The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
Abstract
:1. Introduction
- Energy supply without fossil fuels;
- Circular production instead of prevailing linear production, i.e., closing carbon cycles;
- Transformation to raw material base (feedstock) without fossil resources;
- Switch to sustainable, low-risk production methods;
- Production and use of chemicals that pose no risk to people or environment;
- Reduction in material flows and focus on products that provide social benefits (sufficiency).
- (i)
- Climate crisis, resulting in political requirements to achieve greenhouse gas neutrality in Europe by 2050 at the latest;
- (ii)
- Energy crisis (in Europe), as supply of natural gas has become uncertain and more expensive due to Russian war of aggression against Ukraine;
- (iii)
- Unstable value chains for supply of raw materials, driven by COVID-19 pandemic and labile trade relations.
2. Sustainable Conversion of the Energy Supply
3. Sustainable Material Flows—Circularity
- Energy and material are lost during the life cycle of a product. Entropy increases, especially when different components are mixed. Recovery then requires high energy input and is never complete.
- Consumers do not fully recycle used products; a proportion ends up in mixed waste.
- Products may contain hazardous substances that can only be separated and eliminated with great effort.
- Recycling companies generally do not have complete substance information, particularly for imported products [84].
- Material flows that are sent for recycling often have varying compositions, complicating the recycling process.
- Solvent-based processes: Plastic waste is dissolved in an organic solvent, any insoluble fillers are filtered off, and the polymer is precipitated again.
- Solvolysis: Polymers are broken down into monomers or oligomers (depolymerization) at elevated temperatures by adding alkali hydroxide, ethylene glycol, ammonia, or similar chemicals [105,119]. Polymer plastics can be resynthesized using these monomers and oligomers. The process is limited to plastics with heteroatoms in the polymer chain such as polyamides, polyurethanes, and polyesters.
- Thermal depolymerization: This includes gasification at 750–1500 °C [120,121], as well as pyrolysis in the absence of oxygen at 420–850 °C, and innovative processes such as liquefaction at normal pressure at 250–350 °C [122,123] or hydrothermal plastic recycling (splitting with supercritical water under pressure) [124,125,126,127]. The resulting products are intended to serve as starting materials for the synthesis of new polymers or other chemical products (see Chapter 4).
4. Change to Non-Fossil Feedstock
- Production of basic organic chemicals through chemical recycling of polymers;
- Production of chemicals from renewable raw materials (bioeconomy);
- Production of basic chemicals from CO2 via reaction with “green” hydrogen (CCU).
5. Sustainable Chemical Production
- Avoidance of volatile organic solvents (VOCs): Chemical syntheses can often be carried out with significantly less solvents, or the VOCs can be completely replaced by supercritical fluids, such as carbon dioxide or ionic liquids [178,179]. Some ionic liquids, which have a low vapor pressure, are easily degradable [180]; however, there is still a need for clarification regarding human and ecotoxicity.
- Optimized separation processes: Processes for the separation and purification of substance mixtures consume more than 40% of the total energy in chemical production. Membrane technologies and processes such as reactive rectification and extraction reduce the consumption of energy and materials and often increase yield and selectivity.
- Energy input through new processes: Usually, the energy required for chemical reactions is input by electricity or the combustion of natural gas. New processes use plasma, ultrasound, or microwaves, which can lead to modified reactions, higher selectivity, and increased yields [153].
- Catalysis: Catalysts reduce the energy requirements of syntheses, as they generally run at lower temperatures and avoid waste due to their higher selectivity. Organocatalysts, which are often used immobilized on carrier materials, have the advantage of abstaining from critical metals [153]. Of particular interest are chiral catalysts, which preferentially produce the desired enantiomer in drug syntheses and thus almost double the yield [177].
- New processes for chemical synthesis: Fine and specialty chemicals in particular can be produced in high yields and under controlled conditions using new processes. These include continuous flow chemistry processes, e.g., in microreactors, where temperature, mixing, and other reaction parameters can be easily controlled. The selectivity increases, as do resource and energy productivity. Also, in solvent-free reactive extrusion processes and click chemistry applications, side reactions can be avoided, resource requirements can be reduced, and new synthesis routes can be explored [177].
- Biotechnology: Industrial biotechnology uses selective enzymes, bacteria, yeasts, or fungi to produce or process chemicals. Algae cultures can also be used to produce chemical products and plastics [181,182,183]. The advantages of these processes include their operation under normal pressure and at low temperatures, as well as the potential to replace multi-stage chemical syntheses with single-stage, selective processes. Biological residues such as molasses or whey are often suitable as culture media. A disadvantage is that the reactions take place in a diluted aqueous medium, which increases the amount of wastewater and can lead to high energy-intensive costs for separating and isolating the products. Although “white” biotechnology is now viewed by some chemical companies as a technology of the future, it was not attractive in the past due to low energy prices and the availability of natural gas. BASF, for example, is building a new large fermentation plant in 2025 [53]. While most biotechnological processes take place in closed systems, chemical syntheses in genetically modified plants or animals pose other risks, such as uncontrolled spread. Examples include the “amylose potato”, which only contains amylopectin and not the second starch component amylose, or the production of pharmacological active ingredients using milk of transgenic animals, which should be viewed critically, but have not yet left the experimental scale [184].
6. Sustainable Chemical Products
7. Reduction of Material Flows—Sufficiency
- The aim of the efficiency strategy is to use energy and materials as sparingly as possible, to optimize existing technologies, and to develop new, suitable technologies.
- The central goal of the consistency strategy within the technosphere is the circular use of materials (see Chapter 3).
- The sufficiency strategy seeks answers to the question of what a conscious and frugal use of limited resources means.
- Ecological molecular design of chemicals (benign by design) and their economical use only in cases where function cannot be fulfilled in a sustainable way without chemicals;
- New chemical production processes (e.g., biotechnology, microreactors, catalysis, biomimetics) reduce energy and resource requirements and amount of waste produced;
- Expansion of circular business models, e.g., chemical leasing [223];
- Halving resource requirements in industrialized countries to 8 tons per person annually;
- Complex products must be modularly assembled and repairable;
- Reduction in plastic waste, in particular by avoiding single-use plastic;
- Increase in high-quality mechanical recycling of plastics;
- Avoiding products with complex chemical compositions that cannot be mechanically recycled;
- Chemical recycling only for plastics that cannot be mechanically recycled and only for raw materials designed for chemical production;
- Political, social, and cultural changes aiming to reduce consumption behavior.
8. Discussion and Conclusions
- -
- The precautionary principle is a globally recognized guiding principle for politics and business. The Rio Declaration of 1992 states the following: “In view of the risk of irreversible environmental damage, lack of full scientific certainty should not be used as an excuse for delaying action that is justified in itself” [228]. Accordingly, action is already required if there are serious indications for concern but without conclusive proof of a causal link between substance exposure and negative effects on the environment and health [229]. For precautionary reasons, it is necessary to reduce material flows and the range of chemicals in space and time in order to avoid exceeding the planetary boundaries (see Chapter 7). However, it is not only the quantity of chemical production and consumption that is unsustainable but also the diversity of chemicals in products, which effectively prevents many products from being integrated into a circular economy (see Chapter 3) [87]. Increased transparency regarding the chemical composition of products—particularly concerning hazardous ingredients—would provide additional improvement (see Chapter 6). Solutions that are compatible with commercial legislation and guarantee protection for legitimate confidential business information (CBI) still need to be developed.
- -
- To achieve the United Nations’ Sustainable Development Goals (SDGs), chemistry must become sustainable by avoiding irreversible harm to human health and the environment. An international committee defines sustainable chemistry as the development and application of chemicals, processes, and products that benefit the current and future generations without harming humans or ecosystems, identifying the following five action areas: equity and justice, transparency, climate and ecosystem impacts, health and safety impacts, and circularity [230]. In 2020, the UNEP published ten goals and principles for green and sustainable chemistry to align production with ethical and social standards [231]. Similarly, ISC3 emphasized holistic, systemic thinking and social and ethical responsibility alongside scientific and technical requirements [195,232]. The German Environment Agency outlined objectives and principles for the transition to sustainable chemistry [233]. The “Global Framework on Chemicals” (GFC), launched at the ICCM5 in Bonn in 2023, also promoted the sustainable use of chemicals across their life cycle, including products and waste [9]. In 2021, the German Environment Agency published six major goals for sustainable chemical management [234] (see Supplementary Materials). Friege et al. reviewed indicators for measuring progress toward sustainable chemistry, proposing 23 indicators to assess the implementation of chemical and waste management goals [235]. In this sense, indicators are proposed for the following, among others:
- ○
- a reduction in use of hazardous chemicals and resulting damage to health and the environment;
- ○
- a support for climate protection through production and products from chemical industry;
- ○
- a renunciation of subsidies for fossil-based materials;
- ○
- sustainable management of nutrients (especially nitrogen);
- ○
- careful use of resources for extraction of raw materials;
- ○
- an effective recycling of products and waste;
- ○
- measures taken by chemical industry for greater safety of products and in production.
