The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion
Abstract
1. Introduction
2. Results and Discussion
2.1. Hydrolysis of NaBH4
2.2. Ethylene Dimerization over Ni Single-Atom Catalysts
2.3. Propylene Oligomerization
2.3.1. Catalytic Performance
2.3.2. Discussion on the Effect of Metal Precursors for Ni@Beta Zeolite Synthesis
3. Materials and Methods
3.1. Materials for Catalyst Synthesis
3.2. Catalyst Preparation
3.2.1. Synthesis of Beta Zeolite
3.2.2. Synthesis of Ni1@Beta-NO3−
3.2.3. Synthesis of Ni@Beta-Cl−
3.2.4. Synthesis of Ni/Beta-NO3−
3.2.5. Synthesis of H-Beta, Ni1@H-Beta-NO3−, and Ni@H-Beta-Cl−
3.3. Catalyst Characterization
3.4. Catalyst Evaluation
3.4.1. Hydrolysis of NaBH4
3.4.2. Ethylene Dimerization
3.4.3. Propylene Oligomerization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prieto, G.; Zečević, J.; Friedrich, H.; de Jong, K.P.; de Jongh, P.E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2012, 12, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Meng, X.; Xiao, F.S. New Strategies for the Preparation of Sinter-Resistant Metal-Nanoparticle-Based Catalysts. Adv. Mater. 2019, 31, e1901905. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Wang, L.; Wang, L.; Xiao, F.S. Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Acc. Chem. Res. 2021, 54, 2579–2590. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Xiao, F.-S. Metal@Zeolite Hybrid Materials for Catalysis. ACS Cent. Sci. 2020, 6, 1685–1697. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Z.-P.; Lv, X.; Chen, L.; Yuan, Z.-Y. Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. J. Catal. 2020, 385, 61–69. [Google Scholar] [CrossRef]
- Javed, M.; Cheng, S.; Zhang, G.; Amoo, C.C.; Wang, J.; Lu, P.; Lu, C.; Xing, C.; Sun, J.; Tsubaki, N. A facile solvent-free synthesis strategy for Co-imbedded zeolite-based Fischer-Tropsch catalysts for direct gasoline production. Chin. J. Catal. 2020, 41, 604–612. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, T.; Hou, H.; Yin, J.; Wan, H.; Sun, X.; Zhang, Q.; Sun, F.; Wei, Y.; Dong, M.; et al. Regioselective hydroformylation of propene catalysed by rhodium-zeolite. Nature 2024, 629, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Astruc, D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev. 2021, 50, 3437–3484. [Google Scholar] [CrossRef] [PubMed]
- Eppinger, J.; Huang, K.-W. Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2016, 2, 188–195. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Zhang, T.; Bai, R.; Mayoral, A.; Zhang, P.; Zhang, Q.; Terasaki, O.; Yu, J. Zeolite-Encaged Single-Atom Rhodium Catalysts: Highly-Efficient Hydrogen Generation and Shape-Selective Tandem Hydrogenation of Nitroarenes. Angew. Chem. Int. Ed. 2019, 58, 18570–18576. [Google Scholar] [CrossRef] [PubMed]
- Wulfers, M.J.; Lobo, R.F. Assessment of mass transfer limitations in oligomerization of butene at high pressure on H-beta. Appl. Catal. A Gen. 2015, 505, 394–401. [Google Scholar] [CrossRef]
