Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = hydraulic drive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5618 KiB  
Article
Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau
by Jinfei Hu, Yifan He, Keyao Huang, Pengfei Li, Shugang Li, Lu Yan and Bingzhe Tang
Remote Sens. 2025, 17(15), 2710; https://doi.org/10.3390/rs17152710 - 5 Aug 2025
Abstract
Morphology is an important characteristic of the hydraulic and gravitational processes driving gully erosion. In this study, field scouring experiments were conducted on five experimental plots using terrestrial laser scanning to study gully erosion processes. The erosion and deposition on a gully slope [...] Read more.
Morphology is an important characteristic of the hydraulic and gravitational processes driving gully erosion. In this study, field scouring experiments were conducted on five experimental plots using terrestrial laser scanning to study gully erosion processes. The erosion and deposition on a gully slope were quantified using the M3C2 algorithm. The results show that the proportion of sediment yield of the gully slope in the whole slope–gully system ranged from 81.5% to 99.7% for different flow discharges (25, 40, 55, 70, and 85 L/min). Compared with low flow discharges (25 and 40 L/min), the gully slope presented more intense gully head retreat and higher erosion intensity under relatively high discharges (55, 70, and 85 L/min). Alcove expansion processes were characterized by horizontal and vertical cycles. Vertical dynamic changes were dominated by the co-evolution of collapses of the gully head and the deepening of the alcove. Horizontal development mainly manifested as a widening of the alcove caused by the hydraulic erosion of the gully wall. The roughness of the gully slope increased gradually with the increase in scour times and then tended towards stability. These results provide a reference for understanding the processes and mechanisms of gully erosion. Full article
(This article belongs to the Special Issue Geodata Science and Spatial Analysis with Remote Sensing)
Show Figures

Figure 1

16 pages, 4733 KiB  
Article
Vibratory Pile Driving in High Viscous Soil Layers: Numerical Analysis of Penetration Resistance and Prebored Hole of CEL Method
by Caihui Li, Changkai Qiu, Xuejin Liu, Junhao Wang and Xiaofei Jing
Buildings 2025, 15(15), 2729; https://doi.org/10.3390/buildings15152729 - 2 Aug 2025
Viewed by 189
Abstract
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. [...] Read more.
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. This study addresses two critical mechanical challenges during vibratory pile driving in Fujian Province’s hydraulic engineering project: prolonged high-frequency driving durations, and severe U-shaped steel sheet pile head damage in high-viscosity stratified soils. Employing the Coupled Eulerian–Lagrangian (CEL) numerical method, a systematic investigation was conducted into the penetration resistance, stress distribution, and damage patterns during vibratory pile driving under varying conditions of cohesive soil layer thickness, predrilled hole spacing, and aperture dimensions. The correlation between pile stress and penetration depth was established, with the influence mechanisms of key factors on driving-induced damage in high-viscosity stratified strata under multi-factor coupling effects elucidated. Finally, the feasibility of predrilling techniques for resistance reduction was explored. This study applies the damage prediction model based on the CEL method to U-shaped sheet piles in high-viscosity stratified formations, solving the problem of mesh distortion in traditional finite element methods. The findings provide scientific guidance for steel sheet pile construction in high-viscosity stratified formations, offering significant implications for enhancing construction efficiency, ensuring operational safety, and reducing costs in such challenging geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2295 KiB  
Article
Design of Novel Hydraulic Drive Cleaning Equipment for Well Maintenance
by Zhongrui Ji, Qi Feng, Shupei Li, Zhaoxuan Li and Yi Pan
Processes 2025, 13(8), 2424; https://doi.org/10.3390/pr13082424 - 31 Jul 2025
Viewed by 231
Abstract
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. [...] Read more.
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. This paper proposes a novel hydraulic drive well washing device which consists of two main units. The wellbore cleaning unit comprises a hydraulic drive cutting–flushing module, a well cleaning mode-switching module, and a filter storage module. The unit uses hydraulic and mechanical forces to perform combined cleaning to prevent mud and sand from settling. By controlling the flow direction of the well washing fluid, it can directly switch between normal and reverse washing modes in the downhole area, and at the same time, it can control the working state of corresponding modules. The assembly control unit includes the chain lifting module and the arm assembly module, which can lift and move the device through the chain structure, allow for the rapid assembly of equipment through the use of a mechanical arm, and protect the reliability of equipment through the use of a centering structure. The device converts some of the hydraulic power into mechanical force, effectively improving cleaning and plugging removal efficiency, prolonging the downhole continuous working time of equipment, reducing manual operation requirements, and comprehensively improving cleaning efficiency and energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 281
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

