Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (753)

Search Parameters:
Keywords = hybrid nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3641 KiB  
Article
Metallic Lanthanum (III) Hybrid Magnetic Nanocellulose Composites for Enhanced DNA Capture via Rare-Earth Coordination Chemistry
by Jiayao Yang, Jie Fei, Hongpeng Wang and Ye Li
Inorganics 2025, 13(8), 257; https://doi.org/10.3390/inorganics13080257 - 1 Aug 2025
Viewed by 125
Abstract
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen [...] Read more.
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen (P/N) ligand separation. The hybrid material employs the adaptable coordination geometry and strong affinity for oxygen of La3+ ions to show enhanced DNA-binding capacity via multi-site coordination with phosphate backbones and bases. This study utilized cellulose as a carrier, which was modified through carboxylation and amination processes employing deep eutectic solvents (DES) and polyethyleneimine. Magnetic nanoparticles and La(OH)3 were subsequently incorporated into the cellulose via in situ growth. NNC@Fe3O4@La(OH)3 showed a specific surface area of 36.2 m2·g−1 and a magnetic saturation intensity of 37 emu/g, facilitating the formation of ligands with accessible La3+ active sites, hence creating mesoporous interfaces that allow for fast separation. NNC@Fe3O4@La(OH)3 showed a significant affinity for DNA, with adsorption capacities reaching 243 mg/g, mostly due to the multistage coordination binding of La3+ to the phosphate groups and bases of DNA. Simultaneously, kinetic experiments indicated that the binding process adhered to a pseudo-secondary kinetic model, predominantly dependent on chemisorption. This study developed a unique rare-earth coordination-driven functional hybrid material, which is highly significant for constructing selective separation platforms for P/N-containing ligands. Full article
Show Figures

Graphical abstract

2 pages, 140 KiB  
Editorial
Heterogeneous Photocatalysts Based on Nanocomposites
by Jianjun Yang, Bo Weng and Cong Wang
Nanomaterials 2025, 15(15), 1171; https://doi.org/10.3390/nano15151171 - 30 Jul 2025
Viewed by 128
Abstract
Around a decade ago, several reviews on nanocomposite photocatalysts were published [...] Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites)
23 pages, 36719 KiB  
Article
The Impact of Hybrid Bionanomaterials Based on Gold Nanoparticles on Liver Injury in an Experimental Model of Thioacetamide-Induced Hepatopathy
by Mara Filip, Simona Valeria Clichici, Mara Muntean, Luminița David, Bianca Moldovan, Vlad Alexandru Toma, Cezar Login and Şoimița Mihaela Suciu
Biomolecules 2025, 15(8), 1068; https://doi.org/10.3390/biom15081068 - 24 Jul 2025
Viewed by 247
Abstract
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. [...] Read more.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. extract as a reducing and capping agent (NPCS), and were then mixed with Vaccinium myrtillus L. (VL) extract in order to achieve a final mixture with enhanced properties (NPCS-VL). NPCSs were characterized using UV–vis spectrophotometry and transmission electron microscopy (TEM), which demonstrated the formation of spherical, stable gold nanoparticles with an average diameter of 20 nm. NPCS-VL’s hepatoprotective effects were evaluated through an analysis of oxidative stress, inflammation, hepatic cytolysis, histology assays, and TEM in comparison to silymarin on an animal model of thioacetamide (TAA)-induced toxic hepatitis. TAA administration determined hepatotoxicity, as it triggered redox imbalance, increased proinflammatory cytokine levels and alanine aminotransferase (ALAT) activity, and induced morphological and ultrastructural changes characteristic of liver fibrosis. In rats treated with NPCS-VL, all these pathological processes were attenuated, suggesting a potential antifibrotic effect of this hybrid bionanomaterial. Full article
Show Figures

Figure 1

27 pages, 3540 KiB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 259
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

