Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts
Abstract
1. Introduction
2. Results
2.1. Characterization of the Photocatalyst
2.2. Photothermal Activity—Transient MS Analysis
2.3. DRIFT Analysis
3. Discussion
3.1. Metal–Support Interactions
3.2. Surface Coverage—Assessed by Literature Evaluation
3.3. Explaining Temperature-Dependent (Surface) Chemistry
3.4. Effect of Photoexcitation on Performance
3.4.1. Further Consideration of the Effect of Illumination on CH4 Productivity and Ru–CO Surface Coverage
3.4.2. Non-Thermal Effects
3.4.3. Simplified View of Photon-Induced Changes in CO Coverage
4. Experimental
4.1. Catalyst Preparation
4.2. Characterization
4.2.1. Diffuse Reflectance Fourier Transform Infrared (DRIFT) Spectroscopy
4.2.2. (DRIFT) Spectroscopy During LED Illumination at 530 nm and 365 nm
4.3. Photothermal Reactivity by Transient Analysis
5. Conclusions
- The Ru/TiO2 catalyst used for methanation of CO2 shows a photo-response, which is larger than that of the catalysts reported in the literature. This is likely due to the strong metal (Ru) support (TiO2) interactions induced by the high temperature treatment in H2, preceding photothermal catalysis.
- Using a fixed illumination energy of 360 mW/cm2, the strongest light-induced enhancement in conversion of CO2 was obtained in the range of 200–250 °C. At 200 °C, the rate rapidly increases from ~1.2 mol gRu−1 h−1 to ~1.8 mol gRu−1 h−1 upon illumination. Light does not induce a change in mechanism given the similar activation energy, while the increase in rate would agree with a global temperature rise of the catalyst of ~10 °C.
- A change in selectivity from CH4 towards CO was observed at 450 °C—enhanced by illumination.
- DRIFT spectroscopic analysis in static gas conditions shows a diminishing intensity and shift in the Ru–CO absorption frequency upon illumination in isothermal conditions—indicative of light-induced desorption of CO equivalent to a temperature rise of several 100 s of degrees.
- Using the CO IR spectrum as an in-situ probe, localized heating (by Ru visible light absorption) cannot explain the observed decreasing CO coverage. Rather, interfacial charge transfer processes should play a role, in agreement with recent spectroscopic observations [36].
- To explain the limited increase in CH4 formation rate by non-thermal lowering of the CO coverage, we hypothesize that the surface concentrations of other adsorbates, relevant in the reaction mechanism, such as Ru–H, are also affected by illumination.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulmer, U.; Dingle, T.; Duchesne, P.N.; Morris, R.H.; Tavasoli, A.; Wood, T.; Ozin, G.A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Yamada, Y.M.A.; Anpo, M.; Tang, Z.-R.; Xu, Y.-J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297. [Google Scholar] [CrossRef]
- Yang, X.; Tan, F.; Wang, D.; Feng, Q.; Qiu, D.; Dang, D.; Wang, X. Entrapping Ru nanoparticles into TiO2 nanotube: Insight into the confinement synergy on boosting pho-thermal CO2 methanation activity. Ceram. Int. 2021, 47, 27316–27323. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135. [Google Scholar] [CrossRef]
- Wang, C.; Fang, S.; Xie, S.; Zheng, Y.; Hu, Y.H. Thermo-photo catalytic CO2 hydrogenation over Ru/TiO2. J. Mater. Chem. A 2020, 8, 7390–7394. [Google Scholar] [CrossRef]