- High-quality recycling of chemicals and products;
- Use of chemicals that are as sustainable as possible with lowest possible harmful effects and exclusion of highly persistent substances;
- New, regenerative raw material base for chemicals needed for social well-being, health and to achieve Sustainable Development Goals (SDGs);
- Pathways to a new networked chemical production based on sufficiency, consistency and efficiency;
- Strategies to minimize waste from chemical production and to dispose of chemicals in waste in an environmentally compatible manner;
- Analyzing social benefits of chemicals, chemical products, and sufficiency.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C4C | Chemistry for Climate |
CBI | Confidential Business Information |
CCS | Carbon Capture and Storage |
CCU | Carbon Capture and Utilization |
CFC | Chlorofluorocarbon |
CHP | Combined Heat and Power |
CIEL | Center for International Environmental Law |
DAC | Direct Air Capture |
DECHEMA | Gesellschaft für Chemische Technik und Biotechnologie e. V. |
dm | Dry Matter |
EPR | Extended Producer Responsibility |
EU | European Union |
GFC | Global Forum on Chemicals |
ICCM5 | International Conference on Chemicals Management (Fifth Meeting) |
IEA | International Energy Agency |
IED | Industrial Emissions Directive |
IPBES | Intergovernmental Platform on Biodiversity and Ecosystem Services |
IPCC | Intergovernmental Panel on Climate Change |
IPEN | International Pollutants Elimination Network |
ISC3 | International Sustainable Chemistry Collaborative Centre |
JRC | Joint Research Centre |
LCA | Lifecycle Analysis |
LDPE | Low-Density Polyethylene |
MTA | Methanol-to-Aromatics |
MTO | Methanol-to-Olefines |
NGO | Non-Governmental Organization |
OECD | Organization for Economic Cooperation and Development |
PCW | Post-Consumer Waste |
PE | Polyethylene |
PET | Polyethylene Terephthalate |
PFAS | Per- and Polyfluorinated Alkyl Substances |
PP | Polypropylene |
PtX | Power-to-X |
PVC | Polyvinyl Chloride |
REACH | Registration, Evaluation, and Authorization of Chemicals |
SAICM | Strategic Approach to International Chemicals Management |
SDG | Sustainable Development Goal |
SPP | Science Policy Panel |
SRU | German Advisory Council on Environment |
SSbD | Safe and Sustainable by Design |
SVHC | Substance of Very High Concern |
UBA | German Environment Agency |
UNEA | United Nations Environment Assembly |
UNEP | United Nations Environment Program |
VOC | Volatile Organic Carbon |
WHO | World Health Organization |
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 6223. [Google Scholar] [CrossRef]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.E.; Donges, J.F.; Druke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef]
- Caesar, L.; Sakschewski, B.; Andersen, L.S.; Beringer, T.; Braun, J.; Dennis, D.; Gerten, D.; Heilemann, A.; Kaiser, J.; Kitzmann, N.H.; et al. Planetary Health Check Report 2024; Potsdam Institute for Climate Impact Research: Potsdam, Germany; Available online: https://www.planetaryhealthcheck.org/storyblok-cdn/f/301438/x/a4efc3f6d5/planetaryhealthcheck2024_report.pdf (accessed on 25 May 2025).
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Minovi, D. The Chemical Industry: An Overlooked Driver of Climate Change. Policy Paper #1 for the Louisville Charter. 2022. Available online: https://comingcleaninc.org/assets/media/images/Louisville%20Charter%20content/plank%201%20policy%20paper.pdf (accessed on 27 February 2025).
- Steinhäuser, K.G.; von Gleich, A.; Große Ophoff, M.; Körner, W. The Necessity of a Global Binding Framework for Sustainable Management of Chemicals and Materials–Interactions with Climate and Biodiversity. Sustain. Chem. 2022, 3, 205–237. [Google Scholar] [CrossRef]
- Andersen, I. The Triple Planetary Crisis: Forging a New Relationship Between People and the Earth. UNEP. 14 July 2020. Available online: https://www.unep.org/news-and-stories/speech/triple-planetary-crisis-forging-new-relationship-between-people-and-earth (accessed on 5 February 2025).
- UNEP. The Global Framework on Chemicals–For a Planet Free of Harm from Chemicals and Waste. Available online: https://www.unep.org/resources/global-framework-chemicals-planet-free-harm-chemicals-and-waste (accessed on 17 October 2024).
- UNEP. Global Chemicals Outlook II–From Legacies to Innovative Solutions: Implementing the 2030 Agenda for Sustainable Development–Synthesis Report (GCO II Synthesis Report); Châtelaine: Geneva, Switzerland, 2019; ISBN 978-92-807-3745-5. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/27651/GCOII_synth.pdf?sequence=1&isAllowed=y (accessed on 25 May 2025).
- World Health Organization (WHO). The Public Impact of Chemicals–Knowns and Unknowns, Data Addendum for 2019. Available online: https://iris.who.int/bitstream/handle/10665/342273/WHO-HEP-ECH-EHD-21.01-eng.pdf?sequence=1 (accessed on 5 February 2025).
- Kähler, F.; Porc, O.; Carus, M. RCI Carbon Flows Report: Compilation of Supply and Demand of Fossil and Renewable Carbon on a Global and European Level; Renewable Carbon Initiative, Ed.; Nova Institute: Hürth, Germany, 2023. [Google Scholar] [CrossRef]
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Yoshida, K.N. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- CEFIC. The European Chemical Industry–A Vital Part of Europe’s Future–Facts and Figures; The European Chemical Industry Council: Brussels, Belgium, 2024; Available online: https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/ (accessed on 25 May 2025).
- IEA (International Energy Agency). The Future of Petrochemicals–Towards More Sustainable Plastics and Fertilisers; IEA Publications: Paris, France,, 2018; Available online: https://iea.blob.core.windows.net/assets/bee4ef3a-8876-4566-98cf-7a130c013805/The_Future_of_Petrochemicals.pdf (accessed on 25 May 2025).
- Levi, P.G.; Cullen, J.M. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environ. Sci. Technol. 2018, 52, 1725–1734. [Google Scholar] [CrossRef]
- Destatis. Energieverbrauch der Industrie 2023 um 7,8% geringer als im Vorjahr, Pressemitteilung Nr. 413 vom 4. November 2024. Available online: https://www.destatis.de/DE/Presse/Pressemitteilungen/2024/11/PD24_413_435.html (accessed on 5 February 2025).
- BUND (FoE Germany). Blackbox Chemieindustrie-Die Energieintensivste Industrie Deutschlands; BUND: Berlin, Germany, 2023; Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/chemie/blackbox-chemieindustrie-die-energieintensivste-industrie-deutschlands-studie-bund.pdf (accessed on 25 May 2025).
- WWF. Deutschland: Dirty Dozen: Chemie–Emissionen der 12 Größten Chemieparks in Deutschland; WWF: Berlin, Germany, 2024; Available online: https://www.oeko.de/fileadmin/oekodoc/WWF_DirtyDozen_Chemie.pdf (accessed on 25 May 2025).
- Jiang, M.; Cao, Y.; Liu, C.; Chen, D.; Zhou, W.; Wen, Q.; Yu, H.; Jiang, J.; Ren, Y.; Hu, Y.; et al. Tracing fossil-based plastics, chemicals and fertilizers production in China. Nat. Commun. 2024, 15, 3854. [Google Scholar] [CrossRef]
- Statista Deutschlands Chemieindustrie. 2022. 2024. p. 51. Available online: https://de.statista.com/statistik/kategorien/kategorie/7/themen/59/branche/chemieindustrie/#overview (accessed on 26 November 2024).
- Bringezu, S.; Kümmerer, K. Nachhaltiges Ressourcen- und Stoffstrommanagement- Zwischen Gigatonnen und Mikrogramm. GAIA 2012, 21, 69–72. [Google Scholar] [CrossRef]
- Exner, A.; Held, M.; Kümmerer, K. Kritische Metalle in der Großen Transformation; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-44838-0/978-3-662-44839-7. (eBook). [Google Scholar] [CrossRef]
- EU Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401252 (accessed on 25 May 2025).
- Zimmermann, T.; Gößling-Reisemann, S. Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications. Resources 2014, 3, 291–318. [Google Scholar] [CrossRef]
- Remenyi, C. Interview Henning Hopf “Das Stoffliche Problem ist ernst”, Nachrichten aus der Chemie, 2024, 72, Juli/August 2024, 8–11. Available online: https://www.pedocs.de/zeitschriften.php?la=en&zst=7133 (accessed on 25 May 2025).
- UNEP. Global Resources Outlook–Bend the Trend, Pathways to a Liveable Planet as Resource Use Spikes; International Resource Panel: Nairobi, Kenya, 2024; ISBN 978-92-807-4128-5. Available online: https://www.unep.org/resources/Global-Resource-Outlook-2024 (accessed on 25 May 2025).
- United Nations Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals (accessed on 5 February 2025).
- EU: Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Last Amended by Commission Regulation (EU) 2022/586 of 8 April 2022, Official Journal of the European Union of 11.04.2022, L 112, p. 6. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1907-20221217&qid=1682101077968 (accessed on 25 May 2025).
- BUND (FoE Germany). Mikroschadstoff-Strategie, BUND-Standpunkt 11, BUND Berlin, Germany. 2017. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/fluesse/fluesse_mikroschadstoffe_standpunkt.pdf (accessed on 25 May 2025).
- German Environment Agency (UBA). Recommendations for Reducing Micropollutants in Waters, Background Paper, Dessau-Roßlau, Germany. 2018. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/180709_uba_pos_mikroverunreinigung_en_bf.pdf (accessed on 25 May 2025).
- EU: Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the Control of Major-Accident Hazards Involving Dangerous Substances, Amending and Subsequently Repealing Council Directive 96/82/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0018 (accessed on 25 May 2025).
- European Commission. A European Green Deal—Striving to Be the First Climate-Neutral Continent. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 4 March 2025).
- European Commission. A Clean Industrial Deal for Competitiveness and Decarbonization in the EU. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_25_550 (accessed on 22 April 2025).
- European Commission. Pathway to a Healthy Planet for All–EU Action Plan: ‘Towards Zero Pollution for Air, Water and Soil’, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions of 12.05.2021, COM (2021) 400 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0400&qid=1682412866082 (accessed on 25 May 2025).
- European Commission. Chemicals Strategy for Sustainability–Towards a Toxic-Free Environment, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions of 14.10.2020, COM (2020) 667 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0667&qid=1682504977252 (accessed on 25 May 2025).
- OECD. Environmental Justice: Context, Challenges and National Approaches; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Zinyemba, C.; Archer, E.; Rother, H.-A. Climate Change Pesticides Health: Considering the Risks Opportunities of Adaptation for Zimbabwean Smallholder Cotton Growers. Int. J. Environ. Res. Public Health 2021, 18, 121. [Google Scholar] [CrossRef] [PubMed]
- Heidegger, P.; Wiese, K. Pushed to the Wastelands–Environmental Racism Against Roma Communities in Central and Eastern Europe; European Environmental Bureau (EEB): Brussels, Belgium, 2020; Available online: https://eeb.org/wp-content/uploads/2020/04/Pushed-to-the-Wastelands.pdf (accessed on 25 May 2025).
- BUND (FoE Germany). Profits Without Borders–How Companies Disregard Environmental Protection and Human Rights All over the World; BUND: Berlin, Germany, 2021; Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/chemie/chemie_Profite_ohne_Grenzen.pdf (accessed on 25 May 2025).
- Ituen, I.; Tatu Hey, L. The Elephant in the Room–Environmental Racism in Germany, Studies, Knowledge Gaps, and Their Relevance to Environmental and Climate Justice, Brief Study; Heinrich Böll Foundation, Ed.; Berlin, Germany, 2021; Available online: https://www.boell.de/sites/default/files/2021-12/E-Paper_The_Elephant_in_the_Room.pdf (accessed on 25 May 2025).