63 pages, 4971 KiB  
Review
Electrochemical Nanosensors Applied to the Assay of Some Food Components—A Review
by Aurelia Magdalena Pisoschi, Florin Iordache, Loredana Stanca, Petronela Mihaela Rosu, Nicoleta Ciocirlie, Ovidiu Ionut Geicu, Liviu Bilteanu and Andreea Iren Serban
Chemosensors 2025, 13(8), 272; https://doi.org/10.3390/chemosensors13080272 - 23 Jul 2025
Viewed by 573
Abstract
Nanomaterials’ special features enable their extensive application in chemical and biochemical nanosensors for food assays; food packaging; environmental, medicinal, and pharmaceutical applications; and photoelectronics. The analytical strategies based on novel nanomaterials have proved their pivotal role and increasing interest in the assay of [...] Read more.
Nanomaterials’ special features enable their extensive application in chemical and biochemical nanosensors for food assays; food packaging; environmental, medicinal, and pharmaceutical applications; and photoelectronics. The analytical strategies based on novel nanomaterials have proved their pivotal role and increasing interest in the assay of key food components. The choice of transducer is pivotal for promoting the performance of electrochemical sensors. Electrochemical nano-transducers provide a large active surface area, enabling improved sensitivity, specificity, fast assay, precision, accuracy, and reproducibility, over the analytical range of interest, when compared to traditional sensors. Synthetic routes encompass physical techniques in general based on top–down approaches, chemical methods mainly relying on bottom–up approaches, or green technologies. Hybrid techniques such as electrochemical pathways or photochemical reduction are also applied. Electrochemical nanocomposite sensors relying on conducting polymers are amenable to performance improvement, achieved by integrating redox mediators, conductive hydrogels, and molecular imprinting polymers. Carbon-based or metal-based nanoparticles are used in combination with ionic liquids, enhancing conductivity and electron transfer. The composites may be prepared using a plethora of combinations of carbon-based, metal-based, or organic-based nanomaterials, promoting a high electrocatalytic response, and can accommodate biorecognition elements for increased specificity. Nanomaterials can function as pivotal components in electrochemical (bio)sensors applied to food assays, aiming at the analysis of bioactives, nutrients, food additives, and contaminants. Given the broad range of transducer types, detection modes, and targeted analytes, it is important to discuss the analytical performance and applicability of such nanosensors. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

12 pages, 11599 KiB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Viewed by 230
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

15 pages, 7497 KiB  
Article
Hydrogel-Shielded Ellagic Acid Nanoparticles Prolong Colonic Retention and Mitigate DSS-Induced Colitis via Reactive Oxygen Species Scavenging
by Ximei Ye, Tao Chen, Lihang Chen, Di Wu, Yinan Du and Jiangning Hu
Foods 2025, 14(15), 2559; https://doi.org/10.3390/foods14152559 - 22 Jul 2025
Viewed by 252
Abstract
Inflammatory bowel disease (IBD) is characterized by oxidative stress imbalance and intestinal barrier disruption. Reducing excessive ROS has become a promising therapeutic strategy. Compared with conventional polyphenols, nanomaterials offer greater stability and bioavailability for ROS scavenging. Here, ellagic acid (EA) was converted into [...] Read more.
Inflammatory bowel disease (IBD) is characterized by oxidative stress imbalance and intestinal barrier disruption. Reducing excessive ROS has become a promising therapeutic strategy. Compared with conventional polyphenols, nanomaterials offer greater stability and bioavailability for ROS scavenging. Here, ellagic acid (EA) was converted into uniform nanoparticles (EAs) with reactive oxygen scavenging capacity through horseradish peroxidase (HRP)-mediated oxidative polymerization and subsequently encapsulated in the anti-gastric acid hydrogel F-DP to obtain the hybrid system F-DP@EAs. EAs reduced ROS, MDA, NO, IL-1β, and TNF-α levels in vitro, while increasing IL-4 and IL-10 expression, thus alleviating inflammation. Herein, F-DP@EAs prolonged intestinal retention time and exerted superior protective effects in the DSS-induced colitis model. Oral F-DP@EAs lowered DAI, preserved colon length, increased glutathione (GSH) and superoxide dismutase (SOD), decreased NO and MDA, restored zonula occludens-1 (ZO-1), and reduced mucosal lesions. These findings demonstrate that combining nanoparticle and hydrogel technologies markedly enhances the preventive and protective efficacy of EA, highlighting F-DP@EAs as a promising candidate for future IBD therapy. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