- Kilburn, L.; Salomé Rivera, D.; Bickel Rogers, E.E.; Gounder, R.; Hibbitts, D.D. Assessing the Influence of Void Environment in MFI Zeolites on Propene Oligomerization Kinetics Using a Combined Computational and Experimental Approach. ACS Catal. 2025, 15, 7121–7137. [Google Scholar] [CrossRef]
- Nozik, D.; Bell, A.T. Role of Ga3+ Sites in Ethene Oligomerization over Ga/H-MFI. ACS Catal. 2022, 12, 14173–14184. [Google Scholar] [CrossRef]
- Kitamura, H.; Sumi, T.; Kubota, S.; Kokuryo, S.; Tamura, K.; Miyake, K.; Uchida, Y.; Miyamoto, M.; Nishiyama, N. Stable and selective conversion of ethylene to propylene and butylene using Ni-loaded dealuminated Beta zeolite catalyst. Appl. Catal. A Gen. 2023, 668, 119429. [Google Scholar] [CrossRef]
- Liu, M.; Miao, C.; Fo, Y.; Wang, W.; Ning, Y.; Chu, S.; Song, W.; Zhang, Y.; Liu, J.; Wu, Z.; et al. Chelating-agent-free incorporation of isolated Ni single-atoms within BEA zeolite for enhanced biomass hydrogenation. Chin. J. Catal. 2025, 71, 308–318. [Google Scholar] [CrossRef]
- Escola, J.M.; Serrano, D.P.; Aguado, J.; Briones, L. Hydroreforming of the LDPE Thermal Cracking Oil over Hierarchical Ni/Beta Catalysts with Different Ni Particle Size Distributions. Ind. Eng. Chem. Res. 2015, 54, 6660–6668. [Google Scholar] [CrossRef]
- Zahmakıran, M.; Ayvalı, T.; Akbayrak, S.; Çalışkan, S.; Çelik, D.; Özkar, S. Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride. Catal. Today 2011, 170, 76–84. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chang, H.-A. Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic imidazolate framework. Chem. Eng. J. 2016, 296, 243–251. [Google Scholar] [CrossRef]
- Rakap, M.; Özkar, S. Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Appl. Catal. B Environ. 2009, 91, 21–29. [Google Scholar] [CrossRef]
- Luo, C.; Fu, F.; Yang, X.; Wei, J.; Wang, C.; Zhu, J.; Huang, D.; Astruc, D.; Zhao, P. Highly Efficient and Selective Co@ZIF-8 Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis. ChemCatChem 2019, 11, 1643–1649. [Google Scholar] [CrossRef]
- Zahmakiran, M.; Ozkar, S. Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride. Langmuir 2009, 25, 2667–2678. [Google Scholar] [CrossRef] [PubMed]
- Tuan, D.D.; Lin, K.-Y.A. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem. Eng. J. 2018, 351, 48–55. [Google Scholar] [CrossRef]
- Irum, M.; Zaheer, M.; Friedrich, M.; Kempe, R. Mesoporous silica nanosphere supported platinum nanoparticles (Pt@MSN): One-pot synthesis and catalytic hydrogen generation. RSC Adv. 2016, 6, 10438–10441. [Google Scholar] [CrossRef]
- Chen, C.; Alalouni, M.R.; Dong, X.; Cao, Z.; Cheng, Q.; Zheng, L.; Meng, L.; Guan, C.; Liu, L.; Abou-Hamad, E.; et al. Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. J. Am. Chem. Soc. 2021, 143, 7144–7153. [Google Scholar] [CrossRef] [PubMed]
