Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Design of Experiment
2.2.1. Establishment of Runoff Plots
2.2.2. Experiment Process
2.3. Acquisition and Preprocessing of Experiment Data
2.3.1. Point Cloud Acquisition from TLS and Pre-Processing
2.3.2. Derivation of Morphological Parameters
- (1)
- Gully head retreat characteristic
- (2)
- Concavity index
- (3)
- Roughness characteristic of gully slope
2.3.3. Calculation of Soil Erosion, Deposition and Sediment Yield on Gully Slope
3. Results
3.1. Spatiotemporal Patterns of Soil Erosion Processes on the Gully Slope
3.1.1. Temporal Change Characteristics of Erosion and Sediment Yield
3.1.2. Spatial Variations of Soil Erosion and Sediment Deposition
3.2. Characteristics of Morphological Development on Gully Slope
3.2.1. Morphological Development of Gully Headcut Erosion
3.2.2. Alcove Expansion of Gully Slope
3.2.3. Roughness Characteristic of Gully Slope
3.3. The Relationship Between Soil Erosion and Morphological Characteristics on Gully Slope
4. Discussion
4.1. Monitoring and Quantification of Gully Erosion Processes
4.2. Spatial–Temporal Characteristics of Gully Erosion Morphology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Bian, S.; Ma, J.; Meng, X.; Shi, W.; Wu, J.; Zhang, Y.; Li, Y. Field experiment on the spatiotemporal evolution of soil moisture in a rainfall-induced loess landslide: Implications for early warning. J. Hydrol. 2024, 630, 130777. [Google Scholar] [CrossRef]
- Eekhout, J.; Vente, J. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Overeem, I.; Walling, D.; Syvitski, J.; Kettner, A.; Bookhagen, B.; Zhou, Y.; Zhang, T. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia. Science 2021, 374, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.; Panagos, P.; Lugato, E.; Yang, J.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, K.; Cen, Y.; Wang, P.; Xia, J. Effects of Grass Cover on the Overland Soil Erosion Mechanism Under Simulated Rainfall. Water Resour. Res. 2025, 61, e2023WR036888. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Guo, M.; Ding, W.; Zhang, C.; Liu, J.; Xu, W.; Tong, X.; Sun, B. Influences of vegetation types and near-surface characteristics on hydrodynamics and soil erosion of steep spoil heaps under rainfall and overland flow conditions. Soil Tillage Res. 2025, 247, 106378. [Google Scholar] [CrossRef]
- Yang, B.; Ma, X.; Jiao, J.; Zhao, W.; Lin, Q.; Li, J.; Zhang, X. Magnitude and hotspots of soil erosion types during heavy rainstorm events on the Loess Plateau: Implications for watershed management. Catena 2024, 246, 108365. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Lou, Y.; Zhu, Y.; Wei, J.; Wang, W.; Guo, M.; Kang, H.; Feng, L.; Yang, H. Effects of vegetation on runoff hydrodynamics and erosion morphologies in headcut erosion processes in the loess tableland region. Water Resour. Res. 2025, 61, 38274. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, Z.; Li, Z. Soil erosion and controls in the slope-gully system of the loess plateau of China: A review. Front. Environ. Sci. 2021, 9, 657030. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, W.; Guo, M.; Chen, Z.; Feng, L.; Zhao, M.; Xiao, H. The impact of flow discharge on the hydraulic characteristics of headcut erosion processes in the gully region of the Loess Plateau. Hydrol. Process. 2020, 34, 718–729. [Google Scholar] [CrossRef]
- Bennett, S.; Casalí, J. Effect of initial step height on headcut development in upland concentrated flows. Water Resour. Res. 2001, 37, 1475–1484. [Google Scholar] [CrossRef]
- Sadeghian, N.; Vaezi, A.; Majnooniheris, A.; Cerdà, A. Soil physical degradation and rill detachment by raindrop impact in semi-arid region. Catena 2021, 207, 105603. [Google Scholar] [CrossRef]
- Babazadeh, H.; Ashourian, M.; Shafai-Bajestan, M. Experimental study of headcut erosion in cohesive soils under different consolidation types and hydraulic parameters. Environ. Earth Sci. 2017, 76, 438. [Google Scholar] [CrossRef]