- Yang, Z.; Qi, Y.; Wang, F.; Han, Z.; Jiang, Y.; Han, H.; Liu, J.; Zhang, X.; Ong, W.J. State-of-the-art advancements in photo-assisted CO2 hydrogenation: Recent progress in catalyst development and reaction mechanisms. J. Mater. Chem. A 2020, 8, 24868–24894. [Google Scholar] [CrossRef]
- Wang, Y.; Winter, L.R.; Chen, J.G.; Yan, B. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic properties to product selectivity. Green Chem. 2021, 23, 249–267. [Google Scholar] [CrossRef]
- Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J. CO2 Util. 2018, 26, 98–122. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Yin, W.; Wang, L.; Li, Z.; Xiong, Y. Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 2016, 6, 57446–57463. [Google Scholar] [CrossRef]
- Xu, P.; McCool, N.S.; Mallouk, T.E. Water splitting dye-sensitized solar cells. Nano Today 2017, 14, 42–58. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Medhi, R.; Marquez, M.D.; Lee, T.R. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of their Synthesis, Properties, and Applications. ACS Appl. Nano Mater. 2020, 3, 6156–6185. [Google Scholar] [CrossRef]
- Nah, Y.-C.; Paramasivam, I.; Schmuki, P. Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications. ChemPhysChem 2010, 11, 2698–2713. [Google Scholar] [CrossRef]
- Ghoussoub, M.; Xia, M.; Duchesne, P.N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142. [Google Scholar] [CrossRef]
- Keller, N.; Ivanez, J.; Highfield, J.; Ruppert, A.M. Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl. Catal. B Environ. 2021, 296, 120320. [Google Scholar] [CrossRef]
- Mateo, D.; Cerrillo, J.L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343. [Google Scholar] [CrossRef]
- Sa, J.; Tagliabue, G.; Friedli, P.; Szlachetko, J.; Rittmann-Frank, M.H.; Santomauro, F.G.; Milne, C.J.; Sigg, H. Direct observation of charge separation on Au localized surface plasmons. Energy Environ. Sci. 2013, 6, 3584–3588. [Google Scholar] [CrossRef]
- Yu, Y.; Williams, J.D.; Willets, K.A. Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy. Faraday Discuss. 2018, 210, 29–39. [Google Scholar] [CrossRef]
- Kamarudheen, R.; Aalbers, G.J.W.; Hamans, R.F.; Kamp, L.P.J.; Baldi, A. Distinguishing Among All Possible Activation Mechanisms of a Plasmon-Driven Chemical Reaction. ACS Energy Lett. 2020, 5, 2605–2613. [Google Scholar] [CrossRef]
- Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Photothermal Conversion of CO2 into CH4 with H2 over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. Angew. Chem. Int. Ed. 2014, 53, 11478–11482. [Google Scholar] [CrossRef]
- O’Brien, P.G.; Sandhel, A.; Wood, T.E.; Jelle, A.A.; Hoch, L.B.; Perovic, D.D.; Mims, C.A.; Ozin, G.A. Photomethanation of Gaseous CO2 over Ru/Silicon Nanowire Catalysts with Visible and Near-Infrared Photons. Adv. Sci. 2014, 1, 1400001. [Google Scholar] [CrossRef]
- Kong, N.; Han, B.; Li, Z.; Fang, Y.; Feng, K.; Wu, Z.; Wang, S.; Xu, A.-B.; Yu, Y.; Li, C.; et al. Ruthenium Nanoparticles Supported on Mg(OH)2 Microflowers as Catalysts for Photothermal Carbon Dioxide Hydrogenation. ACS Appl. Nano Mater. 2020, 3, 3028–3033. [Google Scholar] [CrossRef]