- Metzger, E.D.; Brozek, C.K.; Comito, R.J.; Dincă, M. Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst. ACS Cent. Sci. 2016, 2, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Q.; Solan, G.A.; Sun, W.-H. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev. 2017, 350, 68–83. [Google Scholar] [CrossRef]
- Wang, L.; Ke, J.; Chai, Y.; Wu, G.; Wang, C.; Li, L. Additive-Free Ethylene Dimerization Over Well-Defined Nickel-Zeolite Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202502563. [Google Scholar] [CrossRef] [PubMed]
- Martínez Gómez-Aldaraví, A.; Paris, C.; Moliner, M.; Martínez, C. Design of bi-functional Ni-zeolites for ethylene oligomerization: Controlling Ni speciation and zeolite properties by one-pot and post-synthetic Ni incorporation. J. Catal. 2023, 426, 140–152. [Google Scholar] [CrossRef]
- Shirazi, L.; Jamshidi, E.; Ghasemi, M.R. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol. 2008, 43, 1300–1306. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Danilova, I.G.; Arzumanov, S.S.; Pirutko, L.V.; Freude, D.; Stepanov, A.G. Direct Measurement of Zeolite Brønsted Acidity by FTIR Spectroscopy: Solid-State 1H MAS NMR Approach for Reliable Determination of the Integrated Molar Absorption Coefficients. J. Phys. Chem. C 2018, 122, 25386–25395. [Google Scholar] [CrossRef]
- Qiu, P.; Lunsford, J.H.; Rosynek, M.P. Characterization of Ga/ZSM-5 for the catalytic aromatization of dilute ethylene streams. Catal. Lett. 1998, 52, 27–42. [Google Scholar] [CrossRef]
- Ning, Y.; Li, C.; Zhao, B.; Min, W.; Li, X.; Zhang, Y. Unprecedented High Activity of One-Dimensional Nickel-Based Coordination Polymer for Ethylene Dimerization. Appl. Organomet. Chem. 2025, 39, e70019. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Han, Y.; Sheng, D.; Shan, D.; Liu, X.; Cheng, A. Ultrathin Nickel-Based Metal–Organic Framework Nanosheets as Reusable Heterogeneous Catalyst for Ethylene Dimerization. ACS Appl. Nano Mater. 2018, 2, 136–142. [Google Scholar] [CrossRef]
- Lallemand, M.; Finiels, A.; Fajula, F.; Hulea, V. Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Appl. Catal. A Gen. 2006, 301, 196–201. [Google Scholar] [CrossRef]
- Sohn, J.R.; Park, W.C.; Kim, H.W. Characterization of Nickel Sulfate Supported on γ-Al2O3 for Ethylene Dimerization and Its Relationship to Acidic Properties. J. Catal. 2002, 209, 69–74. [Google Scholar] [CrossRef]
- Kostyniuk, A.; Bajec, D.; Likozar, B. Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor. Renew. Energy 2021, 167, 409–424. [Google Scholar] [CrossRef]
- Segobia, D.J.; Trasarti, A.F.; Apesteguía, C.R. Effect of the catalyst preparation method on the performance of Ni-supported catalysts for the synthesis of saturated amines from nitrile hydrogenation. Chin. J. Catal. 2019, 40, 1693–1703. [Google Scholar] [CrossRef]
- Moussa, S.; Concepción, P.; Arribas, M.A.; Martínez, A. The nature of active Ni sites and the role of Al species in the oligomerization of ethylene on mesoporous Ni-Al-MCM-41 catalysts. Appl. Catal. A Gen. 2020, 608, 117831. [Google Scholar] [CrossRef]