- Cai, Q. Relationship of sediment production between hillslope and gully slope in a small basin in the hilly loess region, north China. Int. J. Sediment. Res. 1997, 12, 353–359. [Google Scholar]
- Castillo, C.; Gómez, J. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van, M.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Rodrigues, B.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Gao, C.; Li, P.; Hu, J.; Yan, L.; Latifi, H.; Yao, W.; Hao, M.; Gao, J.; Dang, T.; Zhang, S. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning. Remote Sens. Environ. 2021, 265, 112683. [Google Scholar] [CrossRef]
- Li, P.; Hao, M.; Hu, J.; Gao, C.; Zhao, G.; Chan, F.; Gao, J.; Dang, T.; Mu, X. Spatiotemporal patterns of hillslope erosion investigated based on field scouring experiments and terrestrial laser scanning. Remote Sens. 2021, 13, 1674. [Google Scholar] [CrossRef]
- Eltner, A.; Maas, H.G.; Faust, D. Soil micro-topography change detection at hillslopes in fragile Mediterranean landscapes. Geoderma 2018, 313, 217–232. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, D.; Su, Z.; Duan, X.; Lu, X.; Zhang, S.; Yuan, Y. The influences of mass failure on the erosion and hydraulic processes of gully headcuts based on an in situ scouring experiment in a dry-hot valley of China. Catena 2019, 176, 14–25. [Google Scholar] [CrossRef]
- Collison, A.J.C. The cycle of instability: Stress release and fissure flow as controls on gully head retreat. Hydrol. Process. 2001, 15, 3–12. [Google Scholar] [CrossRef]
- Kang, H.; Wang, W.; Guo, M.; Li, J.; Chen, Z.; Lou, Y.; Guo, W.; Xiao, H. Headwall scour hole erosion and overhanging mass collapse play critical roles in gully head retreat on grassland under surface flow. Geomorphology 2022, 411, 108301. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, D.; Peng, H.; Fan, J.; Xiong, D.; Liu, G. Experimental study on the development of collapse of overhanging layers of gully in Yuanmou Valley, China. Catena 2013, 109, 177–185. [Google Scholar] [CrossRef]
- Gao, C.; Li, P.; Yang, X.; Hu, J.; Bai, X.; Yao, W.; Li, D.; Latifi, H.; Gao, J.; Dang, T.; et al. 3D investigation of gully headcut processes: A slicing segmentation based on filed scouring experiments and laser scanning. J. Hydrol. 2024, 638, 131497. [Google Scholar] [CrossRef]
- Stein, O.; LaTray, D. Experiments and modeling of head cut migration instratified soils. Water Resour. Res. 2002, 38, 20–21. [Google Scholar] [CrossRef]
- Guo, W.; Xu, X.; Wang, W.; Liu, Y.; Guo, M.; Cui, Z. Rainfall-triggered mass movements on steep loess slopes and their entrainment and distribution. Catena 2019, 183, 104238. [Google Scholar] [CrossRef]
- Barnes, N.; Luffman, I.; Nandi, A. Gully erosion and freeze-thaw processes in clayrich soils, northeast Tennessee, USA. GeoResJ 2016, 9, 67–76. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.; Gyssels, G. Short-term bank gully retreat rates in Mediterranean environments. Catena 2001, 44, 133–161. [Google Scholar] [CrossRef]
- Zhu, T. Gully and tunnel erosion in the hilly loess plateau region, China. Geomorphology 2012, 153, 144–155. [Google Scholar] [CrossRef]
- Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Ulrich, V.; Williams, J.; Zahs, V.; Anders, K.; Hfle, B. Disaggregating surface change mechanisms of a rock glacier using terrestrial laser scanning point clouds acquired at different time scales. Earth Surf. Dynam. 2020, 9, 19–28. [Google Scholar] [CrossRef]
- Qin, C.; Zheng, F.; Zhang, X.; Xu, X.; Liu, G. A laboratory study of rill bed incision processes in upland concentrated flows. Catena 2018, 165, 310–319. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lv, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, X.; Hu, Y. Study on the pattern of rural distinctive ecoeconomy based on land resources: A case study of Suide county in loess hilly areas. Nat. Resour. J. 2006, 21, 738–745. [Google Scholar]
- Yang, F.; Pan, C. Effects of Perennial Grassland on Soil and Water Conservation in Hilly Region of Loess Plateau. Bull. Soil Water Conserv. 2016, 36, 300–306. [Google Scholar]
