Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = home grid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 (registering DOI) - 1 Aug 2025
Viewed by 126
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

12 pages, 3315 KiB  
Article
NeRF-RE: An Improved Neural Radiance Field Model Based on Object Removal and Efficient Reconstruction
by Ziyang Li, Yongjian Huai, Qingkuo Meng and Shiquan Dong
Information 2025, 16(8), 654; https://doi.org/10.3390/info16080654 - 31 Jul 2025
Viewed by 145
Abstract
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study [...] Read more.
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study introduces a 3D scene reconstruction and rendering strategy based on implicit neural representation through the efficient and removable neural radiation fields model (NeRF-RE). Leveraging neural radiance fields (NeRF), the model incorporates a multi-resolution hash grid and proposal network to improve training efficiency and modeling accuracy, while integrating a segment-anything model to safeguard public privacy. Take the crabapple tree, extensively utilized in urban garden design across temperate regions of the Northern Hemisphere. A dataset comprising 660 images of crabapple trees exhibiting three distinct geometric forms is collected to assess the NeRF-RE model’s performance. The results demonstrated that the ‘harvest gold’ crabapple scene had the highest reconstruction accuracy, with PSNR, LPIPS and SSIM of 24.80 dB, 0.34 and 0.74, respectively. Compared to the Mip-NeRF 360 model, the NeRF-RE model not only showed an up to 21-fold increase in training efficiency for three types of crabapple trees, but also exhibited a less pronounced impact of dataset size on reconstruction accuracy. This study reconstructs real scenes with high fidelity using virtual reality technology. It not only facilitates people’s personal enjoyment of the beauty of natural gardens at home, but also makes certain contributions to the publicity and promotion of urban landscapes. Full article
(This article belongs to the Special Issue Extended Reality and Its Applications)
Show Figures

Figure 1

17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 219
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

14 pages, 1494 KiB  
Article
The Thermal Niche of the Koala (Phascolarctos cinereus): Spatial Dynamics of Home Range and Microclimate
by Dalene Adam, Carla L. Archibald, Benjamin J. Barth, Sean I. FitzGibbon, Alistair Melzer, Amber K. Gillett, Stephen D. Johnston, Lyn Beard and William A. Ellis
Animals 2025, 15(15), 2198; https://doi.org/10.3390/ani15152198 - 25 Jul 2025
Viewed by 226
Abstract
The koala (Phascolarctos cinereus) is recognised as threatened across two thirds of its distribution and identified as particularly susceptible to climate change. The aim of this study was to assess the spatio-temporal variation in microclimate across koala home ranges and determine [...] Read more.
The koala (Phascolarctos cinereus) is recognised as threatened across two thirds of its distribution and identified as particularly susceptible to climate change. The aim of this study was to assess the spatio-temporal variation in microclimate across koala home ranges and determine any tendency for koalas to exploit this variability. Temperature data loggers were set out in a grid pattern across the study site on St Bees Island, Queensland. Resident koalas were collared with GPS units recording location at night or during the day. Our results revealed that temperature variation across the landscape was greatest on the hottest days (~10 °C). During the day, koalas were found in areas of the landscape that recorded lower daytime temperatures, and during the night, they were found in areas that recorded the highest daytime temperatures. We postulate that koalas avoided the hottest areas of their range during summer days and were more likely to use cooler non-fodder trees but utilised them at night because these areas corresponded with the location of fodder trees. From our results, we suggest that the microclimate of non-fodder trees both (a) explains their selection by koalas during the day and (b) highlights their importance to koala persistence, in addition to the known fodder species. Full article
(This article belongs to the Special Issue Koalas Management: Ecology and Conservation)
Show Figures

Figure 1

22 pages, 1329 KiB  
Review
Visual Field Examinations for Retinal Diseases: A Narrative Review
by Ko Eun Kim and Seong Joon Ahn
J. Clin. Med. 2025, 14(15), 5266; https://doi.org/10.3390/jcm14155266 - 25 Jul 2025
Viewed by 222
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal [...] Read more.
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease. Full article
(This article belongs to the Special Issue New Advances in Retinal Diseases)
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