16 pages, 2683 KiB  
Article
The Effect of Herbaceous and Shrub Combination with Different Root Configurations on Soil Saturated Hydraulic Conductivity
by Zeyu Zhang, Chenguang Wang, Bo Ma, Zhanbin Li, Jianye Ma and Beilei Liu
Water 2025, 17(15), 2187; https://doi.org/10.3390/w17152187 - 22 Jul 2025
Viewed by 191
Abstract
Information on the effects of differences in root and soil properties on Saturated hydraulic conductivity (Ks) is crucial for estimating rainfall infiltration and evaluating sustainable ecological development. This study selected typical grass shrub composite plots widely distributed in hilly and [...] Read more.
Information on the effects of differences in root and soil properties on Saturated hydraulic conductivity (Ks) is crucial for estimating rainfall infiltration and evaluating sustainable ecological development. This study selected typical grass shrub composite plots widely distributed in hilly and gully areas of the Loess Plateau: Caragana korshinskii, Caragana korshinskii and Agropyron cristatum (fibrous root), and Caragana korshinskii and Artemisia gmelinii (taproot). Samples were collected at different distances from the base of the shrub (0 cm, 50 cm), with a sampling depth of 0–30 cm. The constant head method is used to measure the Ks. The Ks decreased with increasing soil depth. Due to the influence of shrub growth, there was significant spatial heterogeneity in the distribution of Ks at different positions from the base of the shrub. Compared to the sample location situated 50 cm from the base of the shrub, it was observed that in a single shrub plot, the Ks at the base were higher, while in a grass shrub composite plot, the Ks at the base were lower. Root length density, >0.25 mm aggregates, and organic matter were the main driving factors affecting Ks. The empirical equation established by using principal component analysis to reduce the dimensions of these three factors and calculate the comprehensive score was more accurate than the empirical equation established by previous researchers, who considered only root or soil properties. Root length density and organic matter had significant indirect effects on Ks, reaching 52.87% and 78.19% of the direct effects, respectively. Overall, the composite plot of taproot herbaceous and shrub (Caragana korshinskii and Artemisia gmelinii) had the highest Ks, which was 82.98 cm·d−1. The ability of taproot herbaceous plants to improve Ks was higher than that of fibrous root herbaceous plants. The research results have certain significance in revealing the influence mechanism of the grass shrub composite on Ks. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation)
Show Figures

Figure 1

27 pages, 6704 KiB  
Article
Dynamic Characteristics of a Digital Hydraulic Drive System for an Emergency Drainage Pump Under Alternating Loads
by Yong Zhu, Yinghao Liu, Qingyi Wu and Qiang Gao
Machines 2025, 13(8), 636; https://doi.org/10.3390/machines13080636 - 22 Jul 2025
Viewed by 225
Abstract
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone [...] Read more.
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone to being affected by random and uncertain loads during operation. To achieve intelligent and efficient rescue operations, a DHDS suitable for EDPs was proposed. Firstly, the configuration and operation mode of the DHDS for EDPs were analyzed. Based on this, a multi-field coupling dynamic simulation platform for the DHDS was constructed. Secondly, the output characteristics of the system under alternating loads were simulated and analyzed. Finally, a test platform for the EDP DHDS was established, and the dynamic characteristics of the system under alternating loads were explored. The results show that as the load torque of the alternating loads increases, the amplitude of the pressure of the motor also increases, the output flow of the hydraulic-controlled proportional reversing valve (HCPRV) changes slightly, and the fluctuation range of the rotational speed of the motor increases. The fluctuation range of the pressure and the rotational speed of the motor are basically not affected by the frequency of alternating loads, but the fluctuation amplitude of the output flow of the HCPRV reduces with the increase in the frequency of alternating loads. This system can respond to changes in load relatively quickly under alternating loads and can return to a stable state in a short time. It has laudable anti-interference ability and output stability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

