Unravel the Mechanism of Stereocontrol of Old Ziegler−Natta Catalysts? Acc. Chem. Res. 2004, 37, 231–241. [Google Scholar] [CrossRef]
- Gately, D.A.; Norton, J.R. Origin of Stereochemistry in the α-Amino Acid Esters and Amides Generated from Optically Active Zirconaaziridine Complexes. J. Am. Chem. Soc. 1996, 118, 3479–3489. [Google Scholar] [CrossRef]
- Rodewald, S.; Jordan, R.F. Stereoselective Olefin Insertion Reactions of Chiral (EBI)Zr(.eta.2-pyrid-2-yl)+ and (EBTHI)Zr(.eta.2-pyrid-2-yl)+ Complexes. J. Am. Chem. Soc. 1994, 116, 4491–4492. [Google Scholar] [CrossRef]
- Sweeney, Z.K.; Salsman, J.L.; Andersen, R.A.; Bergman, R.G. Synthesis of Chiral, Enantiopure Zirconocene Imido Complexes: Highly Selective Kinetic Resolution and Stereoinversion of Allenes, and Evidence for a Stepwise Cycloaddition/Retrocycloaddition Reaction Mechanism. Angew. Chem. Int. Ed. 2000, 39, 2339–2343. [Google Scholar] [CrossRef]
- Hicks, F.A.; Kablaoui, N.M.; Buchwald, S.L. Titanocene-Catalyzed Cyclocarbonylation of Enynes to Cyclopentenones. J. Am. Chem. Soc. 1996, 118, 9450–9451. [Google Scholar] [CrossRef]
- Hicks, F.A.; Buchwald, S.L. Highly Enantioselective Catalytic Pauson−Khand Type Formation of Bicyclic Cyclopentenones. J. Am. Chem. Soc. 1996, 118, 11688–11689. [Google Scholar] [CrossRef]
- Sturla, S.J.; Buchwald, S.L. Catalytic Asymmetric Cyclocarbonylation of Nitrogen-Containing Enynes. J. Org. Chem. 1999, 64, 5547–5550. [Google Scholar] [CrossRef]
- Streuff, J.; Feurer, M.; Bichovski, P.; Frey, G.; Gellrich, U. Enantioselective Titanium(III)-Catalyzed Reductive Cyclization of Ketonitriles. Angew. Chem. Int. Ed. 2012, 51, 8661–8664. [Google Scholar] [CrossRef] [PubMed]
- Larson, G.L.; Liberatore, R.J. Organosilanes in Metal-Catalyzed, Enantioselective Reductions. Org. Process Res. Dev. 2021, 25, 1719–1787. [Google Scholar] [CrossRef]
- Carter, M.B.; Schiott, B.; Gutiérrez, A.; Buchwald, S.L. Enantioselective Hydrosilylation of Ketones with a Chiral Titanocene Catalyst. J. Am. Chem. Soc. 1994, 116, 11667–11670. [Google Scholar] [CrossRef]
- Rahimian, K.; Harrod, J.F. The influence of the catalyst preparation protocol and silane structure on the rate and enantioselectivity of ansa-titanocene catalysed hydrosilation of prochiral ketones. Inorg. Chim. Acta 1998, 270, 330–336. [Google Scholar] [CrossRef]
- Yun, J.; Buchwald, S.L. Titanocene-Catalyzed Asymmetric Ketone Hydrosilylation: The Effect of Catalyst Activation Protocol and Additives on the Reaction Rate and Enantioselectivity. J. Am. Chem. Soc. 1999, 121, 5640–5644. [Google Scholar] [CrossRef]
- Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R. Additive Effects on Asymmetric Catalysis. Chem. Rev. 2016, 116, 4006–4123. [Google Scholar] [CrossRef]
- Beagley, P.; Davies, P.J.; Blacker, A.J.; White, C. Chiral Metallocenes. 3.1 The Enantioselective Reduction of CX Bonds (X = O or CH2) by the Chiral ansa-Metallocenes (R)- or (S)-[TiCl2(η5:η5- C5Me4SiMe2C5H3R*)] (R* = Menthyl or Neomenthyl). Organometallics 2002, 21, 5852–5858. [Google Scholar] [CrossRef]