27 pages, 4651 KiB  
Article
Thermal Infrared UAV Applications for Spatially Explicit Wildlife Occupancy Modeling
by Eve Bohnett, Babu Ram Lamichanne, Surendra Chaudhary, Kapil Pokhrel, Giavanna Dorman, Axel Flores, Rebecca Lewison, Fang Qiu, Doug Stow and Li An
Land 2025, 14(7), 1461; https://doi.org/10.3390/land14071461 - 14 Jul 2025
Viewed by 459
Abstract
Assessing the impact of community-based conservation programs on wildlife biodiversity remains a significant challenge. This pilot study was designed to develop and demonstrate a scalable, spatially explicit workflow using thermal infrared (TIR) imagery and unmanned aerial vehicles (UAVs) for non-invasive biodiversity monitoring. Conducted [...] Read more.
Assessing the impact of community-based conservation programs on wildlife biodiversity remains a significant challenge. This pilot study was designed to develop and demonstrate a scalable, spatially explicit workflow using thermal infrared (TIR) imagery and unmanned aerial vehicles (UAVs) for non-invasive biodiversity monitoring. Conducted in a 2-hectare grassland area in Chitwan, Nepal, the study applied TIR-based grid sampling and multi-species occupancy models with thin-plate splines to evaluate how species detection and richness might vary between (1) morning and evening UAV flights, and (2) the Chitwan National Park and Kumroj Community Forest. While the small sample area inherently limits ecological inference, the aim was to test and demonstrate data collection and modeling protocols that could be scaled to larger landscapes with sufficient replication, and not to produce generalizable ecological findings from a small dataset. The pilot study results revealed higher species detection during morning flights, which allowed us to refine our data collection. Additionally, models accounting for spatial autocorrelation using thin plate splines suggested that community-based conservation programs effectively balanced ecosystem service extraction with biodiversity conservation, maintaining richness levels comparable to the national park. Models without splines indicated significantly higher species richness within the national park. This study demonstrates the potential for spatially explicit methods for monitoring grassland mammals using TIR UAV as indicators of anthropogenic impacts and conservation effectiveness. Further data collection over larger spatial and temporal scales is essential to capture the occupancy more generally for species with larger home ranges, as well as any effects of rainfall, flooding, and seasonal variability on biodiversity in alluvial grasslands. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 303
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

18 pages, 3631 KiB  
Article
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
by Piotr Olczak and Dominika Matuszewska
Energies 2025, 18(14), 3674; https://doi.org/10.3390/en18143674 - 11 Jul 2025
Viewed by 298
Abstract
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage [...] Read more.
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data, the research identified the storage requirements, including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell, representing the smallest and most basic commercially available units, and included a sensitivity analysis. At the household level—represented by a single-family home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years, respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system, decreasing the imbalance from 5.73 kWh to 4.42 kWh. However, while it greatly improves self-consumption, its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

33 pages, 1867 KiB  
Article
AI-Enhanced Non-Intrusive Load Monitoring for Smart Home Energy Optimization and User-Centric Interaction
by Xiang Li, Yunhe Chen, Xinyu Jia, Fan Shen, Bowen Sun, Shuqing He and Jia Guo
Informatics 2025, 12(2), 55; https://doi.org/10.3390/informatics12020055 - 17 Jun 2025
Viewed by 715
Abstract
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations [...] Read more.
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations in NILM accuracy and robustness necessitate innovative solutions. Additionally, outdated public datasets fail to capture the rapid evolution of modern appliances. To address these challenges, we constructed a high-sampling-rate voltage–current dataset, measuring 15 common household appliances across diverse scenarios in a controlled laboratory environment tailored to regional grid standards (220 V/50 Hz). We propose an AI-driven NILM method that integrates power-mapped, color-coded voltage–current (V–I) trajectories with frequency-domain features to significantly improve load recognition accuracy and robustness. By leveraging deep learning frameworks, this approach enriches temporal feature representation through chromatic mapping of instantaneous power and incorporates frequency-domain spectrograms to capture dynamic load behaviors. A novel channel-wise attention mechanism optimizes multi-dimensional feature fusion, dynamically prioritizing critical information while suppressing noise. Comparative experiments on the custom dataset demonstrate superior performance, particularly in distinguishing appliances with similar load profiles, underscoring the method’s potential for advancing smart home energy management, user-centric energy feedback, and social informatics applications in complex electrical environments. Full article
Show Figures

Figure 1

20 pages, 3216 KiB  
Article
A Lightweight Load Identification Model Update Method Based on Channel Attention
by Yong Gao, Junwei Zhang, Mian Wang, Zhukui Tan and Minhang Liang
Energies 2025, 18(11), 2885; https://doi.org/10.3390/en18112885 - 30 May 2025
Viewed by 321
Abstract
With the development of smart grids and home energy management systems, accurate load identification has become an important part of improving energy efficiency and ensuring electrical safety. However, traditional load identification methods struggle with high computational overhead and long model update times, which [...] Read more.
With the development of smart grids and home energy management systems, accurate load identification has become an important part of improving energy efficiency and ensuring electrical safety. However, traditional load identification methods struggle with high computational overhead and long model update times, which hinder real-time performance. In this study, a load identification method based on the channel attention mechanism is proposed for the lightweight model update problem in the electrical load identification task. To overcome this challenge, we construct color V-I trajectory maps by extracting the voltage and current signals of electrical devices during steady-state operation, and combine the convolutional neural network and channel attention mechanism for feature extraction and classification. Experimental results show that the proposed method significantly improves the accuracy, precision, recall, and F1-score compared with traditional methods on the public dataset, and tests on real hardware platforms verify its efficiency and robustness. This suggests that the lightweight model update method based on the channel attention mechanism holds great promise for smart grid applications, particularly in real-time systems with limited computational resources. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 4413 KiB  
Article
Autonomous Control of Electric Vehicles Using Voltage Droop
by Hanchi Zhang, Rakesh Sinha, Hessam Golmohamadi, Sanjay K. Chaudhary and Birgitte Bak-Jensen
Energies 2025, 18(11), 2824; https://doi.org/10.3390/en18112824 - 29 May 2025
Viewed by 377
Abstract
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on [...] Read more.
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on Denmark’s residential distribution networks. A residential grid comprising 67 households powered by a 630 kVA transformer is studied using DiGSILENT PowerFactory. With the assumption of simultaneous charging of all EVs, the transformer can be heavily loaded up to 147.2%. Thus, a voltage-droop based autonomous control approach is adopted, where the EV charging power is dynamically adjusted based on the point-of-connection voltage of each charger instead of the fixed rated power. This strategy eliminates overloading of the transformers and cables, ensuring they operate within a pre-set limit of 80%. Voltage drops are mitigated within the acceptable safety range of ±10% from normal voltage. These results highlight the effectiveness of the droop control strategy in managing EV charging power. Finally, it exemplifies the benefits of intelligent EV charging systems in Horizon 2020 EU Projects like SERENE and SUSTENANCE. The findings underscore the necessity to integrate smart control mechanisms, consider reinforcing grids, and promote active consumer participation to meet the rising demand for a low-carbon future. Full article
Show Figures