29 pages, 4633 KiB  
Article
Failure Detection of Laser Welding Seam for Electric Automotive Brake Joints Based on Image Feature Extraction
by Diqing Fan, Chenjiang Yu, Ling Sha, Haifeng Zhang and Xintian Liu
Machines 2025, 13(7), 616; https://doi.org/10.3390/machines13070616 - 17 Jul 2025
Viewed by 261
Abstract
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the [...] Read more.
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the welding material and welding process, the weld seam is prone to various defects such as cracks, pores, undercutting, and incomplete fusion, which can weaken the joint and even lead to product failure. Traditional weld seam detection methods include destructive testing and non-destructive testing; however, destructive testing has high costs and long cycles, and non-destructive testing, such as radiographic testing and ultrasonic testing, also have problems such as high consumable costs, slow detection speed, or high requirements for operator experience. In response to these challenges, this article proposes a defect detection and classification method for laser welding seams of automotive brake joints based on machine vision inspection technology. Laser-welded automotive brake joints are subjected to weld defect detection and classification, and image processing algorithms are optimized to improve the accuracy of detection and failure analysis by utilizing the high efficiency, low cost, flexibility, and automation advantages of machine vision technology. This article first analyzes the common types of weld defects in laser welding of automotive brake joints, including craters, holes, and nibbling, and explores the causes and characteristics of these defects. Then, an image processing algorithm suitable for laser welding of automotive brake joints was studied, including pre-processing steps such as image smoothing, image enhancement, threshold segmentation, and morphological processing, to extract feature parameters of weld defects. On this basis, a welding seam defect detection and classification system based on the cascade classifier and AdaBoost algorithm was designed, and efficient recognition and classification of welding seam defects were achieved by training the cascade classifier. The results show that the system can accurately identify and distinguish pits, holes, and undercutting defects in welds, with an average classification accuracy of over 90%. The detection and recognition rate of pit defects reaches 100%, and the detection accuracy of undercutting defects is 92.6%. And the overall missed detection rate is less than 3%, with both the missed detection rate and false detection rate for pit defects being 0%. The average detection time for each image is 0.24 s, meeting the real-time requirements of industrial automation. Compared with infrared and ultrasonic detection methods, the proposed machine-vision-based detection system has significant advantages in detection speed, surface defect recognition accuracy, and industrial adaptability. This provides an efficient and accurate solution for laser welding defect detection of automotive brake joints. Full article
Show Figures

Figure 1

17 pages, 4431 KiB  
Article
Wheeled Permanent Magnet Climbing Robot for Weld Defect Detection on Hydraulic Steel Gates
by Kaiming Lv, Zhengjun Liu, Hao Zhang, Honggang Jia, Yuanping Mao, Yi Zhang and Guijun Bi
Appl. Sci. 2025, 15(14), 7948; https://doi.org/10.3390/app15147948 - 17 Jul 2025
Viewed by 307
Abstract
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel [...] Read more.
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel independent drive configuration is proposed as a mobile platform. The robot body consists of six joint modules, with the two middle joints featuring adjustable suspension. The joints are connected in series via an EtherCAT bus communication system. Secondly, the kinematic model of the climbing robot is analyzed and a PID trajectory tracking control method is designed, based on the kinematic model and trajectory deviation information collected by the vision system. Subsequently, the proposed kinematic model and trajectory tracking control method are validated through Python3 simulation and actual operation tests on a curved trajectory, demonstrating the rationality of the designed PID controller and control parameters. Finally, an intelligent software system for weld defect detection based on computer vision is developed. This system is demonstrated to conduct defect detection on images of the current weld position using a trained model. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 3833 KiB  
Article
Seven Thousand Felt Earthquakes in Oklahoma and Kansas Can Be Confidently Traced Back to Oil and Gas Activities
by Iason Grigoratos, Alexandros Savvaidis and Stefan Wiemer
GeoHazards 2025, 6(3), 36; https://doi.org/10.3390/geohazards6030036 - 15 Jul 2025
Viewed by 265
Abstract
The seismicity levels in Oklahoma and southern Kansas have increased dramatically over the last 15 years. Past studies have identified the massive disposal of wastewater co-produced during oil and gas extraction as the driving force behind some earthquake clusters, with a small number [...] Read more.
The seismicity levels in Oklahoma and southern Kansas have increased dramatically over the last 15 years. Past studies have identified the massive disposal of wastewater co-produced during oil and gas extraction as the driving force behind some earthquake clusters, with a small number of events directly linked to hydraulic fracturing (HF) stimulations. The present investigation is the first one to examine the role both of these activities played throughout the two states, under the same framework. Our findings confirm that wastewater disposal is the main causal factor, while also identifying several previously undocumented clusters of seismicity that were triggered by HF. We were able to identify areas where both causal factors spatially coincide, even though they act at distinct depth intervals. Overall, oil and gas operations are probabilistically linked at high confidence levels with more than 7000 felt earthquakes (M ≥ 2.5), including 46 events with M ≥ 4.0 and 4 events with M ≥ 5. Our analysis utilized newly compiled regional earthquake catalogs and established physics-based principles. It first hindcasts the seismicity rates after 2012 on a spatial grid using either real or randomized HF and wastewater data as the input, and then compares them against the null hypothesis of purely tectonic loading. In the end, each block is assigned a p-value, reflecting the statistical confidence in its causal association with either HF stimulations or wastewater disposal. Full article
(This article belongs to the Special Issue Seismological Research and Seismic Hazard & Risk Assessments)
Show Figures