- Halterman, R.L.; Ramsey, T.M.; Chen, Z. Catalytic Asymmetric Hydrosilation of Aryl Alkyl Ketones with C2-Symmetric Chiral Metallocene Complexes. J. Org. Chem. 1994, 59, 2642–2644. [Google Scholar] [CrossRef]
- Willoughby, C.A.; Buchwald, S.L. Asymmetric titanocene-catalyzed hydrogenation of imines. J. Am. Chem. Soc. 1992, 114, 7562–7564. [Google Scholar] [CrossRef]
- Willoughby, C.A.; Buchwald, S.L. Synthesis of highly enantiomerically enriched cyclic amines by the catalytic asymmetric hydrogenation of cyclic imines. J. Org. Chem. 1993, 58, 7627–7629. [Google Scholar] [CrossRef]
- Willoughby, C.A.; Buchwald, S.L. Catalytic Asymmetric Hydrogenation of Imines with a Chiral Titanocene Catalyst: Scope and Limitations. J. Am. Chem. Soc. 1994, 116, 8952–8965. [Google Scholar] [CrossRef]
- Willoughby, C.A.; Buchwald, S.L. Catalytic Asymmetric Hydrogenation of Imines with a Chiral Titanocene Catalyst: Kinetic and Mechanistic Investigations. J. Am. Chem. Soc. 1994, 116, 11703–11714. [Google Scholar] [CrossRef]
- Lee, N.E.; Buchwald, S.L. Asymmetric Hydrogenation of Enamines with a Chiral Titanocene Catalyst. J. Am. Chem. Soc. 1994, 116, 5985–5986. [Google Scholar] [CrossRef]
- Verdaguer, X.; Lange, U.E.W.; Reding, M.T.; Buchwald, S.L. Highly Enantioselective Imine Hydrosilylation Using (S,S)-Ethylenebis(η5-tetrahydroindenyl)titanium Difluoride. J. Am. Chem. Soc. 1996, 118, 6784–6785. [Google Scholar] [CrossRef]
- Hansen, M.C.; Buchwald, S.L. A Method for the Asymmetric Hydrosilylation of N-Aryl Imines. Org. Lett. 2000, 2, 713–715. [Google Scholar] [CrossRef]
- Verdaguer, X.; Lange, U.E.W.; Buchwald, S.L. Amine Additives Greatly Expand the Scope of Asymmetric Hydrosilylation of Imines. Angew. Chem. Int. Ed. 1998, 37, 1103–1107. [Google Scholar] [CrossRef]
- Reding, M.T.; Buchwald, S.L. Short Enantioselective Total Syntheses of the Piperidine Alkaloids (S)-Coniine and (2R,6R)-trans-Solenopsin A via Catalytic Asymmetric Imine Hydrosilylation. J. Org. Chem. 1998, 63, 6344–6347. [Google Scholar] [CrossRef]
- Hansen, M.C.; Buchwald, S.L. Synthesis of NPS R-568 utilizing titanium-catalyzed asymmetric hydrosilylation. Tetrahedron Lett. 1999, 40, 2033–2034. [Google Scholar] [CrossRef]
- Viso, A.; Lee, N.E.; Buchwald, S.L. Kinetic resolution of racemic disubstituted 1-pyrrolines via asymmetric reduction with a chiral titanocene catalyst. J. Am. Chem. Soc. 1994, 116, 9373–9374. [Google Scholar] [CrossRef]
- Yun, J.; Buchwald, S.L. Kinetic resolution and isomerization of 2,5-disubstituted pyrrolines. Chirality 2000, 12, 476–478. [Google Scholar] [CrossRef]
- Yun, J.; Buchwald, S.L. Efficient Kinetic Resolution in the Asymmetric Hydrosilylation of Imines of 3-Substituted Indanones and 4-Substituted Tetralones. J. Org. Chem. 2000, 65, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.F.; Brard, L.; Li, Y.; Marks, T.J. Regioselection and Enantioselection in Organolanthanide-Catalyzed Olefin Hydrosilylation. A Kinetic and Mechanistic Study. J. Am. Chem. Soc. 1995, 117, 7157–7168. [Google Scholar] [CrossRef]
- Cui, X.; Burgess, K. Catalytic Homogeneous Asymmetric Hydrogenations of Largely Unfunctionalized Alkenes. Chem. Rev. 2005, 105, 3272–3296. [Google Scholar] [CrossRef] [PubMed]