- Yan, L.; Bai, X.; Li, P.; Li, C.; Hu, J.; Li, D.; Yang, X.; Liu, L.; Gao, J.; Dang, T. A multifactorial study of mass movement in the hilly and gully Loess Plateau based on intensive field surveys and remote sensing techniques. Sci. Total Environ. 2024, 924, 171628. [Google Scholar] [CrossRef]
- Wang, L. Runoff-Sediment Coupling Mechanism of Different Geomorphic Unit in the Loess Hilly-Gully Region; Northwest Agricultural and Forestry University: Yangling, China, 2017. [Google Scholar]
- Su, Z.; Xiong, D.; Dong, Y.; Li, J.; Yang, D.; Zhang, J.; He, G. Simulated headward erosion of bank gullies in the Dry-hot Valley Region of southwest China. Geomorphology 2014, 204, 532–541. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Wu, X.; Chen, S.; Zhang, N. Fractal characteristics of overburden fissures in shallow thick coal seam mining in loess gully areas. PLoS ONE 2022, 17, e0274209. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Qin, F.; Zhang, B.; Wang, H.; Luo, M.; Shu, C.; Liu, H.; Liu, G. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-Hot Valley. Geomorphology 2015, 228, 703–713. [Google Scholar] [CrossRef]
- Tarolli, P.; Cavalli, M.; Masin, R. High-resolution morphologic characterization of conservation agriculture. Catena 2019, 172, 846–856. [Google Scholar] [CrossRef]
- Markus, H.; Christoph, A.; Bernhard, H.; Klaus, S.; Wolfgang, W. Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data. Remote Sens. 2011, 3, 503–523. [Google Scholar]
- Cox, S.; Doncaster, D.; Godfrey, P.; Londe, M. Aerial and terrestrial-based monitoring of channel erosion, headcutting, and sinuosity. Environ. Monit. Assess. 2018, 190, 717. [Google Scholar] [CrossRef]
- Vericat, D.; Smith, M.; Brasington, J. Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys. Catena 2014, 120, 164–176. [Google Scholar] [CrossRef]
- Li, P.; Ren, F.; Hu, J.; Yan, L.; Hao, M.; Liu, L.; Gao, J.; Dang, T. Monitoring soil erosion on field slopes by terrestrial laser scanning and structure-from-motion. Land Degrad. Dev. 2023, 34, 3663–3680. [Google Scholar] [CrossRef]
- Cândido, B.; James, M.; Quinton, J.; Lima, W.; Sliva, M. Sediment source and volume of soil erosion in a gully system using UAV photogrammetry. Rev. Bras. Ciênc. Solo 2020, 44, e0200076. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, G.; Geng, R.; Wang, H. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology 2015, 248, 264–272. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, D.; Zhang, G.; Zhang, S.; Han, W.; Yang, D.; Xiao, L.; Dong, Y.; Su, Z.; Lu, X. Impacts of headcut height on flow energy, sediment yield and surface landform during bank gully erosion processes in the Yuanmou Dry-Hot Valley region, Southwest China. Earth Surf. Process. Landf. 2018, 43, 2271–2282. [Google Scholar] [CrossRef]
- Burkard, M.; Kostaschuk, R. Initiation and evolution of gullies along the shoreline of Lake Huron. Geomorphology 1995, 14, 211–219. [Google Scholar] [CrossRef]
- Kang, H.; Wang, W.; Guo, M.; Li, J.; Shi, Q. How does land use/cover influence gully head retreat rates? An in-situ simulation experiment of rainfall and upstream inflow in the gullied loess region, China. Land Degrad. Dev. 2021, 32, 2789–2804. [Google Scholar] [CrossRef]
- Bradford, J.; Piest, R.; Spomer, R. Failure sequence of gully headwalls in Western Iowa. Soil Sci. Soc. Am. J. 1978, 42, 323–328. [Google Scholar] [CrossRef]
- Guo, M.; Lou, Y.; Chen, Z.; Wang, W.; Feng, L.; Zhang, X. The proportion of jet flow and on-wall flow and its effects on soil loss and plunge pool morphology during gully headcut erosion. J. Hydrol. 2021, 598, 126220. [Google Scholar] [CrossRef]
- Su, Z.; Xiong, D.; Dong, Y.; Zhang, B.; Zhang, S.; Zheng, X.; Yang, D.; Zhang, J.; Fan, J.; Fang, H. Hydraulic properties of concentrated flow of a bank gully in the dryhot valley region of southwest China. Earth Surf. Process. Landf. 2015, 40, 1351–1363. [Google Scholar] [CrossRef]
- Guo, M.; Wang, W.; Shi, Q.; Chen, T.; Li, J. An experimental study on the effects of grass root density on gully headcut erosion in the gully region of China’s Loess Plateau. Land Degrad. Dev. 2019, 30, 2107–2125. [Google Scholar] [CrossRef]