- Mateo, D.; Albero, J.; García, H. Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule 2019, 3, 1949–1962. [Google Scholar] [CrossRef]
- Novoa-Cid, M.; Baldovi, H.G. Study of the Photothermal Catalytic Mechanism of CO2 Reduction to CH4 by Ruthenium Nanoparticles Supported on Titanate Nanotubes. Nanomaterials 2020, 10, 2212. [Google Scholar] [CrossRef]
- Sastre, F.; Versluis, C.; Meulendijks, N.; Rodríguez-Fernández, J.; Sweelssen, J.; Elen, K.; Van Bael, M.K.; den Hartog, T.; Verheijen, M.A.; Buskens, P. Sunlight-Fueled, Low-Temperature Ru-Catalyzed Conversion of CO2 and H2 to CH4 with a High Photon-to-Methane Efficiency. ACS Omega 2019, 4, 7369–7377. [Google Scholar] [CrossRef] [PubMed]
- Jelle, A.A.; Ghuman, K.K.; O’Brien, P.G.; Hmadeh, M.; Sandhel, A.; Perovic, D.D.; Singh, C.V.; Mims, C.A.; Ozin, G.A. Highly Efficient Ambient Temperature CO2 Photomethanation Catalyzed by Nanostructured RuO2 on Silicon Photonic Crystal Support. Adv. Energy Mater. 2018, 8, 1702277. [Google Scholar]
- O’Brien, P.G.; Ghuman, K.K.; Jelle, A.A.; Sandhel, A.; Wood, T.E.; Loh, J.Y.Y.; Jia, J.; Perovic, D.; Singh, C.V.; Kherani, N.P.; et al. Enhanced photothermal reduction of gaseous CO2 over silicon photonic crystal supported ruthenium at ambient temperature. Energy Environ. Sci. 2018, 11, 3443–3451. [Google Scholar] [CrossRef]
- Ren, J.; Ouyang, S.; Xu, H.; Meng, X.; Wang, T.; Wang, D.; Ye, J. Targeting Activation of CO2 and H2 over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2 Methanation in Flow-Type System. Adv. Energy Mater. 2017, 7, 1601657. [Google Scholar] [CrossRef]
- Thampi, K.R.; Kiwi, J.; Grätzel, M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 1987, 327, 506–508. [Google Scholar] [CrossRef]
- Wenderich, K.; Zhu, K.J.; Bu, Y.B.; Tichelaar, F.D.; Mul, G.; Huijser, A. Photophysical Characterization of Ru Nanoclusters on Nanostructured TiO2 by Time-Resolved Photoluminescence Spectroscopy. J. Phys. Chem. C 2023, 127, 14353–14362. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, W.; Qi, H.; Su, X.; Su, Y.; Liu, X.; Li, L.; Yang, X.; Huang, Y.; Zhang, T. Strong Metal–Support Interaction of Ru on TiO2 Derived from the Co-Reduction Mechanism of RuxTi1–xO2 Interphase. ACS Catal. 2022, 12, 1697–1705. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R.J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl. Catal. B Environ. 2020, 270, 118846. [Google Scholar] [CrossRef]
- Cisneros, S.; Abdel-Mageed, A.; Mosrati, J.; Bartling, S.; Rockstroh, N.; Atia, H.; Abed, H.; Rabeah, J.; Brückner, A. Oxygen vacancies in Ru/TiO2—Drivers of low-temperature CO2 methanation assessed by multimodal operando spectroscopy. iScience 2022, 25, 103886. [Google Scholar] [CrossRef]
- Muroyama, H.; Tsuda, Y.; Asakoshi, T.; Masitah, H.; Okanishi, T.; Matsui, T.; Eguchi, K. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 2016, 343, 178–184. [Google Scholar] [CrossRef]
- Ortelli, E.E.; Weigel, J.M.; Wokaun, A. Methanol synthesis pathway over Cu/ZrO2 catalysts: A time-resolved DRIFT C-13-labelling experiment. Catal. Lett. 1998, 54, 41–48. [Google Scholar] [CrossRef]
- Falbo, L.; Visconti, C.G.; Lietti, L.; Szanyi, J. The effect of CO on CO2 methanation over Ru/Al2O3 catalysts: A combined steady-state reactivity and transient DRIFT spectroscopy study. Appl. Catal. B-Environ. 2019, 256, 117791. [Google Scholar] [CrossRef]