- Yan, P.; Xi, S.; Peng, H.; Mitchell, D.R.G.; Harvey, L.; Drewery, M.; Kennedy, E.M.; Zhu, Z.; Sankar, G.; Stockenhuber, M. Facile and Eco-Friendly Approach To Produce Confined Metal Cluster Catalysts. J. Am. Chem. Soc. 2023, 145, 9718–9728. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.J.; Louis, B.; Lam, Y.L.; Pereira, M.M. Ni-ZSM-5 catalysts: Detailed characterization of metal sites for proper catalyst design. J. Catal. 2010, 269, 103–109. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Su, Y.; Zhao, Y.; Qiao, B. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts. Chin. J. Catal. 2024, 57, 105–113. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, S.; Zhang, A.; Song, C.; Shi, C.; Guo, X. Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. J. Mater. Chem. A 2015, 3, 16461–16468. [Google Scholar] [CrossRef]
- Resini, C.; Venkov, T.; Hadjiivanov, K.; Presto, S.; Riani, P.; Marazza, R.; Ramis, G.; Busca, G. An FTIR study of the dispersed Ni species on Ni-YSZ catalysts. Appl. Catal. A Gen. 2009, 353, 137–143. [Google Scholar] [CrossRef]
- Moussa, S.; Concepción, P.; Arribas, M.A.; Martínez, A. Nature of Active Nickel Sites and Initiation Mechanism for Ethylene Oligomerization on Heterogeneous Ni-beta Catalysts. ACS Catal. 2018, 8, 3903–3912. [Google Scholar] [CrossRef]
- Aleksandrov, H.A.; Zdravkova, V.R.; Mihaylov, M.Y.; Petkov, P.S.; Vayssilov, G.N.; Hadjiivanov, K.I. Precise Identification of the Infrared Bands of the Polycarbonyl Complexes on Ni–MOR Zeolite by12C16O–13C18O Coadsorption and Computational Modeling. J. Phys. Chem. C 2012, 116, 22823–22831. [Google Scholar] [CrossRef]
- Cairon, O.; Bellat, J.-P. Macroscopic and Molecular Insights from CO Adsorption on NaY Zeolite: A Combined FTIR and Manometric Study. J. Phys. Chem. C 2012, 116, 11195–11199. [Google Scholar] [CrossRef]
- Ma, R.; Gao, J.; Kou, J.; Dean, D.P.; Breckner, C.J.; Liang, K.; Zhou, B.; Miller, J.T.; Zou, G. Insights into the Nature of Selective Nickel Sites on Ni/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2022, 12, 12607–12616. [Google Scholar] [CrossRef]
Samples | 293 K | 298 K | 303 K | 308 K | 313 K | |||||
---|---|---|---|---|---|---|---|---|---|---|
HGR (mL H2 min−1) | Time (min) | HGR (mL H2 min−1) | Time (min) | HGR (mL H2 min−1) | Time (min) | HGR (mL H2 min−1) | Time (min) | HGR (mL H2 min−1) | Time (min) | |
Ni/Beta-NO3− | 35.4 | 4.7 | 50.1 | 3.4 | 65.6 | 2.6 | 87.8 | 2.0 | 109.1 | 1.6 |
Ni1@Beta-NO3− | 68.5 | 2.4 | 81.0 | 2.1 | 103.4 | 1.7 | 124.8 | 1.4 | 145.7 | 1.2 |
Catalyst | Reaction Condition | Specific Rate (mL H2 min−1 gcat.−1) | TOF (min−1) | Ea | Ref. | |||
---|---|---|---|---|---|---|---|---|
Temperature (K) | NaBH4 (mol L−1) | NaOH (wt%) | Value (kJ mol−1) | Temperature Range (K) | ||||
Non-noble metal catalyst | ||||||||
Ni1@Beta-NO3− | 298 | 0.075 | No | 1620 | 331 | 30.1 | 293–313 | This work |
Ni@NaY | 298 | 0.1 | 0.16 | 27 | 60.4 ± 3.1 | 293–313 | [17] | |