- Berlin Senate Department for the Environment; Urban Mobility, Consumer Protection and Climate Action (Eds.) Die Umweltgerechte Stadt–Umweltgerechtigkeitsatlas Aktualisierung; Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt: Berlin, Germany, 2021/2022; Available online: https://www.berlin.de/sen/uvk/umwelt/nachhaltigkeit/umweltgerechtigkeit/ (accessed on 5 February 2025).
- Sheats, N.; Baptista, A. Addressing Environmental Injustice Through the Adoption of Cumulative Impacts Policy, Policy paper #2 for the Louisville Charter. 2022. Available online: https://comingcleaninc.org/assets/media/images/Louisville%20Charter%20content/plank%202%20policy%20brief.pdf (accessed on 25 May 2025).
- Agora Industry Chemicals in Transition—The Three Pillars for Transforming Chemical Value Chains, Agora Industry, Berlin (Germany). 2023. Available online: https://www.agora-industry.org/fileadmin/Projekte/2022/2022-02_IND_Climate_Positive_Chemistry_DE/A-EW_300_Chemicals_in_transition_EN_WEB.pdf (accessed on 25 May 2025).
- The Louisville Charter for Safer Chemicals. 2021. Available online: https://comingcleaninc.org/assets/media/images/Louisville%20Charter%20content/Louisville%20Charter%202021.pdf (accessed on 26 February 2025).
- Thorpe, B. Transforming the Chemical Industry: Safer Substitutes and Solutions for a Non-Toxic Economy, Policy Paper #3 for the Louisville Charter. 2022. Available online: https://comingcleaninc.org/assets/media/images/Louisville%20Charter%20content/plank%203%20policy%20paper.pdf (accessed on 25 May 2025).
- Kanazawa, D.; Wagner, A.; Kremer, A.B.; Leung, J.L.; Lingeswaran, S.; Goult, P.; Herrmann, S.; Ishii, N.; Kikuchi, Y. Scope 1, 2, and 3 Net Zero Pathways for the Chemical Industry in Japan. J. Chem. Eng. Jpn. 2024, 57, 2360900. [Google Scholar] [CrossRef]
- Hata, S.; Nansai, K.; Shigetomi, Y.; Kito, M.; Nakajima, K. Material Efficiency and Circularity Goals to Achieve a Carbon-Neutral Society by 2050. Environ. Sci. Technol. 2025, 59, 6025–6036. [Google Scholar] [CrossRef] [PubMed]
- Kloo, Y.; Nilsson, L.J.; Palm, E. Reaching net-zero in the chemical industry—A study of roadmaps for industrial decarbonization. Renew. Sustain. Energy Transit. 2024, 6, 100075. [Google Scholar] [CrossRef]
- VCI; VDI. Chemistry for Climate–Wie Die Transformation der Chemie Gelingen Kann; Verband der Chemischen Industrie e.V., Verband Deutscher Ingenieure e.V., Eds.; Frankfurt: Main, Germany, 2023; Available online: https://www.vci.de/vci/downloads-vci/publikation/broschueren-und-faltblaetter/final-c4c-broschure-langfassung.pdf (accessed on 25 May 2025).
- BASF. Offshore Wind Farm Hollandse Kust Zuid Inaugurated, Joint News Release. 29 September 2023. Available online: https://www.basf.com/global/en/media/news-releases/2023/09/p-23-318 (accessed on 18 November 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, REPowerEU Plan, COM(2022) 230 Final. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:fc930f14-d7ae-11ec-a95f-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 25 May 2025).
- Neubauer, U. Petrochemie unter Strom, Nachrichten aus der Chemie, 2024, 72, Juli/August 2024, 36–38. Available online: https://www.pedocs.de/zeitschriften.php?la=en&zst=7133 (accessed on 25 May 2025).
- VCI; VDI. Chemistry for Climate–Wie Die Transformation der Chemie Gelingen Kann-Ein Update Verband; der Chemischen Industrie e.V., Verband Deutscher Ingenieure e.V., Eds.; Frankfurt: Main, Germany, 2024; Available online: https://www.vci.de/vci/downloads-vci/publikation/broschueren-und-faltblaetter/2024-11-07-c4c-update-publikation-kurzfassung.pdf (accessed on 25 May 2025).
- European Commission. Transition Pathway for the Chemical Industry; EU Publications: Brussels, Belgium, 2020; ISBN 978-92-76-61690-0. [Google Scholar] [CrossRef]
- Engel, K.M. Hoffnungsträger der Zukunft. Spektrum Spez. 2024, 3, 66–73. [Google Scholar]
- ESMAP (Energy Sector Management Assistance Program); Organization for Economic Co-operation and Development (OECD); Global Infrastructure Facility and Hydrogen Council. Scaling Hydrogen Financing for Development. ESMAP Paper 2023, Washington, DC: World Bank. License: Creative Commons Attribution CC BY 3.0 IGO. Available online: https://www.esmap.org/sites/default/files/2022/2023/H4D/Full_Slide_deck_Scaling%20Hydrogen%20Financing%20for%20Development_November17.pdf (accessed on 25 May 2025).
- Machin, A.; Cotto, M.; Ducongé, J.; Márquez, F. Artificial photosynthesis: Current advancements and future prospects. Biomimetics 2023, 8, 298. [Google Scholar] [CrossRef]
- Landesagentur. KoalAplan–Die Kläranlage der Zukunft; Landesagentur für Umwelttechnik und Ressourceneffizienz Baden-Württemberg: Stuttgart, Germany, 2024; Available online: https://www.umwelttechnik-bw.de/sites/default/files/2024-09/20241001_KoalAplan_Abschlussbericht_web.pdf (accessed on 25 May 2025).
- Huo, J.; Wang, Z.; Oberschelp, C.; Guillén-Gosálbez, G.; Hellweg, S. A Net-zero transition of the global chemical industry with CO2-feedstock by 2050: Feasible yet challenging. Green Chem. 2023, 25, 415. [Google Scholar] [CrossRef]
- Sang, R.; Stein, C.A.M.; Schareina, T.; Hu, Y.; Léval, A.; Massa, J.; Turan, V.; Sponholz, P.; Wei, D.; Jackstell, R.; et al. Development of a practical formate/bicarbonate energy system. Nat. Commun. 2024, 15, 7268. [Google Scholar] [CrossRef]
- BMWK (Federal Ministry for Economic Affairs and Climate Action). Eckpunkte der Bundesregierung Für eine Carbon Management-Strategie. Berlin, Germany. 2024. Available online: https://www.bmwk.de/Redaktion/DE/Downloads/E/eckpunkte-der-bundesregierung-fuer-eine-carbon-management-strategie.pdf?__blob=publicationFile&v=2 (accessed on 25 May 2025).
- BMWK (Federal Ministry for Economic Affairs and Climate Action). Entwurf Eines Gesetzes zur Änderung des Kohlendioxid-Speicherungsgesetzes. Available online: https://www.bmwk.de/Redaktion/DE/Downloads/E/entwurf-eines-gesetzes-zur-aenderung-des-kohlendioxid-speicherungs-gesetzes.pdf?__blob=publicationFile&v=2 (accessed on 25 May 2025).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Towards an Ambitious Industrial Carbon Management for the EU, COM(2024) 62 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52024DC0062 (accessed on 25 May 2025).
- IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: New York, NY, USA, 2018; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport.pdf (accessed on 25 May 2025).
- German Environment Agency (UBA). Resource-Efficient Pathways towards Greenhouse Gas Neutrality (RESCUE)—How Germany Can Achieve Greenhouse Gas Neutrality by 2050 and Resulting Raw Materials Demand, Scientific Opinion Paper, 2020, Dessau-Roßlau, Germany. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020_sciopap_rescue_final_0.pdf (accessed on 25 May 2025).
- Nestler, R. Ein Endlager für Kohlenstoffdioxid. Spektrum Spez. 2024, 3, 50–55. [Google Scholar]
- Erlach, B.; Gierds, J.; Fischedick, M.; Matthies, E.; Pittel, K.; Sauer, D.U. CO2 als Rohstoff. Baustein einer klimaneutralen Kohlen-stoffwirtschaft (Impuls). Schriftenreihe Energiesysteme Der Zuk. (ESYS) 2024. [Google Scholar] [CrossRef]
- Wilts, H. Chemische Produktion als Kreislaufwirtschaft–Wege aus der Sackgasse der Linearität. In Politische Ökologie; oekom-Verlag: München, Germany, 2022; Volume 171, pp. 84–89. [Google Scholar]
- UNIDO. Chemical Leasing–The Performance Based Business Model for Sustainable Chemicals Management. 2021. Available online: https://www.unido.org/our-focus-safeguarding-environment-resource-efficient-and-low-carbon-industrial-production/chemical-leasing (accessed on 5 February 2025).
- German Council for Sustainable Development (Rat für Nachhaltige Entwicklung, RNE). Circular Economy: Leveraging a Sustainable Transformation, Statement of 05.10.2021, Berlin, Germany. Available online: https://www.nachhaltigkeitsrat.de/wp-content/uploads/2022/02/20211005_RNE-Statement_Circular-Economy-1.pdf (accessed on 25 May 2025).
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; Reprint edition of 25 May 2000; ISBN 978-0198506980. [Google Scholar]
- Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem. 2019, 11, 190–195. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Enhancing Circular Economy as a Contribution to Achieving Sustainable Consumption and Production, Resolution 5/11 (UNEP/EA.5/Res.11), Adopted by the 5th United Nations Environmental Assembly on 2 March 2022, Nairobi, Kenya. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/39920/ENHANCING%20CIRCULAR%20ECONOMY%20AS%20A%20CONTRIBUTION%20TO%20ACHIEVING%20SUSTAINABLE%20CONSUMPTION%20AND%20PRODUCTION.%20English.pdf?sequence=1&isAllowed=y (accessed on 25 February 2025).
- European Commission. On Making Sustainable Products the Norm, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions of 30 March 2022, COM(2022) 140 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022DC0140&qid=1682432763402 (accessed on 25 May 2025).
- Circle Economy Foundation. The Circularity Gap Report 2024, Amsterdam, The Netherlands. 2024. Available online: https://www.circularity-gap.world/2024 (accessed on 18 November 2024).