- de Oliveira, M. Towards the integration of subsurface flow and overland flow in gully head extension: Issues from a conceptual model for gully erosion evolution. S. Afr. Geogr. J. 1997, 79, 120–128. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Z.; Wang, W.; Wang, T.; Shi, Q.; Kang, H.; Zhao, M.; Feng, L. Spatial-temporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions. Hydrol. Earth Syst. Sci. 2020, 25, 4473–4494. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, X.; Huang, J.; Yang, J.; Xiong, D.; Yang, C.; Yi, G. The validation of a gully headcut retreat model in short-term scale based on an in-situ experiment in dry-hot valley. J. Soils Sediments 2021, 21, 2228–2239. [Google Scholar] [CrossRef]
- Yuan, S.; Fan, W.; Jiang, C.; Chang, Y.; Zheng, W. Active Gully Head Erosion Rates Characteristics on the Loess Plateau: InSAR- Based Calculation and Response to Extreme Rainfall. Land Degrad. Dev. 2024, 36, 249–264. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Y.; Zhao, Y.; Deng, J. Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China. Sci. Total Environ. 2020, 739, 140066. [Google Scholar] [CrossRef]
- López-Vicente, M.; Quijano, L.; Gaspar, L.; Palazón, L.; Navas, A. Severe soil erosion during a 3-day exceptional rainfall event: Combining modelling and field data for a fallow cereal field. Hydrol. Process. 2015, 29, 2358–2372. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, J.; Yan, X.; Li, J.; Vanmaercke, M.; Wang, N. Response of gully morphology and density to the spatial and rainy-season monthly variation of rainfall at the regional scale of the Chinese Loess Plateau. Catena 2024, 236, 107773. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Li, K.; Zhang, Z.; Chen, C. Gully internal erosion triggered by a prolonged heavy rainfall event in the tableland region of China’s Loess Plateau. Int. Soil Water Conserv. Res. 2023, 11, 610–621. [Google Scholar] [CrossRef]
- Zhang, J.M.; Luo, Y.; Zhou, Z.; Chong, L.; Victor, C.; Zhang, Y.F. Effects of preferential flow induced by desiccation cracks on slope stability. Eng. Geol. 2021, 288, 106164. [Google Scholar] [CrossRef]
Variable | Discharge (L/min) | V | Fd | S | CIc | CIv | Roughness |
---|---|---|---|---|---|---|---|
Erosion | 25 | 0.11 | 0.89 * | 0.97 ** | 0.97 ** | 0.42 | 0.99 ** |
40 | <0.01 | 0.02 | 0.98 ** | 0.81 | 0.61 | 0.99 ** | |
55 | 0.04 | 0.75 | 0.99 ** | 0.84 | 0.76 | 0.98 ** | |
70 | 0.41 | 0.79 | 0.99 ** | 0.42 | 0.36 | 0.95 * | |
85 | 0.75 | 0.47 | 0.99 ** | 0.92 * | 0.88 * | 0.64 | |
Sediment yield | 25 | 0.12 | 0.89 * | 0.97 ** | 0.97 ** | 0.42 | 0.99 ** |
40 | <0.01 | 0.02 | 0.98 ** | 0.82 | 0.61 | 0.99 ** | |
55 | 0.04 | 0.75 | 0.99 ** | 0.84 | 0.76 | 0.98 ** | |
70 | 0.41 | 0.78 | 0.99 ** | 0.42 | 0.36 | 0.96 * | |
85 | 0.75 | 0.47 | 0.99 ** | 0.92 * | 0.88 * | 0.64 | |
Deposition | 25 | 0.04 | 0.90 * | 0.59 | 0.70 | 0.65 | 0.59 |
40 | 0.08 | 0.36 | 0.67 | 0.15 | 0.02 | 0.59 | |
55 | 0.09 | 0.79 | 0.96 ** | 0.87 | 0.73 | 0.93 * | |
70 | 0.27 | 0.88 | 0.96 * | 0.19 | 0.36 | 0.76 | |
85 | 0.14 | 0.81 | 0.08 | 0.20 | 0.21 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; He, Y.; Huang, K.; Li, P.; Li, S.; Yan, L.; Tang, B. Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau. Remote Sens. 2025, 17, 2710. https://doi.org/10.3390/rs17152710
Hu J, He Y, Huang K, Li P, Li S, Yan L, Tang B. Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau. Remote Sensing. 2025; 17(15):2710. https://doi.org/10.3390/rs17152710
Chicago/Turabian StyleHu, Jinfei, Yifan He, Keyao Huang, Pengfei Li, Shugang Li, Lu Yan, and Bingzhe Tang. 2025. "Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau" Remote Sensing 17, no. 15: 2710. https://doi.org/10.3390/rs17152710
APA StyleHu, J., He, Y., Huang, K., Li, P., Li, S., Yan, L., & Tang, B. (2025). Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau. Remote Sensing, 17(15), 2710. https://doi.org/10.3390/rs17152710