- Scire, S.; Crisafulli, C.; Maggiore, R.; Minico, S.; Galvagno, S. Influence of the support on CO2 methanation over Ru catalysts: An FT-IR study. Catal. Lett. 1998, 51, 41–45. [Google Scholar] [CrossRef]
- Xu, J.H.; Su, X.; Duan, H.M.; Hou, B.L.; Lin, Q.Q.; Liu, X.Y.; Pan, X.L.; Pei, G.X.; Geng, H.R.; Huang, Y.Q.; et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J. Catal. 2016, 333, 227–237. [Google Scholar] [CrossRef]
- Zagli, E.; Falconer, J.L. Carbon Dioxide Adsorption and Methanation on Ruthenium. J. Catal. 1981, 69, 1–8. [Google Scholar]
- Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C.J.; Berben, P.H.; Meirer, F.; Weckhuysen, B.M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 163. [Google Scholar] [CrossRef]
- Mansour, H.; Iglesia, E. Mechanistic Connections between CO2 and CO Hydrogenation on Dispersed Ruthenium Nanoparticles. J. Am. Chem. Soc. 2021, 143, 11582–11594. [Google Scholar] [CrossRef]
- Vendelbo, S.B.; Johansson, M.; Mowbray, D.J.; Andersson, M.P.; Abild-Pedersen, F.; Nielsen, J.H.; Norskov, J.K.; Chorkendorff, I. Self Blocking of CO Dissociation on a Stepped Ruthenium Surface. Top. Catal. 2010, 53, 357–364. [Google Scholar] [CrossRef]
- Fan, C.Y.; Bonzel, H.P.; Jacobi, K. CO adsorption on the multiple-site Ru(11(2)over-bar1) surface: The role of bonding competition. J. Chem. Phys. 2003, 118, 9773–9782. [Google Scholar] [CrossRef]
- Strebel, C.; Murphy, S.; Nielsen, R.M.; Nielsen, J.H.; Chorkendorff, I. Probing the active sites for CO dissociation on ruthenium nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 8005–8012. [Google Scholar] [CrossRef]
- Tison, Y.; Nielsen, K.; Mowbray, D.J.; Bech, L.; Holse, C.; Calle-Vallejo, F.; Andersen, K.; Mortensen, J.J.; Jacobsen, K.W.; Nielsen, J.H. Scanning Tunneling Microscopy Evidence for the Dissociation of Carbon Monoxide on Ruthenium Steps. J. Phys. Chem. C 2012, 116, 14350–14359. [Google Scholar] [CrossRef]
- Low, G.G.; Bell, A.T. Studies of CO desoprtion and reaction with H2 on Alumina Supported Ru. J. Catal. 1979, 57, 397–405. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chen, Y.W. The kinetics of H-2 adsorption on supported ruthenium catalysts. Thermochim. Acta 2004, 419, 283–290. [Google Scholar] [CrossRef]
- Alves, O.B.; Hoster, H.E.; Behm, R.J. Electrochemistry at Ru(0001) in a flowing CO-saturated electrolyte-reactive and inert adlayer phases. Phys. Chem. Chem. Phys. 2011, 13, 6010–6021. [Google Scholar] [CrossRef]
- Yokomizo, G.H.; Louis, C.; Bell, A.T. An Infrared Study of CO Adsorption on Reduced and Oxidized Ru/SiO2. J. Catal. 1989, 120, 1–14. [Google Scholar] [CrossRef]
- Devasia, D.; Das, A.; Mohan, V.; Jain, P.K. Control of Chemical Reaction Pathways by Light–Matter Coupling. Annu. Rev. Phys. Chem. 2021, 72, 423–443. [Google Scholar] [CrossRef]
- Mascaretti, L.; Schirato, A.; Montini, T.; Alabastri, A.; Naldoni, A.; Fornasiero, P. Challenges in temperature measurements in gas-phase photothermal catalysis. Joule 2022, 6, 1727–1732. [Google Scholar] [CrossRef]
- Nelson, D.A.; Schultz, Z.D. The impact of optically rectified fields on plasmonic electrocatalysis. Faraday Discuss. 2019, 214, 465–477. [Google Scholar] [CrossRef]