- Langsdorf, S. Ressourcenschonungspolitik in der EU-Eine Zusammenschau Politischer Strategiepapiere von den Anfängen bis Heute, Ecologic, Institut 2021, Berlin, Germany. Available online: https://www.ecologic.eu/sites/default/files/publication/2021/3554-Langsdorf-Ressourcenschonung-in-der-EU-Bericht.pdf (accessed on 25 May 2025).
- BMK (Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology). Austria on the Path to a Sustainable and Circular Society–The Austrian Circular Economy Strategy, Vienna, Austria. 2022. Available online: https://www.bmk.gv.at/dam/jcr:427f6f36-1d5a-4ef2-bc84-52a1792ad3db/Austrian_CES.pdf (accessed on 25 May 2025).
- BMUV (Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection). Nationale Kreislaufwirtschaftsstrategie–Entwurf. Berlin, Germany. 17 June 2024. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Abfallwirtschaft/nkws_entwurf_bf.pdf (accessed on 25 May 2025).
- BUND (FoE Germany). Resource Protection Means Drastic Reduction of Resource Consumption, BUNDposition 74, Berlin, Germany. 2023. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/ressourcen_und_technik/resource-protection-means-drastic-reduction-of-resource-consumption-position-paper-bund.pdf (accessed on 25 May 2025).
- Friege, H. Chancen und Grenzen der “Circular Economy”: Erkenntnisse aus der BMBF-Fördermaßnahme ReziProK. Müll Und Abfall 2022, 54, 606–619. [Google Scholar] [CrossRef]
- Friege, H.; Kümmerer, K. Practising circular economy: Stumbling blocks for circulation and recycling. In The Impossibilities of the Circular Economy—Separating Aspirations from Reality; Lehmann, H., Hinske, C., de Margerie, V., Nikolova, A.S., Eds.; Routledge: London, UK; New York, NY, USA, 2022; pp. 259–271. ISBN 978-1-032-15443-5 (hbk). [Google Scholar] [CrossRef]
- Lehmann, H.; Hinske, C.; de Margerie, V.; Slaveikova Nikolova, A. (Eds.) The Impossibilities of the Circular Economy—Separating Aspirations from Reality; Routledge: Abingdon, UK, 2023; ISBN 978-1-032-15443-5 (hbk)/978-1-032-15446-6 (pbk)/978-1-003-24419-6 (ebk). [Google Scholar] [CrossRef]
- Friege, H.; Kummer, B.; Steinhäuser, K.G.; Wuttke, J.; Zeschmar-Lahl, B. How should we deal with the interfaces between chemicals, product and waste legislation? Environ. Sci. Eur. 2019, 31, 51. [Google Scholar] [CrossRef]
- Bunge, R. Recycling Ist Gut, Mehr Recycling Ist Besser–Oder Nicht? Proceedings Zur Berliner Rohstoff-Und Recyclingkonferenz, 79–91. 2016. Available online: https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=Rainer+bunge+recycling+ist+gut&btnG= (accessed on 25 May 2025).
- Wang, Z.; Hellweg, S. First Steps Toward Sustainable Circular Uses of Chemicals: Advancing the Assessment and Management Paradigm. ACS Sustain. Chem. Eng. 2021, 9, 6939–6951. [Google Scholar] [CrossRef]
- Kümmerer, K.; Clark, H.J.; Zuin, V.G. Rethinking chemistry for a circular economy—Chemical complexity complicates product recycling and manufacturing sustainability. Science 2020, 367, 369–370. [Google Scholar] [CrossRef] [PubMed]
- Börjeson, N.; Ågerstrand, M. The Problems that we have Today, are Yesterday’s Solutions: Enabling Circular Non-toxic Supply Chains. Circ. Econ. Sustain. 2025. [Google Scholar] [CrossRef]
- Gößling-Reisemann, S.; von Gleich, A. Ressourcen Kreislaufwirtschaft und Entropie am Beispiel der Metalle. In Müll-Handbuch–Sammlung und Transport, Behandlung und Ablagerung Sowie Vermeidung und Verwertung von Abfällen; Hösel, G., Bilitewski, B., Schenkel, W., Schnurer, H., Zeschmar-Lahl, B., Eds.; Erich Schmidt Verlag: Berlin, Germany, 2009; pp. 1–27. [Google Scholar]
- European Commission. A European Strategy for Plastics in a Circular Economy, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions of 16.01.2018, COM(2018) 28 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0028&qid=1682503065040 (accessed on 25 May 2025).
- The Pew Charitable Trusts; SYSTEMIQ (Eds.) Trusts Breaking the Plastic Wave–A Comprehensive Assessment of Pathways towards Stopping Ocean Plastic Pollution; 2020; Available online: https://www.systemiq.earth/wp-content/uploads/2020/07/BreakingThePlasticWave_MainReport.pdf (accessed on 25 May 2025).
- German Environment Agency (UBA). Kunststoffabfälle. Available online: https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/kunststoffabfaelle#unterschiede-bei-der-stofflichen-verwertung (accessed on 24 October 2024).
- Betz, J.; Bachmann, H.; Huber, I.; Schleicher, T.; Achilles, L.-S. Kunststoffabfälle aus Deutschland: Handlungsempfehlungen Zu einer Umweltgerechten Behandlung Im In- und Ausland, Texte 47/2024, Umweltbundesamt Dessau Roßlau, Germany. 2024. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/47_2024_texte_kunststoffabfall.pdf (accessed on 25 May 2025).
- Ellen McArthur Foundation. The New Plastics Economy–Rethinking the Future of Plastics. 2016. Available online: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 25 May 2025).
- Bahr, L.; Katzy, V.; Scholz, O. Abschlussbericht DBU-AZ37088/01, “Prototypanlage zur Felderprobung des Hochdynamischen Quantifizierten Metallrecyclings (ready2sort)”. 2023. Available online: https://www.dbu.de/projektdatenbank/37088-01/ (accessed on 5 February 2025).
- Krieg, G. UNISENSOR Sensorsysteme GmbH, Food to Food Recycling von PET mittels Prozess Laser Fluoreszenz und Prozess Raman Spektroskopie, Abschlussbericht über ein Entwicklungsprojekt, Eefördert unter dem Az: 25507 von der Deutschen Bundesstiftung Umwelt. 2009. Available online: https://www.dbu.de/projektdatenbank/25507-01/ (accessed on 25 May 2025).
- Spilok, K. Kunststoffrecycling nach dem Aschenputtelprinzip, VDI-Nachrichten. 2015. Available online: https://www.vdi-nachrichten.com/technik/umwelt/kunststofftrennung-nach-dem-aschenputtelprinzip/ (accessed on 5 February 2025).
- Unisensor Sensorsysteme GmbH: UNISPECTRE 400, Hocheffizientes refPET Sniffer-System zum Aufspüren von Fremdstoffen und Verunreinigungen. 2023. Available online: https://www.unisensor.de/produkte/product-details/getraenkeindustrie/unispectre-400.html (accessed on 5 February 2025).
- Ciupek, M. Hightech-Sortieranlage Identifiziert Metall blitzschnell per Laser, VDI-Nachrichten. 2023. Available online: https://www.vdi-nachrichten.com/technik/umwelt/hightech-sortieranlage-identifiziert-metall-blitzschnell-per-laser/ (accessed on 5 February 2025).
- EU Regulation (EU) 2024/1781 of the European Parliament and of the Council of 13 June 2024 Establishing a Framework for the Setting of Ecodesign Requirements for Sustainable Products, Amending Directive (EU) 2020/1828 and Regulation (EU) 2023/1542 and Repealing Directive 2009/125/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401781 (accessed on 25 May 2025).
- Vohlídal, J. Polymer degradation: A short review. Chem. Teach. Int. 2021, 3, 213–220. [Google Scholar] [CrossRef]
- Eunomia. Chemical Recycling: State of Play–Report for ChemTrust. 2020. Available online: https://chemtrust.org/wp-content/uploads/Chemical-Recycling-Eunomia.pdf (accessed on 25 May 2025).
- Puig-Arnavat, M.; Hindsgaul, C.; Kamuk, B. Means to Improve Circularity of Plastic Waste. In Proceedings of the ISWA World Congress, Athens, Greece, 4–7 October 2021; Available online: https://www.researchgate.net/publication/355209694_Means_to_improve_circularity_of_plastic_waste (accessed on 25 May 2025).
- NABU. Chemisches Recycling von Kunststoffen–Potenziale, Risiken und viele offene Fragen, Chemisches Recycling von Kunststoffen-NABU Chemisches Recycling von Kunststoffen—NABU. Available online: https://www.nabu.de/umwelt-und-ressourcen/abfall-und-recycling/recycling/27543.html (accessed on 12 September 2024).
- Rizos, V.; Urban, P.; Righetti, E.; Kassab, A. Chemical Recycling of Plastics–Technologies, Trends and Policy Implications. CEPS Brussels, Belgium. 2023. Available online: https://cdn.ceps.eu/wp-content/uploads/2023/07/CEPS-In-depth-analysis-2023-11_Chemical-recycling-of-plastics.pdf (accessed on 25 May 2025).
- BASF. Factsheet ChemCycling. Available online: https://www.basf.com/global/de/who-we-are/sustainability/we-drive-sustainable-solutions/circular-economy/mass-balance-approach/chemcycling (accessed on 5 February 2025).
- Altnau, G.; Hamann, J.; Dias Fonseca, J.M. CreaSolv- Process—Material Recycling in a Circular Economy for Plastics—A Critical Assessment. 2024. Available online: https://www.creasolv.de/images/2021.04.15_CreaSolv_Positionspapier_EN.pdf (accessed on 25 May 2025).
- LyondellBasell (2024): Circulen Brochure—Everyday Circularity. Available online: https://cdn.brandfolder.io/EZH48IU3/at/bsv7wh4f3k9s47bx8qxwq4ts/7187_2024_Jan_CLCS_CirculenBrochure_Update_LH.pdf (accessed on 26 February 2025).
- SOLVAY: VINYLOOP—A New Process to Regenerate PVC Compounds from Composite Residues. 2001. Available online: https://p2infohouse.org/ref/38/37438.pdf (accessed on 16 September 2024).
- VINYLOOP: Closure of Operation in Italy—Phthalates Issue Under REACH Brings Down European PVC Recycling Project. Published on 04.07.2018. Available online: https://www.plasteurope.com/news/Closure_of_operation_in_Italy_Phthalates_issue_under_REACH_brings_do_t240095/ (accessed on 16 September 2024).