33 pages, 5344 KiB  
Review
Graphene–Bacteriophage Hybrid Nanomaterials for Specific and Rapid Electrochemical Detection of Pathogenic Bacteria
by José M. Campiña, António F. Silva and Carlos M. Pereira
Biosensors 2025, 15(7), 467; https://doi.org/10.3390/bios15070467 - 19 Jul 2025
Viewed by 463
Abstract
Efficient and rapid detection of bacterial pathogens is crucial for food safety and effective disease control. While conventional methods such as PCR and ELISA are accurate, they are time-consuming, costly, and often require specialized infrastructure. Recently, electrochemical biosensors integrating graphene nanomaterials with bacteriophages—termed [...] Read more.
Efficient and rapid detection of bacterial pathogens is crucial for food safety and effective disease control. While conventional methods such as PCR and ELISA are accurate, they are time-consuming, costly, and often require specialized infrastructure. Recently, electrochemical biosensors integrating graphene nanomaterials with bacteriophages—termed graphages—have emerged as promising platforms for pathogen detection, offering fast, specific, and highly responsive detection. This review critically examines all electrochemical biosensors reported to date that utilize graphene–phage hybrids. Key aspects addressed include the types of graphene nanomaterials and bacteriophages used, immobilization strategies, electrochemical transduction mechanisms, and sensor metrics—such as detection limits, linear ranges, and ability to perform in real matrices. Particular attention is given to the role of phage orientation, surface functionalization, and the use of receptor binding proteins. Finally, current limitations and opportunities for future research are outlined, including prospects for genetic engineering and sensor miniaturization. This review serves as a comprehensive reference for researchers developing phage-based biosensors, especially those interested in integrating carbon nanomaterials for improved electroanalytical performance. Full article
(This article belongs to the Special Issue Biosensors for Food Safety)
Show Figures

Figure 1

20 pages, 1303 KiB  
Review
The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
by Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar and Helgi B. Schiöth
Biosensors 2025, 15(7), 451; https://doi.org/10.3390/bios15070451 - 14 Jul 2025
Viewed by 453
Abstract
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent [...] Read more.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption. Full article
Show Figures

Graphical abstract

46 pages, 3177 KiB  
Review
Recent Advancements in Lateral Flow Assays for Food Mycotoxin Detection: A Review of Nanoparticle-Based Methods and Innovations
by Gayathree Thenuwara, Perveen Akhtar, Bilal Javed, Baljit Singh, Hugh J. Byrne and Furong Tian
Toxins 2025, 17(7), 348; https://doi.org/10.3390/toxins17070348 - 11 Jul 2025
Viewed by 626
Abstract
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, [...] Read more.
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective. Lateral flow assays (LFAs) are a pivotal technology in POCT due to their simplicity, rapidity, and ease of use. This review synthesizes data from 78 peer-reviewed studies published between 2015 and 2024, evaluating advances in nanoparticle-based LFAs for detection of singular or multiplex mycotoxin types. Gold nanoparticles (AuNPs) remain the most widely used, due to their favorable optical and surface chemistry; however, significant progress has also been made with silver nanoparticles (AgNPs), magnetic nanoparticles, quantum dots (QDs), nanozymes, and hybrid nanostructures. The integration of multifunctional nanomaterials has enhanced assay sensitivity, specificity, and operational usability, with innovations including smartphone-based readers, signal amplification strategies, and supplementary technologies such as surface-enhanced Raman spectroscopy (SERS). While most singular LFAs achieved moderate sensitivity (0.001–1 ng/mL), only 6% reached ultra-sensitive detection (<0.001 ng/mL), and no significant improvement was evident over time (ρ = −0.162, p = 0.261). In contrast, multiplex assays demonstrated clear performance gains post-2022 (ρ = −0.357, p = 0.0008), largely driven by system-level optimization and advanced nanomaterials. Importantly, the type of sample matrix (e.g., cereals, dairy, feed) did not significantly influence the analytical sensitivity of singular or multiplex lateral LFAs (Kruskal–Wallis p > 0.05), confirming the matrix-independence of these optimized platforms. While analytical challenges remain for complex targets like fumonisins and deoxynivalenol (DON), ongoing innovations in signal amplification, biorecognition chemistry, and assay standardization are driving LFAs toward becoming reliable, ultra-sensitive, and field-deployable platforms for high-throughput mycotoxin screening in global food safety surveillance. Full article
Show Figures