- Verendel, J.J.; Pàmies, O.; Diéguez, M.; Andersson, P.G. Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-type Catalysts: Scope and Limitations. Chem. Rev. 2014, 114, 2130–2169. [Google Scholar] [CrossRef]
- Pizzano, A. Chapter One—Asymmetric hydrogenation of functionalized olefins. In Advances in Catalysis. Metal-Catalyzed Asymmetric Hydrogenation: Evolution and Prospect; Elsevier: Cambridge, MA, USA, 2021; Volume 68, pp. 1–134. [Google Scholar] [CrossRef]
- Pàmies, O.; Zheng, J.; Faiges, J.; Andersson, P.G. Chapter Two—Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups. In Advances in Catalysis. Metal-Catalyzed Asymmetric Hydrogenation: Evolution and Prospect; Elsevier: Cambridge, MA, USA, 2021; Volume 68, pp. 135–203. [Google Scholar] [CrossRef]
- Waymouth, R.; Pino, P. Enantioselective hydrogenation of olefins with homogeneous Ziegler-Natta catalysts. J. Am. Chem. Soc. 1990, 112, 4911–4914. [Google Scholar] [CrossRef]
- Grossman, R.B.; Doyle, R.A.; Buchwald, S.L. Syntheses of [ethylene-1,2-bis(.eta.5-4,5,6,7-tetrahydro-1-indenyl)]zirconium and -hafnium hydride complexes. Improved syntheses of the corresponding dichlorides. Organometallics 1991, 10, 1501–1505. [Google Scholar] [CrossRef]
- Broene, R.D.; Buchwald, S.L. Asymmetric Hydrogenation of Unfunctionalized Trisubstituted Olefins with a Chiral Titanocene Catalyst. J. Am. Chem. Soc. 1996, 118, 9458. [Google Scholar] [CrossRef]
- Troutman, M.V.; Appella, D.H.; Buchwald, S.L. Asymmetric Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with a Cationic Zirconocene Catalyst. J. Am. Chem. Soc. 1999, 121, 4916–4917. [Google Scholar] [CrossRef]
- Yamaura, Y.; Hyakutake, M.; Mori, M. Synthesis of Heterocycles Using Zirconium-Catalyzed Asymmetric Diene Cyclization. J. Am. Chem. Soc. 1997, 119, 7615–7616. [Google Scholar] [CrossRef]
- Roesky, P.W.; Stern, C.L.; Marks, T.J. Ancillary Ligand Effects on Organo-f-Element Reactivity. ansa-Metallocenes with Bridge-Tethered Donors. Organometallics 1997, 16, 4705–4711. [Google Scholar] [CrossRef]
- Gagné, M.R.; Brard, L.; Conticello, V.P.; Giardello, M.A.; Stern, C.L.; Marks, T.J. Stereoselection effects in the catalytic hydroamination/cyclization of amino olefins at chiral organolanthanide centers. Organometallics 1992, 11, 2003–2005. [Google Scholar] [CrossRef]
- Gagné, M.R.; Stern, C.L.; Marks, T.J. Organolanthanide-catalyzed hydroamination. A kinetic, mechanistic, and diastereoselectivity study of the cyclization of N-unprotected amino olefins. J. Am. Chem. Soc. 1992, 114, 275–294. [Google Scholar] [CrossRef]
- Hong, S.; Marks, T.J. Highly Stereoselective Intramolecular Hydroamination/Cyclization of Conjugated Aminodienes Catalyzed by Organolanthanides. J. Am. Chem. Soc. 2002, 124, 7886–7887. [Google Scholar] [CrossRef]
- Ryu, J.S.; Marks, T.J.; McDonald, F.E. Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization/Bicyclization of Sterically Encumbered Substrates. Scope, Selectivity, and Catalyst Thermal Stability for Amine-Tethered Unactivated 1,2-Disubstituted Alkenes. J. Org. Chem. 2004, 69, 1038–1052. [Google Scholar] [CrossRef]