- Groß, M. Enzyme gegen die Plastikflut, Nachrichten aus der Chemie, 2024, 72, März 2024, 78–79. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/nadc.20244141920 (accessed on 25 May 2025).
- Payne, J.M.; Kamran, M.; Davidson, M.G.; Jones, M.D. Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste. ChemSusChem 2022, 15, e202200255. [Google Scholar] [CrossRef]
- Kusenberg, M.; Eschenbacher, A.; Delva, L.; de Meester, S.; Delikonstantis, E.; Stefanidis, G.D.; Ragaert, K.; van Geem, K.M. Towards high-quality petrochemical feedstocks from mixed plastic packaging waste via advanced recycling: The past, present and future. Fuel Process. Technol. 2022, 238, 107474. [Google Scholar] [CrossRef]
- Kusenberg, M.; Eschenbacher, A.; Djokic, M.R.; Zayoud, A.; Ragaert, K.; de Meester, S.; van Geem, K.M. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Manag. 2022, 138, 83–115. [Google Scholar] [CrossRef]
- Kusenberg, M.; Roosen, M.; Doktor, A.; Casado, L.; Abdulrahman, A.J.; Parvizi, B.; Eschenbacher, A.; Biadi ELaudou, N.; Jänsch, D.; de Meester, S.; et al. Contaminant removal from plastic waste pyrolysis oil via depth filtration and the impact on chemical recycling: A simple solution with significant impact. Chem. Eng. 2023, 473, 145259. [Google Scholar] [CrossRef]
- Öko-Institut: Climate Impact of Pyrolysis of Waste Plastic Packaging in Comparison with Reuse and Mechanical Recycling, 2022, Darmstadt, Germany. Available online: https://zerowasteeurope.eu/wp-content/uploads/2022/09/zwe_2022_report_climat_impact__pyrolysis_plastic_packaging.pdf (accessed on 25 May 2025).
- Garcia-Gutierrez, P.; Amadei, A.M.; Klenert, D.; Nessi, S.; Tonini, D.; Tosches, D.; Ardente, F.; Saveyn, H. Environmental and Economic Assessment of Plastic Waste Recycling, EUR 31423 EN; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-76-99528-9. JRC132067; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC132067 (accessed on 25 May 2025). [CrossRef]
- Klotz, M.; Oberschelp, C.; Salah, C.; Subal, C.; Hellweg, S. The role of chemical and solvent-based recycling within a sustainable circular economy for plastics. Sci. Total Environ. 2024, 906, 167586. [Google Scholar] [CrossRef] [PubMed]
- Asueta, A.; Arnaiz, S.; Miguel-Fernández, R.; Leivar, J.; Amundarain, I.; Aramburu, B.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. Viability of Glycolysis for the Chemical Recycling of Highly Coloured and Multi-Layered Actual PET Wastes. Polymers 2023, 15, 4196. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A.M.; Galal, A.M. A review on gasification and pyrolysis of waste plastics. Front. Chem. 2023, 10, 960894. [Google Scholar] [CrossRef]
- Saebea, D.; Ruengrit, P.; Arpornwichanop, A.; Patcharavorachot, Y. Gasification of plastic waste for synthesis gas production. Energy Rep. 2020, 6, 202–207. [Google Scholar] [CrossRef]
- Biessey, P.; Vogel, J.; Seitz, M.; Quicker, P. Plastic Waste Utilization via Chemical Recycling: Approaches, Limitations, and the Challenges Ahead. Chem. Ing. Tech. 2023, 95, 1199–1214. [Google Scholar] [CrossRef]
- Quicker, P.; Seitz, M. Abschätzung der Potenziale und Bewertung der Techniken des thermochemischen Kunststoffrecyclings, 2024, Texte 154/2024, Umweltbundesamt Dessau-Roßlau Germany. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/154_2024_texte_thermochemisches_kunststoffrecycling.pdf (accessed on 25 May 2025).
- ZfK (Zeitung Für kommunale Wirtschaft). Kunststoff: Innovative Recyclingmethode vor dem Durchbruch? 9 April 2021. Available online: https://www.zfk.de/entsorgung/abfallwirtschaft/kunststoff-innovative-recyclingmethode-vor-dem-durchbruch (accessed on 5 February 2025).
- Mura Technologies. The Next Generation of Advanced Plastic Recycling; Mura Technology Ltd.: London, UK, 2024; Available online: https://muratechnology.com/app/uploads/2024/04/Mura-Technology-2024-Brochure-English.pdf (accessed on 17 November 2024).
- Matera, E. Chemisches Recycling: Fortschritt oder Greenwashing? RiffReporter. 30 November 2022. Available online: https://www.riffreporter.de/de/umwelt/plastik-kunststoffe-recycling-chemie-dow-mura-kreislaufwirtschaft (accessed on 13 September 2024).
- Laredo, G.C.; Reza, J.; Meneses Ruiz, E. Hydrothermal liquefaction processes for plastics recycling: A review. Clean. Chem. Eng. 2023, 5, 100094. [Google Scholar] [CrossRef]
- Neubauer, U. Chemisches Recycling ist keine neue Idee, Interview mit Kerstin Kuchta. Nachrichten aus der Chemie 2023, 71, 32–33. Available online: https://www.pedocs.de/zeitschriften.php?la=en&zst=7133 (accessed on 25 May 2025). [CrossRef]
- Reuters. The Recycling Myth—Big Oil’s Solution for Plastic Waste Littered with Failure, Joe Brock, Valerie Volkovici, John Geddie. 29 July 2021. Available online: https://www.reuters.com/investigates/special-report/environment-plastic-oil-recycling/ (accessed on 12 September 2024).
- Rollinson, A. Leaky Loop “Recycling”—A Technical Correction on the Quality of Pyrolysis Oil Made from Plastic Waste, Zero Waste Europe. 2023. Available online: https://zerowasteeurope.eu/wp-content/uploads/2023/10/Leaky-Loop-Recycling_-A-Technical-Correction-on-the-Quality-of-Pyrolysis-Oil-made-from-Plastic-Waste-.docx.pdf (accessed on 25 May 2025).
- THINKTANK Industrielle Ressourcenstrategien. Unternehmerforum Chemisches Recycling (UFCR) Handlungsfelder der Politik Für Die Rohstoffwende und Die Transformation Zu Einer Zirkulären Wirtschaft Mittels Chemischen Recyclings in Deutschland. 2022. Available online: https://www.thinktank-irs.de/wp-content/uploads/2023/07/RZ_THINKTANK_Broschuere_Unternehmerforum-Chemisches-Recycling_DE_Web.pdf (accessed on 10 October 2024).
- Saputra Lase, I.; Tonini, D.; Caro, D.; Albizzati, P.F.; Cristóbal, J.; Roosen, M.; Kusenberg, M.; Ragaert, K.; van Geem, K.M.; Dewulf, J.; et al. How much can chemical recycling contribute to plastic waste recycling in Europe? An assessment using material flow analysis modeling. Resour. Conserv. Recycl. 2023, 192, 106916. [Google Scholar] [CrossRef]
- PlasticsEurope Deutschland e.V. KreislaufwirtschaftPLUS: Handlungsempfehlungen Für Eine Nationale Kreislaufwirtschaftsstrategie. 2022. Available online: https://plasticseurope.org/de/wp-content/uploads/sites/3/2022/11/2022-10-13-Handlungsempfehlungen-Nationale-Kreislaufwirtschaftsstrategie.pdf (accessed on 25 May 2025).
- Soeteman-Hernández, L.; Cabrera, G.; Huegun, A.; Outón, P.R.; Artous, S.; Desrousseaux, S.; Staal, Y.; Cazzagon, V.; Delpivo, C.; Ganszky, D.; et al. Safe, sustainable and recyclable by design (SSRbD): A qualitative integrated approach applied to polymeric materials early in the innovation process. Sustain. Circ. NOW 2025, 2, a25547325. [Google Scholar] [CrossRef]
- Service, R.F. Can the World Make the Chemicals it Needs Without Oil?-with Solar and Wind Booming, the Chemical Industry Dabbles with Forgoing Petroleum as Its Source. Sci. Advis. 2019. [Google Scholar] [CrossRef]
- Erkmen, B.; Ozdogan, A.; Ezdesir, A.; Celik, G. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Polymers 2023, 15, 859. [Google Scholar] [CrossRef] [PubMed]
- Eunomia: Feedstock Quality Guidelines for Pyrolysis of Plastic Waste–Report for the Alliance to End Plastic Waste. 2022. Available online: https://eunomia.eco/reports/feedstock-quality-guidelines-for-pyrolysis-of-plastic-waste/ (accessed on 25 May 2025).
- Kusenberg, M.; Zayoud, A.; Roosen, M.; Dao Thi, H.; Abbas-Abadi, M.S.; Eschenbacher, A.; Kresovic, U.; de Meester, S.; van Geem, K.M. A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. Fuel Process. Technol. 2022, 227, 107090. [Google Scholar] [CrossRef]
- BioÖkonomieRat: Bioökonomie Gemeinsam Eine Nachhaltige Zukunft Gestalten 1 Arbeitspapier Des, III. Bioökonomierats, Berlin, Germany. 2022. Available online: https://www.biooekonomierat.de/media/pdf/arbeitspapiere/1._Arbeitspapier_des_BOER_-_Gemeinsam_eine_nachhaltige_Zukunft_gestalten.pdf?m=1657008309& (accessed on 25 May 2025).
- The Royal Society. Catalysing Change: Defossilising the Chemical Industry—Policy Briefing; The Royal Society: London, UK, 2024; ISBN 978-1-78252-705-3. Available online: https://royalsociety.org/-/media/policy/projects/defossilising-chemicals/defossilising-chemical-industry-report.pdf (accessed on 25 May 2025).