Graphical abstract

21 pages, 3397 KiB  
Article
Numerical Optimization of Multi-Stage Thermoelectric Cooling Systems Using Bi2Te3 for Enhanced Cryosurgical Applications
by Akram Kharmouch, Md. Kamrul Hasan, El Yatim Sabik, Hicham Bouali, Hayati Mamur and Mohammad Ruhul Amin Bhuiyan
Thermo 2025, 5(3), 22; https://doi.org/10.3390/thermo5030022 - 11 Jul 2025
Viewed by 398
Abstract
Cryosurgery employs extremely low temperatures to destroy abnormal or cancerous tissue. Conventional systems use cryogenic fluids like liquid nitrogen or argon, which pose challenges in handling, cost, and precise temperature control. This study explores thermoelectric (TE) cooling using the Peltier effect as an [...] Read more.
Cryosurgery employs extremely low temperatures to destroy abnormal or cancerous tissue. Conventional systems use cryogenic fluids like liquid nitrogen or argon, which pose challenges in handling, cost, and precise temperature control. This study explores thermoelectric (TE) cooling using the Peltier effect as an efficient alternative. A numerical optimization of multi-stage TE coolers using bismuth telluride (Bi2Te3) is performed through finite element analysis in COMSOL Multiphysics. Results show that the optimized multi-stage TE system achieves a minimum temperature of −70 °C, a 90 K temperature difference, and 4.0 W cooling power—outperforming single-stage (SS) systems with a maximum ΔT of 73.27 K. The study also investigates the effects of material properties, current density, and geometry on performance. An optimized multi-stage (MS) configuration improves cooling efficiency by 22.8%, demonstrating the potential of TE devices as compact, energy-efficient, and precise solutions for cryosurgical applications. Future work will explore advanced nanomaterials and hybrid systems to further improve performance in biomedical cooling. Full article
Show Figures

Figure 1

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 404
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

23 pages, 3823 KiB  
Review
Electrochemical Strategies for MicroRNA Quantification Leveraging Amplification and Nanomaterials: A Review
by Alexander Hunt and Gymama Slaughter
Chemosensors 2025, 13(7), 242; https://doi.org/10.3390/chemosensors13070242 - 6 Jul 2025
Viewed by 537
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have emerged as critical biomarkers in various diseases, including cancer. Their stability in bodily fluids and role as oncogenes or tumor suppressors make them attractive targets for non-invasive diagnostics. However, conventional detection [...] Read more.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have emerged as critical biomarkers in various diseases, including cancer. Their stability in bodily fluids and role as oncogenes or tumor suppressors make them attractive targets for non-invasive diagnostics. However, conventional detection methods, such as Northern blotting, RT-PCR, and microarrays, are limited by low sensitivity, lengthy protocols, and limited specificity. Electrochemical biosensors offer a promising alternative, providing high sensitivity, rapid response times, portability, and cost-effectiveness. These biosensors translate miRNA hybridization events into quantifiable electrochemical signals, often leveraging redox-active labels, mediators, or intercalators. Recent advancements in nanomaterials and signal amplification strategies have further enhanced detection capabilities, enabling sensitive, label-free miRNA quantification. This review provides a comprehensive overview of the recent advances in electrochemical biosensing of miRNAs, emphasizing innovative redox-based detection strategies, probe immobilization techniques, and hybridization modalities. The critical challenges and future perspectives in advancing electrochemical miRNA biosensors toward clinical translation and point-of-care diagnostics are discussed. Full article
Show Figures

Figure 1

21 pages, 3395 KiB  
Review
Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review
by Joydip Sengupta and Chaudhery Mustansar Hussain
Nanomaterials 2025, 15(13), 1044; https://doi.org/10.3390/nano15131044 - 5 Jul 2025
Viewed by 1008
Abstract
Over the past two decades, titanium dioxide nanotubes (TiO2 NTs) have gained considerable attention as multifunctional materials in sensing technologies. Their large surface area, adjustable morphology, chemical stability, and photoactivity have positioned them as promising candidates for diverse sensor applications. This review [...] Read more.
Over the past two decades, titanium dioxide nanotubes (TiO2 NTs) have gained considerable attention as multifunctional materials in sensing technologies. Their large surface area, adjustable morphology, chemical stability, and photoactivity have positioned them as promising candidates for diverse sensor applications. This review presents a broad overview of the development of TiO2 NTs in sensing technologies for medical diagnostics over the last two decades. It further explores strategies for enhancing their sensing capabilities through structural modifications and hybridization with nanomaterials. Despite notable advancements, challenges such as device scalability, long-term operational stability, and fabrication reproducibility remain. This review outlines the evolution of TiO2 NT-based sensors for medical diagnostics, highlighting both foundational progress and emerging trends, while providing insights into future directions for their practical implementation across scientific and industrial domains. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Graphical abstract

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1468
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

Back to TopTop