- Jia, C.Y.; Zhong, W.H.; Deng, M.S.; Jiang, J. CO oxidation on Ru-Pt bimetallic nanoclusters supported on TiO2(101): The effect of charge polarization. J. Chem. Phys. 2018, 148, 124701. [Google Scholar] [CrossRef]
- Huang, S.P.; Inerbaev, T.M.; Kilin, D.S. Excited State Dynamics of Ru-10 Cluster Interfacing Anatase TiO2(101) Surface and Liquid Water. J. Phys. Chem. Lett. 2014, 5, 2823–2829. [Google Scholar] [CrossRef]
- Frischkorn, C.; Wolf, M. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev. 2006, 106, 4207–4233. [Google Scholar] [CrossRef] [PubMed]
- Kale, M.J.; Avanesian, T.; Xin, H.L.; Yan, J.; Christopher, P. Controlling Catalytic Selectivity on Metal Nanoparticles by Direct Photoexcitation of Adsorbate-Metal Bonds. Nano Lett. 2014, 14, 5405–5412. [Google Scholar] [CrossRef] [PubMed]
- Bonn, M.; Funk, S.; Hess, C.; Denzler, D.N.; Stampfl, C.; Scheffler, M.; Wolf, M.; Ertl, G. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 1999, 285, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Meng, J.; Zheng, K.B.; de Andrade, A.M.; Kullgren, J.; Broqvist, P.; Nordlander, P.; Sa, J. Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. Nano Lett. 2021, 21, 1083–1089. [Google Scholar] [CrossRef]
- Zhou, M.; Jin, R.C. Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. Annu. Rev. Phys. Chem. 2021, 72, 121–142. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.J.; Shi, R.; Waterhouse, G.I.N.; Wen, X.-D.; Zhang, T. Fe-Based Catalysts for the Direct Photohydrogenation of CO2 to Value-Added Hydrocarbons. Adv. Energy Mater. 2021, 11, 2002783. [Google Scholar] [CrossRef]
- Li, Z.; Shi, R.; Zhao, J.; Zhang, T. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Zhao, Z.-W.; Liu, H.; Wang, H.-Q. Core–shell nanostructure for supra-photothermal CO2 catalysis. Rare Met. 2022, 41, 1403–1405. [Google Scholar] [CrossRef]
Catalyst | T (°C) | Reaction Rate (mmol gRu−1 h−1) | Light Source | Light Intensity (mW/cm2) | Reaction Condition | Reference |
---|---|---|---|---|---|---|
Ru/TiO2 | 160 | 380 (CH4) | Hg lamp | 360 | gas flow | This work |
Ru/STO | 160 | 80 (CH4) | Hg lamp | 360 | gas flow | This work |
Ru/SiO2 | 160 | 41 (CH4) | Hg lamp | 360 | gas flow | This work |
Ru/Al2O3 RuO/Al2O3 | 150 | 135 (CH4) 85 (CH4) | Solar simulator | 100 | Batch | [31] |
Ru/TiO2 | 150 | 172 (CH4) | Solar simulator | 100 | gas flow | [5] |
RuO2/STO | 150 | 50 (CH4) | Xe lamp | 100 | gas flow | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, Y.; Wenderich, K.; Costa, N.T.; Weststrate, K.-J.C.J.; Huijser, A.; Mul, G. Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts. Molecules 2025, 30, 2577. https://doi.org/10.3390/molecules30122577
Bu Y, Wenderich K, Costa NT, Weststrate K-JCJ, Huijser A, Mul G. Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts. Molecules. 2025; 30(12):2577. https://doi.org/10.3390/molecules30122577
Chicago/Turabian StyleBu, Yibin, Kasper Wenderich, Nathália Tavares Costa, Kees-Jan C. J. Weststrate, Annemarie Huijser, and Guido Mul. 2025. "Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts" Molecules 30, no. 12: 2577. https://doi.org/10.3390/molecules30122577
APA StyleBu, Y., Wenderich, K., Costa, N. T., Weststrate, K.-J. C. J., Huijser, A., & Mul, G. (2025). Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts. Molecules, 30(12), 2577. https://doi.org/10.3390/molecules30122577