- Ehrensberger, C. Weniger Ethen, mehr Milchsäure. Nachrichten Aus Der Chemie 2022, 70, 40–43. [Google Scholar] [CrossRef]
- Kamm, B.; Kamm, M.; Schmidt, M.; Hirth, T.; Schulze, M. Lignocellulose-based Chemical Products and Product Family Trees. In Biorefineries—Industrial Processes and Products. Status quo and Future Directions; Kamm, B., Gruber, P.R., Kamm, M., Eds.; Wiley-VCH: Weinheim, Germany, 2006; pp. 67–84. ISBN 3-527-31027-4. [Google Scholar]
- Wong, S.S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 2020, 15, 5510–5560. Available online: https://pubs.rsc.org/en/content/articlelanding/2020/cs/d0cs00134a (accessed on 25 May 2025). [CrossRef]
- Piotrowski, S.; Essel, R.; Carus, M.; Dammer, L.; Engel, L. Nachhaltig nutzbare Potenziale für Biokraftstoffe in Nutzungskonkurrenz zur Lebens- und Futtermittelproduktion, Bioenergie sowie zur Stofflichen Nutzung in Deutschland, Europa und der Welt, 2015, Nova-Institut GmbH, Hürth, Germany. Available online: https://renewable-carbon.eu/publications/download-confirmation-page/?somdn_rrpage=somdn_rrpage&somdn_rrtdid=298550&somdn_rrdkey=Mjk4NTUw&somdn_rrskey=MTczODc1NTQ3OQ=&somdn_rrpkey=MTk3NA=&somdn_rrukey=MA=&somdn_rrtype=cmVkaXJlY3Q (accessed on 17 November 2024).
- Spangenberg, J.H.; Kuhlmann, W. Bioökonomie im Lichte der Planetaren Grenzen und des Schutzes der Biologischen Vielfalt, Study for BUND and Denkhaus Bremen, 2020, Cologne, Bremen, Germany. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/ressourcen_und_technik/ressourcen_technik_biooekonomie_projekt_studie_spangenberg.pdf (accessed on 25 May 2025).
- Wydra, S.; Reyhani, M.N.; Hüsing, B.; Schwarz, A. Exploring Innovative Technology Fields for a Circular Bio-Based Economy. Fraunhofer-Institut für System- und Innovationsforschung ISI, 2023, Karlsruhe, Germany. Available online: https://publica-rest.fraunhofer.de/server/api/core/bitstreams/159d78f0-af08-443c-8a36-39b8c25f59b2/content (accessed on 25 May 2025).
- Institut für Ökologische Wirtschaftsforschung (IÖW); Bund für Umwelt und Naturschutz Deutschland (BUND) (Eds.) Wie Nachhaltig ist die Bioökonomie Wirklich? Anregungen für einen Perspektivwechsel—Damit eine Sozial und Ökologisch Gerechte Wirtschaftsweise Gelingen kann; Berlin, Germany, 2020; Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/ressourcen_und_technik/ressourcen_technik_biooekonomie_broschuere.pdf (accessed on 25 May 2025).
- German Environment Agency (UBA): Sustainable Use of Global Land and Biomass Resources, UBA-Position, 2013, Dessau Roßlau, Germany. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/419/publikationen/130617_englisch_lang_web.pdf (accessed on 25 May 2025).
- Searchinger, T.; James, O.; Dumas, P.; Kastner, T.; Wirsenius, S. Klimaschutz auf Kosten der Natur. Spektrum Spez. 2024, 3, 74–80. [Google Scholar]
- Priefer, C.; Jörissen, J.; Frör, O. Pathways to Shape the Bioeconomy. Resources 2017, 6, 10. [Google Scholar] [CrossRef]
- Greenhill, L.; Sundnes, F.; Karlsson, M. Towards sustainable management of kelp forests: An analysis of adaptive governance in developing regimes for wild kelp harvesting in Scotland and Norway. Ocean. Coast. Manag. 2021, 212, 105816. [Google Scholar] [CrossRef]
- UNEP: Into the Blue: Securing a Sustainable Future for Kelp Forests. 2023. Available online: https://www.researchgate.net/publication/371133448 (accessed on 17 October 2024).
- Rosental, M.; Fröhlich, T.; Liebich, A.; Deprie, T.; Hartleif, K.; Schock, M. Prozessintegrierte Maßnahmen und Alternative Produktionsverfahren Für Eine Umweltschonendere Herstellung von Chemikalien; Umweltbundesamt, Ed.; Texte 140/2024; Dessau-Roßlau, Germany, 2024; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/140_2024_texte_upchem.pdf (accessed on 25 May 2025).
- Fachagentur Nachwachsende Rohstoffe (FNR). Biomassepotenziale von Rest-Und Abfallstoffen: Status Quo in Deutschland. Fachagentur Nachwachsende Rohstoffe. Gülzow-Prüzen, Germany. 2015. Available online: https://mediathek.fnr.de/downloadable/download/sample/sample_id/1251/ (accessed on 25 May 2025).
- Brödner, R.; Cyffka, K.-F.; Fais, A.; Günther, S.; Kalcher, J.; Kazmin, S.; Naegeli de Torres, F.; Radtke, K.S.; Selig, M.; Sittaro, F.; et al. Biomassepotenziale aus Abfällen und Reststoffen-Hintergrundpapier Stand und Perspektiven der DBFZ Ressourcendatenbank und der Aktuellen Datenlage (12/2023), DBFZ, Leipzig, Germany. 2023. Available online: https://www.dbfz.de/fileadmin/user_upload/Referenzen/Statements/StatusQuo_Abfall_und_Reststoffpotenziale.pdf (accessed on 25 May 2025).
- Erb, T.J. Photosynthesis 2.0: Realizing New-to-Nature CO2-Fixation to Overcome the Limits of Natural Metabolism, Cold Spring Harbor Perspectives in Biology, 2023, a041669. Available online: https://cshperspectives.cshlp.org/content/16/2/a041669 (accessed on 25 May 2025).
- Bierbaumer, S.; Winkler, C.K.; Tinzl, M.; Glueck, S.M. Enzymatic Conversion of CO2: From Natural to Artificial Utilization. Chem. Rev. 2023, 123, 5702–5754. [Google Scholar] [CrossRef]
- Behr, A.; Neuberg, S. Katalytische Kohlendioxid-Chemie, Aktuelle Wochenschau, Hrsg. GDCh. 2008. Available online: https://archiv.aktuelle-wochenschau.de/2008/woche20/woche20.html (accessed on 25 May 2025).
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. Available online: https://pubmed.ncbi.nlm.nih.gov/29220170/ (accessed on 25 May 2025). [CrossRef]
- Weidlich, T.; Kamenická, B. Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts 2022, 12, 298. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Wang, Y.; Li, J.; Wang, N.; Harding, J.; Mo, S.; Chen, L.; Chen, P.; Fu, M.; et al. Plasma-Catalytic CO2 Hydrogenation over a Pd/ZnO Catalyst: In Situ Probing of Gas-Phase and Surface Reactions. JACS Au 2022, 2, 1800–1810. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Y.; Guo, H.; Tu, X. Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2. ACS Catal. 2018, 8, 90–100. [Google Scholar] [CrossRef]
- Koch, C. Methanol und Ethylen aus Kohlendioxid, Nachrichten aus der Chemie, 2023, Vol. 71, pp. 33–34. Available online: https://gdch.app/article/methanol-und-ethylen-aus-kohlendioxid-4132285 (accessed on 25 May 2025).
- Gao, J.; Jia, C.; Liu, B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts. Catal. Sci. Technol. 2017, 7, 5602–5607. [Google Scholar] [CrossRef]
- Ni, Y.; Chen, Z.; Fu, Y.; Liu, Y.; Zhu, W.; Liu, Z. Selective conversion of CO2 and H2 into aromatics. Nat. Commun. 2018, 9, 3457. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.; Keiner, D.; Fasihi, M.; Koiranen, T.; Breyer, C. From fossil to green chemicals: Sustainable pathways and new carbon feedstocks for the global chemical industry. Energy Environ. Sci. 2023, 16, 2879. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach-2023 Update, 2023, IEA Publications Paris France. Available online: https://iea.blob.core.windows.net/assets/8ad619b9-17aa-473d-8a2f-4b90846f5c19/NetZeroRoadmap_AGlobalPathwaytoKeepthe1.5CGoalinReach-2böll023Update.pdf (accessed on 25 May 2025).
- Viebahn, P.; Scholz, A.; Zelt, O. Entwicklungsstand und Forschungsbedarf von Direct Air Capture—Ergebnis einer multidimensionalen Analyse. Energ. Tagesfr. 2019, 69, 30–33. [Google Scholar]
- Heinrich Böll-Stiftung. Direct Air Capture (DAC), Geoengineering Monitor, Heinrich Böll Foundation Berlin, Germany. 2021. Available online: https://www.boell.de/sites/default/files/2021-01/GM_DAC_de.pdf (accessed on 25 May 2025).
- IEA (International Energy Agency). Direct Air Capture—Tracking Report November 2021; IEA Publications: Paris, France, 2021; Available online: https://iea.blob.core.windows.net/assets/9766b4da-a5e3-4d76-874d-ea286e333956/DirectAirCapture_Akeytechnologyfornetzero.pdf (accessed on 25 May 2025).
- Meys, R.; Kätelhön, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S.; Bardow, A. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 2021, 374, 71–76. [Google Scholar] [CrossRef]
- Krämer, D. Verfahren zur Klimaneutralen Bereitstellung und Verarbeitung von Kohlenstoff, Vortrag beim Symposium “CO2 als Rohstoff in einer Klimaneutralen Kohlenstoffwirtschaft”, Lecture Held in an Online Workshop 17 December 2024, DECHEMA Frankfurt am Main, Germany. Available online: https://energiesysteme-zukunft.de/fileadmin/user_upload/Veranstaltungen/Ergebnispraesentationen/DECHEMA_CCU_Kohlenstofffluesse.pdf (accessed on 25 May 2025).
- EU Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control) (Recast), Last Amended by Corrigendum in the Official Journal of the European Union of 19.06.2012, L 158, p. 25. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02010L0075-20110106&qid=1682338299491 (accessed on 25 May 2025).
- Anastas, P.T.; Zimmerman, J.B. Through the twelve principles of green engineering. Environ. Sci. Technol. 2003, 37, 95A–101A. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor at 30: A passion for pollution prevention. Green Chem. 2023, 25, 1704–1728. [Google Scholar] [CrossRef]
- German Environment Agency (UBA). Sustainable Chemistry—Positions and Criteria of the Federal Environment Agency, Background Paper, Dessau-Roßlau, Germany. 2009. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3798.pdf (accessed on 25 May 2025).