Figure 1

19 pages, 4122 KiB  
Article
Fluid Dynamics Analysis of Flow Characteristics in the Clearance of Hydraulic Turbine Seal Rings
by Leilei Chen, Wenhao Wu, Jian Deng, Bing Xue, Liuming Xu, Baosheng Xie and Yuchuan Wang
Energies 2025, 18(14), 3726; https://doi.org/10.3390/en18143726 - 14 Jul 2025
Viewed by 211
Abstract
The hydraulic turbine serves as the cornerstone of hydropower generation systems, with the sealing system’s performance critically influencing energy conversion efficiency and operational cost-effectiveness. The sealing ring is a pivotal component, which mitigates leakage and energy loss by regulating flow within the narrow [...] Read more.
The hydraulic turbine serves as the cornerstone of hydropower generation systems, with the sealing system’s performance critically influencing energy conversion efficiency and operational cost-effectiveness. The sealing ring is a pivotal component, which mitigates leakage and energy loss by regulating flow within the narrow gap between itself and the frame. This study investigates the intricate flow dynamics within the gap between the sealing ring and the upper frame of a super-large-scale Francis turbine, with a specific focus on the rotating wall’s impact on the flow field. Employing theoretical modeling and three-dimensional transient computational fluid dynamics (CFD) simulations grounded in real turbine design parameters, the research reveals that the rotating wall significantly alters shear flow and vortex formation within the gap. Tangential velocity exhibits a nonlinear profile, accompanied by heightened turbulence intensity near the wall. The short flow channel height markedly shapes flow evolution, driving the axial velocity profile away from a conventional parabolic pattern. Further analysis of rotation-induced vortices and flow instabilities, supported by turbulence kinetic energy monitoring and spectral analysis, reveals the periodic nature of vortex shedding and pressure fluctuations. These findings elucidate the internal flow mechanisms of the sealing ring, offering a theoretical framework for analyzing flow in microscale gaps. Moreover, the resulting flow field data establishes a robust foundation for future studies on upper crown gap flow stability and sealing ring dynamics. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

16 pages, 3015 KiB  
Article
Energy Efficiency Analysis of Hydraulic Excavators’ Swing Drive Transmission
by Vesna Jovanović, Dragoslav Janošević, Dragan Marinković, Nikola Petrović and Boban Nikolić
Machines 2025, 13(7), 596; https://doi.org/10.3390/machines13070596 - 10 Jul 2025
Viewed by 274
Abstract
The paper provides an analysis of the energy efficiency of the swing drive system of hydraulic excavators, which integrally includes a hydraulic motor and a planetary reducer. The indicator of the drive’s energy efficiency is determined based on the efficiency of the hydraulic [...] Read more.
The paper provides an analysis of the energy efficiency of the swing drive system of hydraulic excavators, which integrally includes a hydraulic motor and a planetary reducer. The indicator of the drive’s energy efficiency is determined based on the efficiency of the hydraulic motor and the planetary reducer. The efficiency of the hydraulic motor is defined as a function of the specific flow, pressure, and the number of revolutions of the hydraulic motor. The efficiency of the reducer is determined using structural analysis of planetary gearboxes and the moment method. As an example, the results of a comparative analysis of the energy efficiency of the swing drive of a tracked hydraulic excavator, weighing 16,000 kg and having a bucket volume of 0.6 m3, are presented. From the set of possible generated variant solutions of the drive, obtained through the synthesis process based on the required torque and platform rotation speed, two extreme drive variants were selected for the analysis. In the first configuration, a hydraulic motor characterized by a low specific flow is combined with a three-stage reduction gear featuring a higher overall transmission ratio, whereas the second configuration integrates a high-specific-flow hydraulic motor with a two-stage reduction gear of a lower transmission ratio. The obtained results of the comparative analysis of the drive’s energy efficiency are presented depending on the change in the required torque and the rotational speed of the platform. Full article
(This article belongs to the Special Issue Components of Hydrostatic Drive Systems)
Show Figures