- Hong, S.; Marks, T.J. Organolanthanide-Catalyzed Hydroamination. Acc. Chem. Res. 2004, 37, 673–686. [Google Scholar] [CrossRef]
- Hong, S.; Kawaoka, A.M.; Marks, T.J. Intramolecular Hydroamination/Cyclization of Conjugated Aminodienes Catalyzed by Organolanthanide Complexes. Scope, Diastereo- and Enantioselectivity, and Reaction Mechanism. J. Am. Chem. Soc. 2003, 125, 15878–15892. [Google Scholar] [CrossRef]
- Colletti, S.L.; Halterman, R.L. Asymmetric epoxidation of unfunctionalized alkenes using the new C2-symmetrical 1,1′-binaphthyl-2,2′-dimethylene-bridged ansa-Bis(1-indenyl)titanium dichloride catalyst. Tetrahedron Lett. 1992, 33, 1005–1008. [Google Scholar] [CrossRef]
- Gansäuer, A.; Bluhm, H.; Rinker, B.; Narayan, S.; Schick, M.; Lauterbach, T.; Pierobon, M. Reagent-Controlled Stereoselectivity in Titanocene-Catalyzed Epoxide Openings: Reductions and Intermolecular Additions to α,β-Unsaturated Carbonyl Compounds. Chem. Eur. J. 2003, 9, 531–542. [Google Scholar] [CrossRef]
- Gansäuer, A.; Bluhm, H.; Lauterbach, T. Titanocene-Catalysed Enantioselective Opening of meso-Epoxides. Adv. Synth. Catal. 2001, 343, 785–787. [Google Scholar] [CrossRef]
- Gansäuer, A.; Lauterbach, T.; Bluhm, H.; Noltemeyer, M. A Catalytic Enantioselective Electron Transfer Reaction: Titanocene-Catalyzed Enantioselective Formation of Radicals from meso-Epoxides. Angew. Chem. Int. Ed. 1999, 38, 2909–2910. [Google Scholar] [CrossRef]
- Estévez, R.E.; Oller-Lopez, J.L.; Robles, R.; Melgarejo, C.R.; Gansäuer, A.; Cuerva, J.M.; Oltra, J.E. Stereocontrolled coupling between aldehydes and conjugated alkenals mediated by TiIII/H2O. Org. Lett. 2006, 8, 5433–5436. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Halterman, R.L. Enantioselective catalytic isomerization of an unfunctionalized achiral alkene. J. Am. Chem. Soc. 1992, 114, 2276–2277. [Google Scholar] [CrossRef]
Entry | Complex | R* | Solvent for Synthesis (Crystallization) | Yield, % | Ratio of Epimers R:S (Solvent) |
---|---|---|---|---|---|
1 | 127a (La) | (+)-neomenthyl | THF (Et2O) | 47 | 75:25 (THF) |
2 | 128a (Nd) | (+)-neomenthyl | THF (Et2O) | 65 | 74:26 (THF) |
3 | 129a (Sm) | (+)-neomenthyl | THF (Et2O) | 47 | 74:26 (THF) |
4 | 129a (Sm) | (+)-neomenthyl | THF (Et2O) | 58 | 34:66 (Et2O) |
5 | 130a (Y) | (+)-neomenthyl | THF (Et2O) | 63 | 74:26 (THF) |
46:54 (Et2O) | |||||
6 | 131a (Lu) | (+)-neomenthyl | THF (Et2O) | 57 | 74:26 (THF) |
51:49 (Et2O) | |||||
7 | 129b (Sm) | (−)-menthyl | THF (Et2O) | 60 | >95:5 (Et2O) |
20:80 (THF) | |||||
9 | 130b (Y) | (−)-menthyl | THF (Et2O) | 64 | 20:80 (THF) |
90:10 (Et2O) | |||||
10 | 131b (Lu) | (−)-menthyl | THF (Et2O) | 70 | 20:80 (THF) |
85:15 (Et2O) | |||||
11 | 130c (Y) | (−)-phenylmenthyl | THF (Et2O) | 48 | 6:94 (THF) |
83:17 (Et2O) | |||||
12 | 129b, S (Sm) | (−)-menthyl | THF, DME (Et2O) | 88 | |
13 | 131b, S (Lu) | (−)-menthyl | THF, DME (Et2O) | 89 | |
14 | 129a, R (Sm) | (+)-neomenthyl | THF, DME (Et2O) | 54 |
Catalyst | AlR3 | Product | R′ | ee% | Ref. |
---|---|---|---|---|---|
p-S,p-S-187 | AlMe3 | 182 | n-C6H13, i-Bu, Cy, Bn, Ph, C4H8OH, C3H6NEt2 | 65–85, R | [130] |
182 | n-C4H9, n-C6H13 | 48–73, R | [134] | ||