- Gomollón Bel, F. Ten chemical innovations that will change our world–IUPAC identifies emerging technologies in chemistry with potential to make our world more sustainable. Chem. Int. 2019, 41, 12–17. [Google Scholar] [CrossRef]
- Brennecke, J.F.; Maginn, E.J. Ionic Liquids: Innovative Fluids for Chemical Processing. AIChE J. 2001, 47, 2384–2389. [Google Scholar] [CrossRef]
- Ranke, J.; Mölter, K.; Stock, F.; Bottin-Weber, U.; Poczobutt, J.; Hoffmann, J.; Ondruschka, B.; Filser, J.; Jastorff, B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 2004, 58, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Suk, M.; Kümmerer, K. Towards greener and sustainable ionic liquids using naturally occurring and nature-inspired pyridinium structures. Green Chem. 2023, 25, 365. [Google Scholar] [CrossRef]
- DECHEMA. Mikroalgen-Biotechnologie—Gegenwärtiger Stand, Herausforderungen, Ziele, DECHEMA 2016; Frankfurt am Main, Germany. Available online: https://dechema.de/dechema_media/Downloads/Positionspapiere/PP_Algenbio_2016_ezl.p016_ezl.pdf (accessed on 25 May 2025).
- Onen Cinar, S.; Kai Chong, Z.; Kucuker, M.A.; Wieczorek, N.; Cengiz, U.; Kuchta, K. Bioplastic Production from Microalgae: A Review. Int. J. Environ. Res. Public Health 2020, 17, 3842. [Google Scholar] [CrossRef]
- Pleissner, D.; Smetana, S. Conversion of organic waste to food and feed. Curr. Opin. Green Sustain. Chem. 2020, 26, 100394. [Google Scholar] [CrossRef]
- Echalard, Y.; Ziomek, C.A.; Meade, H.M. Production of Recombinant Therapeutic Proteins in the Milk of Transgenic Animals; BioPharm International, 2006; Volume 19, Issue 8; Available online: https://www.biopharminternational.com/view/production-recombinant-therapeutic-proteins-milk-transgenic-animals (accessed on 25 May 2025).
- BUND NRW (FoE Germany). Chemieriesen verbrauchen enorme Wassermengen, Press Release. 17 August 2023. Available online: https://www.bund.net/service/presse/pressemitteilungen/detail/news/chemieriesen-verbrauchen-enorme-wassermengen/ (accessed on 5 February 2025).
- Figuière, R.; Borchert, F.; Cousins, I.T.; Ågerstrand, M. The essential use concept: A valuable tool to guide decision making on applications for authorisation under REACH? Environ. Sci. Eur. 2023, 35, 5. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission: Guiding Criteria and Principles for the Essential Use Concept in EU Legislation Dealing with Chemicals, C(2024) 1995 Final. Available online: https://environment.ec.europa.eu/document/download/fb27e67a-c275-4c47-b570-b3c07f0135e0_en?filename=C_2024_1995_F1_COMMUNICATION_FROM_COMMISSION_EN_V4_P1_3329609.PDF (accessed on 25 May 2025).
- Cousins, I.T.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Patton, S.; Scheringer, M.; Trier, X.; Vierke, L.; et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ. Sci. Process Impacts. 2019, 21, 1803–1815. [Google Scholar] [CrossRef]
- INERIS (Institut National de l’Environnement Industriel et des Risques). Review of Scientific and Methodological Data on the Concept of Essential Use, with PFAS as a Case Study, Verneuil-en-Halatte: Ineris-229262-2816719-v1.0. 2024. Available online: https://www.ineris.fr/sites/ineris.fr/files/contribution/Documents/Ineris-229262_2816719_PFAS_usages_essentiels_en.pdf (accessed on 25 May 2025).
- Bǎlan, S.A.; Andrews, D.Q.; Blum, A.; Diamond, M.L.; Rojello Fernandez, S.; Harriman, E.; Lindstrom, A.B.; Reade, A.; Richter, L.; Sutton, R.; et al. Optimizing Chemicals Management in the United States and Canada through the Essential-Use Approach. Environ. Sci. Technol. 2023, 57, 1568–1575. [Google Scholar] [CrossRef]
- Tickner, J.A.; Dorman, D.C.; Shelton-Davenport, M. Answering the Call for Improved Chemical Alternatives Assessments (CAA). Environ. Sci. Technol. 2015, 49, 1995–1996. [Google Scholar] [CrossRef]
- Tickner, J.A.; Schifano, J.N.; Blake, A.; Rudisill, C.; Mulvihill, M.J. Advancing Safer Alternatives Through Functional Substitution. Environ. Sci. Technol. 2015, 49, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.A.; Cousins, I.; Harriman, E.; Scheringer, M.; Tickner, J.A.; Wang, Z. Combined Application of the Essential-Use and Functional Substitution Concepts: Accelerating Safer Alternatives. Environ. Sci. Technol. 2022, 56, 9842–9846. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, J.; Figuière, R.; Dekker, S.C.; van Wezel, A.P.; Cousins, I.T. Managing PMT/vPvM substances in consumer products through the concepts of essential-use and functional substitution: A case-study for cosmetics. Environ. Sci. Process. Impacts 2023, 25, 1067. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Große Ophoff, M. Nachhaltige Chemie–Für eine neue Ganzheitlichkeit. Politische Ökologie. 2022, 171, 90–96, oekom-Verlag München Germany. [Google Scholar]
- Kümmerer, K. Sustainable from the very beginning: Rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 2007, 9, 899–907. [Google Scholar] [CrossRef]
- Moermond, C.T.; Puhlmann, N.; Brown, A.R.; Owen, S.F.; Ryan, J.; Snape, J.; Venhuis, B.J.; Kümmerer, K. Greener Pharmaceuticals for More Sustainable Healthcare. Environ. Sci. Technol. Lett. 2022, 9, 699–705. [Google Scholar] [CrossRef]
- Scheringer, M. Persistence and Spatial Range of Environmental Chemicals: New Ethical and Scientific Concepts for Risk Assessment; Wiley-VCH Verlag: Weinheim, Germany, 2002; ISBN 9783527305278. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/3527607463 (accessed on 25 May 2025).
- European Commission. Commission Recommendation (EU) 2022/2510 of 8 December 2022 Establishing a European Assessment Framework for ‘Safe and Sustainable by Design’ Chemicals and Materials. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022H2510 (accessed on 25 May 2025).
- ChemSec: Safe and Sustainable by Design Chemicals, 2021-06-29, Gothenburg, Sweden. 2021. Available online: https://chemsec.org/app/uploads/2023/03/ChemSec-Safe-and-Sustainable-by-Design-Chemicals-2021-06-29.pdf (accessed on 25 May 2025).
- CEFIC: Safe and Sustainable by Design: A Guidance to Unleash the Transformative Power of Innovation, Brussels, Belgium. 2024. Available online: https://cefic.org/app/uploads/2024/03/Safe-and-Sustainable-by-Design-a-guidance-to-unleash-the-transformative-power-of-innovation.pdf (accessed on 25 May 2025).
- OECD. Sustainability and Safe and Sustainable by Design: Working Descriptions for the Safer Innovation Approach, OECD Series on the Safety of Manufactured Nanomaterials and Other Advanced Materials; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- EEA: Designing Safe and Sustainable Products Requires a New Approach for Chemicals, EEA 2021, Copenhagen, Denmark. Available online: https://www.eea.europa.eu/publications/designing-safe-and-sustainable-products-1 (accessed on 5 February 2025).
- Caldeira, C.; Farcal, R.; Moretti, C.; Mancini, L.; Rasmussen, K.; Rauscher, H.; Riego Sintes, J.; Sala, S. Safe and Sustainable by Design Chemicals and Materials—Review of Safety and Sustainability Dimensions, Aspects, Methods, Indicators, and Tools, European Commission, Joint Research Centre, JRC Technical Report JRC127109, Publications Office of the European Union, Luxembourg, (PDF). 2022. Available online: https://data.europa.eu/doi/10.2760/879069 (accessed on 5 February 2025).
- Abbate, E.; Garmendia Aguirre, I.; Bracalente, G.; Mancini, L.; Tosches, D.; Rasmussen, K.; Bennett, M.J.; Rauscher, H.; Sala, S. Safe and Sustainable by Design chemicals and materials—Methodological Guidance; European Commission, Joint Research Centre Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Caldeira, C.; Garmendia Aguirre, I.; Tosches, D.; Mancini, L.; Abbate, E.; Farcal, R.; Lipsa, D.; Rasmussen, K.; Rauscher, H.; Riego Sintes, J.; et al. Safe and Sustainable by Design Chemicals and Materials—Application of the SSbD Framework to Case Studies; European Commission: Joint Research Centre, Publications Office of the European Union: Luxembourg, 2023; Available online: https://data.europa.eu/doi/10.2760/329423 (accessed on 5 February 2025).
- PARC (Partnership for the Assessment of Risks from Chemicals): PARC SSbD Toolbox Version 0.1 Guidebook. 2024. Available online: https://www.parc-ssbd.eu/wp-content/uploads/2024/06/SSbD-toolbox-guidebook-v2.0-1.pdf (accessed on 17 November 2024).