Figure 1

21 pages, 4791 KiB  
Article
Research on the Active Suspension Control Strategy of Multi-Axle Emergency Rescue Vehicles Based on the Inverse Position Solution of a Parallel Mechanism
by Qinghe Guo, Dingxuan Zhao, Yurong Chen, Shenghuai Wang, Hongxia Wang, Chen Wang and Renjun Liu
Vehicles 2025, 7(3), 69; https://doi.org/10.3390/vehicles7030069 - 9 Jul 2025
Viewed by 259
Abstract
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is [...] Read more.
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is proposed. First, the active suspension of the three-axle emergency rescue vehicle is grouped and interconnected within the group, and it is equivalently constructed into a 3-DOF parallel mechanism. Then, the displacement of each equivalent suspension actuating hydraulic cylinder is calculated by using the method of the inverse position solution of a parallel mechanism, and then the equivalent actuating hydraulic cylinder is reversely driven according to the displacement, thereby realizing the effective control of the attitude of the vehicle body. To verify the effectiveness of the proposed control strategy, a three-axis vehicle experimental platform integrating active suspension and hydro-pneumatic suspension was built, and a pulse road experiment and gravel pavement experiment were carried out and compared with hydro-pneumatic suspension. Both types of road experimental results show that compared to hydro-pneumatic suspension, the active suspension control strategy based on the inverse position solution of a parallel mechanism proposed in this paper exhibits different degrees of advantages in reducing the peak values of the vehicle vertical displacement, pitch angle, and roll angle changes, as well as suppressing various vibration accelerations, significantly improving the vehicle’s driving smoothness and handling stability. Full article
Show Figures

Figure 1

31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 270
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 1309 KiB  
Article
Load Weight Estimation in Electric Forklifts via DC–DC Converter Power Signal Analysis of the Electro-Hydraulic Lifting System
by Juan Pablo Acevedo, Cristian Monsalve, Samuel Vergara, Ricardo León, Rodrigo Barraza and Guillermo Ramírez
Appl. Sci. 2025, 15(13), 7470; https://doi.org/10.3390/app15137470 - 3 Jul 2025
Viewed by 361
Abstract
Electric forklifts are increasingly adopted in industrial environments due to their energy efficiency, reduced emissions, and lower operating noise compared to combustion alternatives. This paper presents a novel methodology for estimating the transported load weight in electric forklifts based on the output power [...] Read more.
Electric forklifts are increasingly adopted in industrial environments due to their energy efficiency, reduced emissions, and lower operating noise compared to combustion alternatives. This paper presents a novel methodology for estimating the transported load weight in electric forklifts based on the output power signal of the DC–DC converter driving the electro-hydraulic lifting system. The proposed method leverages non-intrusive measurements of voltage and current to compute the lifting power, lifting speed, and energy, also allowing the computation of the lifting efficiency. The analysis confirmed that lifting energy is not linearly correlated with transported weight but lifting efficiency can be reasonably approximated as a function of lifting power and lifting speed, subsequently allowing the estimation of the transported mass. Experimental validation using 53 lifting events demonstrated that the methodology can estimate load weight with a reasonable mean absolute percentage error of 10.6% and 6.4% when using linear or multivariable regression analysis, respectively. These results demonstrate that the approach is sufficiently accurate for practical applications such as triggering load warnings when the estimated mass exceeds predefined safety thresholds. Full article
Show Figures

Figure 1

23 pages, 3548 KiB  
Article
PSO-Based Robust Control of SISO Systems with Application to a Hydraulic Inverted Pendulum
by Michael G. Skarpetis, Nikolaos D. Kouvakas, Fotis N. Koumboulis and Marios Tsoukalas
Eng 2025, 6(7), 146; https://doi.org/10.3390/eng6070146 - 1 Jul 2025
Viewed by 369
Abstract
This work will present an algorithmic approach for robust control focusing on hydraulic–mechanical systems. The approach is applied to a hydraulic actuator driving a cart with an inverted pendulum. The algorithmic approach aims to satisfy two robust control requirements for single input single [...] Read more.
This work will present an algorithmic approach for robust control focusing on hydraulic–mechanical systems. The approach is applied to a hydraulic actuator driving a cart with an inverted pendulum. The algorithmic approach aims to satisfy two robust control requirements for single input single output (SISO) linear systems with nonlinear uncertain structure. The first control requirement is robust stabilization, and the second is robust asymptotic command following for arbitrary reference signals. The approach is analyzed in two stages. In the first stage, the stability regions of the controller parameters are identified. In the second stage, a Particle Swarm Optimization Algorithm (PSO) is applied to find suboptimal solutions for the controller parameters in these regions, with respect to a suitable performance cost function. The application of the approach to a hydraulic actuator, driving a cart with an inverted pendulum, satisfies the goal of achieving precise control of the pendulum angle, despite the system’s inherent physical uncertainties. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

Back to TopTop