AlEt3 | 182 | R′ = n-C6H13 | 92, R | [135] | |
182 | n-C4H9, n-C5H11, n-C6H13, n-C7H15, n-C8H17, i-Bu, Cy, Cy8, Ph, Bn | 33–68, S | [136] | ||
184 | n-C6H13 | 33 | [135] | ||
184 | n-C4H9, Bn | 5–11, S | [136] | ||
Cy, Cy8 | 45–57, S | ||||
Ph | 31–40, R | ||||
p-R,p-R-13 | AlMe3 | 182 | n-C8H17 | 6, R | [130] |
R,p-R,p-R-16 | AlMe3 | 182 | n-C6H13 | 8, R | [130] |
p-S,p-S-13 | AlEt3 | 182 | n-C6H13 | 51, R | [51] |
184 | n-C6H13 | 11, S | |||
S,p-S,p-S-16 | AlEt3 | 182 | n-C6H13 | 15, R | [51] |
184 | n-C6H13 | 26, S | |||
p-S,p-S-18 | AlMe3 | 182 | n-C6H13 | 58, R | [51] |
AlEt3 | 182 | n-C6H13 | 50, R | ||
184 | n-C6H13 | 12, S | |||
S,p-S,p-S-19 | AlEt3 | 182 | n-C6H13 | 15, R | [51] |
184 | n-C6H13 | 20, S | |||
p-S,p-S-149 | AlMe3 | 182 | Bn | 29 | [132] |
p-S,p-S-188a | AlMe3 | 182 | Bn | 25 | [132] |
p-S,p-S-188b | AlMe3 | 182 | Bn | 29 | [132] |
p-S,p-S-188c | AlMe3 | 182 | Bn | 33 | [132] |
p-S,p-S-189 | AlMe3 | 182 | Ph | 80 | [132] |
p-R,S-190 | AlMe3 | 182 | Ph, | 19 | [133] |
Bn | 28 |
Entry | Alkene-1 | Complex | Time, h | TOF, h−1 | Conversion, % | s | %ee |
---|---|---|---|---|---|---|---|
1 | 199a | S-116a | 18 | 72 | 24 | 2.8 | 13.3 |
2 | S-116a | 47 | 47 | 38.3 | 2.4 | 20.3 | |
3 | S-116a | 60 | 2.6 | ||||
4 | S-116b | 266 | 2.3 | ||||
5 | S-116c | 374 | 2.5 | ||||
6 | S-116d | 280 | 3.2 | ||||
7 | 199b | S-116a | 13.5 | 551 | 75 | 1.8 | 40 |
8 | S-116b | 299 | 1.8 | ||||
9 | S-116c | 706 | 1.9 | ||||
10 | 199c | S-116a | 40.5 | 45.6 | 32.5 | 17.6 | 40.6 |
11 | S-116a | 69 | 34 | 42.4 | 15.9 | 58.6 | |
12 | S-116a | 40 | 16.8 | ||||
13 | S-116b | 109 | 12.5 | ||||
14 | S-116c | 450 | 15 | ||||
15 | 199e | S-116a | 16.5 | 77.6 | 64.4 | 1.1 | 7.6 |
16 | S-116a | 16.5 | 73.7 | 58.7 | 1.1 | 4.6 | |
17 | S-116a | 75 | 1.1 | ||||
18 | S-116b | 111 | 1.2 | ||||
19 | S-116c | 633 | 1.2 | ||||
20 | 199f | S-116a | 18 | 7.6 | |||
21 | S-116d | 16 | 3.2 | ||||
22 | 199d | S-116a | 22.7 | 55.8 | 37.8 | 2.0 | 16.2 |
23 | S-116a | 43 | 37 | 56.1 | 2.1 | 30.3 | |
24 | S-116a | 37 | 2.1 | ||||
25 | S-116b | 49 | 6.4 | ||||
26 | S-116c | 111 | 1.6 | ||||
27 | S-116d | 988 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovyazin, P.V.; Khalilov, L.M.; Parfenova, L.V. Enantiomerically Pure ansa-η5-Complexes of Transition Metals as an Effective Tool for Chirality Transfer. Molecules 2025, 30, 2511. https://doi.org/10.3390/molecules30122511
Kovyazin PV, Khalilov LM, Parfenova LV. Enantiomerically Pure ansa-η5-Complexes of Transition Metals as an Effective Tool for Chirality Transfer. Molecules. 2025; 30(12):2511. https://doi.org/10.3390/molecules30122511
Chicago/Turabian StyleKovyazin, Pavel V., Leonard M. Khalilov, and Lyudmila V. Parfenova. 2025. "Enantiomerically Pure ansa-η5-Complexes of Transition Metals as an Effective Tool for Chirality Transfer" Molecules 30, no. 12: 2511. https://doi.org/10.3390/molecules30122511
APA StyleKovyazin, P. V., Khalilov, L. M., & Parfenova, L. V. (2025). Enantiomerically Pure ansa-η5-Complexes of Transition Metals as an Effective Tool for Chirality Transfer. Molecules, 30(12), 2511. https://doi.org/10.3390/molecules30122511