- Apel, C.; Kümmerer, K.; Sudheshwar, A.; Nowack, B.; Som, C.; Colin, C.; Walter, L.; Breukelaar, J.; Meeus, M.; Ildefonso, B.; et al. Safe-and-sustainable-by-design: State of the art approaches and lessons learned from value chain perspectives. Curr. Opin. Green Sustain. Chem. 2024, 45, 100876. [Google Scholar] [CrossRef]
- Sudheshwar, A.; Apel, C.; Kümmerer, K.; Wang, Z.; Soeteman-Hernández, L.G.; Valsami-Jones, E.; Som, C.; Nowack, B. Learning from Safe-by-Design for Safe-and-Sustainable-by-Design: Mapping the current landscape of Safe-by-Design reviews, case studies, and frameworks. Environ. Int. 2024, 183, 108305. [Google Scholar] [CrossRef]
- Kostal, J.; Voutchkova-Kostal, A.; Anastas, P.T.; Beth Zimmerman, J. Identifying and designing chemicals with minimal acute aquatic toxicity. Proc. Natl. Acad. Sci. USA 2015, 112, 6289–6294. [Google Scholar] [CrossRef]
- Escher, B.I.; Altenburger, R.; Blüher, M.; Colbourne, J.K.; Ebinghaus, R.; Fantke, P.; Hein, M.; Köck, M.; Kümmerer, K.; Leipold, S.; et al. Modernizing persistence–bioaccumulation–toxicity (PBT) assessment with high throughput animal free methods. Arch. Toxicol. 2023, 97, 1267–1283. [Google Scholar] [CrossRef]
- Fenner, K.; Scheringer, M. The Need for a Chemical Simplification as a Logical Consequence of the Ever-Increasing Chemical Pollution. Environ. Sci. Technol. 2021, 55, 14470–14472. [Google Scholar] [CrossRef] [PubMed]
- Scheringer, M. Persistence and Spatial Range as Endpoints of an Exposure-Based Assessment of Organic Chemicals. Environ. Sci. Technol. 1996, 30, 1652–1659. [Google Scholar] [CrossRef]
- Cousins, I.T.; Ng, C.A.; Wang, Z.; Scheringer, M. Why is high persistence alone a major cause of concern? Env. Sci Process Impacts 2019, 21, 781. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; DeWitt, J.C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z. The high persistence of PFAS is sufficient for their management as a chemical class. Env. Sci Process Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef]
- Scheringer, M.; Johansson, J.J.; Salter, M.E.; Sha, B.; Cousins, I.T. Stories of Global Chemical Pollution: Will We Ever Understand Environmental Persistence? Environ. Sci. Technol. 2022, 56, 17498–17501. [Google Scholar] [CrossRef]
- Brunn, H.; Arnold, G.; Körner, W.; Steinhäuser, K.G.; Valentin, I. PFAS: Forever chemicals–persistent, bioaccumulative and mobile–Reviewing the status and the need for their phase out and remediation of contaminated sites. Environ. Sci. Eur. 2023, 35, 20. [Google Scholar] [CrossRef]
- Kümmerer, K. The ecological impact of time. Time Soc. 1996, 5, 209–235. [Google Scholar] [CrossRef]
- Tickner, J.A.; Jacobs, M.; Brody, C.H. Chemistry Urgently Needs to Develop Safer Materials, Scientific American. 25 February 2023. Available online: https://www.scientificamerican.com/article/chemistry-urgently-needs-to-develop-safer-materials/ (accessed on 25 May 2025).
- Olisah, C.; Melymuk, L.; Vestergren, R.; Rumar, K.; Wickman, T.; Melander, N.; Talasniemi, P.; Brandsma, S.; Boije af Gennas, U.; Scheringer, M. Toward Product Safety and Circularity: Understanding the Information Structure of Global Databases on Chemicals in Products and Articles. Environ. Sci. Technol. 2025, 59, 1897–1908. [Google Scholar] [CrossRef]
- Advisory Council on Environment (SRU). Sufficiency as a “Strategy of the Enough”: A Necessary Debate, Sachverständigenrat für Umweltfragen, Berlin, Germany. 2024. Available online: https://www.umweltrat.de/SharedDocs/Downloads/EN/04_Statements/2020_2024/2024_06_Sufficiency_as_a_Strategy_of_the_Enough.pdf?__blob=publicationFile&v=2 (accessed on 25 May 2025).
- Mederake, L. Without a Debate on Sufficiency, a Circular Plastics Economy will Remain an Illusion. Circ. Econ. Sustain. 2023, 3, 1425–1439. [Google Scholar] [CrossRef]
- Moser, F.; Karavezyris, V.; Blum, C. Chemical Leasing in the context of Sustainable Chemistry. Environ. Sci. Pollut. Res. 2015, 21, 6968–6988. [Google Scholar] [CrossRef]
- German Environment Agency (UBA). Towards Sustainable Chemical Intensity—A glo6al, Inclusive Goal for the Sustainable Use of Chemicals is Needed to Safeguard Both Societal Wellbeing and Earth’s Life-Sustaining Capacity, Thought Starter, Dessau-Roßlau, Germany. 2021. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1/publikationen/2021-11-24-uba-fact-sheet-thought-starter_towards-chemical-intensity.pdf (accessed on 25 May 2025).
- Stolzenberg, H.-C.; Blum, C.; Klauk, A. How chemicals can serve people sustainably without polluting the planet: Through common objectives, integration, and more effective cooperation. J. Bus. Chem. 2022, 19, 100–122. [Google Scholar] [CrossRef]
- BUND (FoE Germany). Sustainable Chemicals and Materials Policy for Protecting the Climate and Biodiversity; BUND-Background, BUND: Berlin, Germany, 2021; Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/chemie/chemie_Hintergrund_Nachhaltige_Stoffpolitik_EN.pdf (accessed on 25 May 2025).
- Okereke, C. Degrowth, green growth, and climate justice for Africa. Rev. Int. Stud. 2024, 50, 910–920. [Google Scholar] [CrossRef]
- United Nations. Agenda 21. In Proceedings of the United Nations Conference on Environment & Development, Rio de Janeiro, Brazil, 3–14 June 1992; Available online: https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf (accessed on 25 May 2025).
- OSPAR (1992). Convention for the Protection of the Marine Environment of the North-East Atlantic. In Proceedings of the OSPAR Convention (OSPAR 2007), OSPAR CommissionOstend, Belgium, 25–29 June 2007; Available online: https://www.ospar.org/site/assets/files/1169/ospar_convention.pdf (accessed on 27 February 2025).
- Cannon, A.; Edwards, S.; Jacobs, M.; Moir, J.W.; Roy, M.A.; Tickner, J.A. An actionable definition and criteria for “sustainable chemistry” based on literature review and a global multisectoral stakeholder working group. RSC Sustain. 2023, 1, 2092. [Google Scholar] [CrossRef]
- UNEP. Green and Sustainable Chemistry: Framework Manual–Executive Summary; United Nations Environment Programme; Châtelaine: Geneva, Switzerland, 2020; ISBN 978-92-807-3839-1. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/35312/GSCF_ES.pdf?sequence=1&isAllowed=y (accessed on 25 May 2025).
- ISC3 (International Sustainable Chemistry Collaborative Centre) (Ed.) Key Characteristics of Sustainable Chemistry—Towards a Common Understanding of Sustainable Chemistry; ISC3: Bonn, Germany, 2020; Available online: https://www.isc3.org/cms/wp-content/uploads/2022/06/ISC3_Sustainable_Chemistry_key_characteristics_20210113.pdf (accessed on 25 May 2025).
- Blum, C.; Bunke, D.; Hungsberg, M.; Roelofs, E.; Joas, A.; Joas, R.; Blepp, M.; Stolzenberg, H.-C. The concept of sustainable chemistry: Key drivers for the transition towards sustainable development. Sustain. Chem. Pharm. 2017, 5, 94–104. [Google Scholar] [CrossRef]
- German Environment Agency (UBA). Chemicals: Better Protection of Environment and Health-Steady Increase of Chemicals Use Worldwide; Umweltbundesamt: Dessau-Roßlau, Germany; Available online: https://www.umweltbundesamt.de/en/press/pressinformation/chemicals-better-protection-of-environment-health (accessed on 23 January 2025).
- Friege, H.; Heidbüchel, E.; Zeschmar-Lahl, B. Indicators for Sustainable Management of Chemicals Contributions to Upcoming Development Work under the New Global Framework for Chemicals UBA-Texte 79/2024, Umweltbundesamt Dessau-Roßlau. 2024. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/79_2024_texte_sustainable_management_of_chemicals_0.pdf (accessed on 25 May 2025).
- Schäffer, A.; Groh, K.J.; Sigmund, G.; Azoulay, D.; Backhaus, T.; Bertram, M.G.; Carney Almroth, B.; Cousins, I.T.; Ford, A.T.; Grimalt, J.O.; et al. Conflicts of Interest in the Assessment of Chemicals, Waste, and Pollution. Environ. Sci. Technol. 2023, 57, 19065–20452. [Google Scholar] [CrossRef]
- Schäffer, A.; Mueller, L. Geballtes Wissen für die Politik. In Politische Ökologie; oekom-Verlag: München, Germany, 2022; Volume 171, pp. 74–79. [Google Scholar]
- Antwerp Declaration. The Antwerp Declaration for a European Industrial Deal the Call for a Business Case for Investments in Europe. 2024. Available online: https://antwerp-declaration.eu/pdf/declaration.pdf (accessed on 24 February 2025).
- Cole, M.A.; Elliott, R.J.R.; Zhang, L. Foreign Direct Investment and the Environment. Annu. Rev. Environ. Resour. 2017, 42, 465–487. [Google Scholar] [CrossRef]
- Vital Caetano, R.; ·Cardoso Marques, A.; Lopes Afonso, T. Can Sustainable Development Induce Foreign Direct Investment? Analysis of the Complex Inward Outward Flows of Investment in European Union Countries. J. Knowl. Econ. 2024, 15, 9756–9783. [Google Scholar] [CrossRef]
- CIEL; IPEN. Financing the Sound Management of Chemicals Beyond 2020: Options for a Coordinated Tax, Brussels, Belgium. 2020. Available online: https://www.ciel.org/wp-content/uploads/2020/09/ipen-ciel-producer-responsibility-vf1_9e-web-en.pdf (accessed on 25 May 2025).
- OECD. Extended Producer Responsibility, Basic Facts and Key Principles, OECD Environment Policy Paper No. 41, Paris, France. 2024. Available online: https://www.oecd.org/en/publications/extended-producer-responsibility_67587b0b-en.html (accessed on 25 May 2025).
- Tickner, J.A.; Geiser, K.; Baima, S. Transitioning the Chemical Industry: The Case for Addressing the Climate, Toxics, and Plastics Crises. Environ. Sci. Policy Sustain. Dev. 2021, 63, 4–15. [Google Scholar] [CrossRef]
- Bazzanella, A.M.; Ausfelder, F. Low Carbon Energy and Feedstock for the European Chemical Industry: Technology Study, DECHEMA, Frankfurt am Main, Germany. 2017. Available online: https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf (accessed on 25 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinhäuser, K.G.; Große Ophoff, M. The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry. Sustain. Chem. 2025, 6, 16. https://doi.org/10.3390/suschem6020016
Steinhäuser KG, Große Ophoff M. The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry. Sustainable Chemistry. 2025; 6(2):16. https://doi.org/10.3390/suschem6020016
Chicago/Turabian StyleSteinhäuser, Klaus Günter, and Markus Große Ophoff. 2025. "The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry" Sustainable Chemistry 6, no. 2: 16. https://doi.org/10.3390/suschem6020016
APA StyleSteinhäuser, K. G., & Große Ophoff, M. (2025). The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry. Sustainable Chemistry, 6(2), 16. https://doi.org/10.3390/suschem6020016