Co@C | 303 | 0.125 | 4 | 12.9 | 25.8 | 303–323 | [18] | |
Co@NaY | 298 | 0.15 | 10 | 14.7 | 34 ± 2 | 298–318 | [19] | |
Co@ZIF-8 | 303 | 0.75 | 1.6 | 33.7 | 62.9 | 298–313 | [20] | |
Noble metal catalyst | ||||||||
Ru@NaY | 298 | 0.15 | No | 550 | 49 ± 2 | 293–318 | [21] | |
Ru@ZIF-67 | 303 | 0.125 | 7.5 | 16 | 36.2 | 303–333 | [22] | |
Pt@MSN | 298 | 3.17 | 2 | 7.6 | 40.1 | 298–338 | [23] |
Samples | Temperature (K) | Pressure (MPa) | Selectivity(%) | TOF (h−1) | Ref. | ||
---|---|---|---|---|---|---|---|
C4 | C6 | C8 | |||||
Ni1@Beta-NO3− | 298 | 1.0 | 99.4 | 0.6 | 0 | 5804 | This work |
1D-S-Ni | 298 | 1.0 | 95.3 | 3.6 | 0.3 | 4464 | [32] |
Ni-UMOFNs-190 | 298 | 1.0 | 74.5 | 2.9 | 12.9 | 3571 | [33] |
Ni-BDC | 298 | 1.0 | 78.1 | 1.5 | 15.0 | 2429 | [33] |
Ni/Y | 308 | 4.0 | 92.0 | 5.0 | 2.0 | ~4200 | [34] |
Samples | GHSV (h−1) | Conversion (wt%) | Yield (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
<C3 | C4 | C5 | C6 | C7 | C8 | C9+ | |||
H-Beta | 600 | 13.9 | 0.03 | 3.54 | 2.88 | 3.24 | 3.04 | 0.15 | 1.03 |
Ni1@Beta-NO3− | 450 | 19.3 | 0.05 | 2.21 | 2.79 | 2.31 | 8.88 | 0.54 | 2.56 |
Ni@Beta-Cl− | 400 | 21.1 | 0.03 | 3.88 | 3.60 | 2.92 | 6.59 | 0.81 | 3.26 |
Ni1@Beta-NO3− | 300 | 79.8 | 0.17 | 58.31 | 18.24 | 1.09 | 0.16 | 0.50 | 0.33 |
Ni/Beta-NO3− | 300 | 79.6 | 0.19 | 40.36 | 34.33 | 3.67 | 0.66 | 0.17 | 0.21 |
Samples | Relative Crystallinity (%) a | SiO2/Al2O3 b | Ni Content (wt%) b | Surface Area (m2/g) c | Volume (cm3/g) c | ||||
---|---|---|---|---|---|---|---|---|---|
SBET | Smeso | Smicro | Vtotal | Vmeso | Vmicro | ||||
Na-Beta | 100 | 56.5 | 654 | 154 | 500 | 0.29 | 0.04 | 0.25 | |
Ni1@Beta-NO3− | 85 | 60.9 | 1.28 | 697 | 193 | 504 | 0.32 | 0.27 | 0.05 |
Ni@Beta-Cl− | 79 | 63.5 | 1.36 | 672 | 174 | 498 | 0.30 | 0.06 | 0.24 |
Samples | Total Acid Amount (mmol/g) a | Total L Acid Amount (mmol/g) b | Total B Acid Amount (mmol/g) b | B acid Amount/ L Acid Amount b | Strong L Acid Amount (mmol/g) c | Strong B Acid Amount (mmol/g) c |
---|---|---|---|---|---|---|
Na-Beta | 0.18 | 0.08 | 0.10 | 1.25 | 0.05 | 0.10 |
Ni1@Beta-NO3− | 0.20 | 0.14 | 0.06 | 0.43 | 0.11 | 0.06 |
Ni@Beta-Cl− | 0.17 | 0.10 | 0.07 | 0.70 | 0.10 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, M.; Ning, Y.; Zhang, Y.; Wu, Z. The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion. Catalysts 2025, 15, 703. https://doi.org/10.3390/catal15080703
Zhao Y, Liu M, Ning Y, Zhang Y, Wu Z. The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion. Catalysts. 2025; 15(8):703. https://doi.org/10.3390/catal15080703
Chicago/Turabian StyleZhao, Yitong, Meng Liu, Yao Ning, Ying Zhang, and Zhijie Wu. 2025. "The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion" Catalysts 15, no. 8: 703. https://doi.org/10.3390/catal15080703
APA StyleZhao, Y., Liu, M., Ning, Y., Zhang, Y., & Wu, Z. (2025). The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion. Catalysts, 15(8), 703. https://doi.org/10.3390/catal15080703