Figure 1

18 pages, 2127 KiB  
Article
Practical Validation of nearZEB Residential Power Supply Model with Renewable Electricity Brought into the Building Using Electric Vehicles (via V2G) Instead of the Distribution Network
by Jacek A. Biskupski
Energies 2025, 18(11), 2786; https://doi.org/10.3390/en18112786 - 27 May 2025
Viewed by 458
Abstract
This article attempts to estimate the potential of supplying a residential building in Europe with energy exclusively from RESs during a whole year, including the heating period. The aim of the tests carried out was to minimize the purchase of energy required to [...] Read more.
This article attempts to estimate the potential of supplying a residential building in Europe with energy exclusively from RESs during a whole year, including the heating period. The aim of the tests carried out was to minimize the purchase of energy required to achieve the thermal comfort (HVACR + DHW) of a residential building powered solely by electricity. During the tests carried out, the EVs were used by the residents as their daily means of transport, topped up during working hours, and the excess energy remaining in their batteries was discharged into the building when they returned home. Energy for the EVs/PHEVs was sourced from RESs (mostly for free) while they were parked at the workplace, and also on the way home. Two one-month tests in the spring and autumn resulted in a state where, instead of purchasing a significant volume of black energy from the grid, the building was mostly powered by green energy from roof-top PVs and RES energy brought in by the PHEVs/EVs. This study identified days when the building became a real nZEB, which was not possible in previous years. The results of economic gains and carbon footprint reduction were calculated. After a period of testing, the degree of degradation of traction batteries used to carry the energy of EVs/PHEVs was checked. A high potential for such an operation was identified, especially in areas where there are periodic shutdowns (due to a call from the grid operator) of local RESs situated near the residential areas. The proposed solution may be of interest to all countries where the use of grid energy is associated not only with a doubling of costs (grid charges), but also with significant emissions, particularly in the heating period (e.g., Poland). Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 3903 KiB  
Article
CFANet: The Cross-Modal Fusion Attention Network for Indoor RGB-D Semantic Segmentation
by Long-Fei Wu, Dan Wei and Chang-An Xu
J. Imaging 2025, 11(6), 177; https://doi.org/10.3390/jimaging11060177 - 27 May 2025
Viewed by 1193
Abstract
Indoor image semantic segmentation technology is applied to fields such as smart homes and indoor security. The challenges faced by semantic segmentation techniques using RGB images and depth maps as data sources include the semantic gap between RGB images and depth maps and [...] Read more.
Indoor image semantic segmentation technology is applied to fields such as smart homes and indoor security. The challenges faced by semantic segmentation techniques using RGB images and depth maps as data sources include the semantic gap between RGB images and depth maps and the loss of detailed information. To address these issues, a multi-head self-attention mechanism is adopted to adaptively align features of the two modalities and perform feature fusion in both spatial and channel dimensions. Appropriate feature extraction methods are designed according to the different characteristics of RGB images and depth maps. For RGB images, asymmetric convolution is introduced to capture features in the horizontal and vertical directions, enhance short-range information dependence, mitigate the gridding effect of dilated convolution, and introduce criss-cross attention to obtain contextual information from global dependency relationships. On the depth map, a strategy of extracting significant unimodal features from the channel and spatial dimensions is used. A lightweight skip connection module is designed to fuse low-level and high-level features. In addition, since the first layer contains the richest detailed information and the last layer contains rich semantic information, a feature refinement head is designed to fuse the two. The method achieves an mIoU of 53.86% and 51.85% on the NYUDv2 and SUN-RGBD datasets, which is superior to mainstream methods. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

23 pages, 5170 KiB  
Article
Population and Landslide Risk Evolution in Long Time Series: Case Study of the Valencian Community (1920–2021)
by Isidro Cantarino Martí, Eric Gielen, José-Sergio Palencia-Jiménez and Miguel Ángel Carrión Carmona
Land 2025, 14(6), 1148; https://doi.org/10.3390/land14061148 - 25 May 2025
Viewed by 480
Abstract
Assessing the size and situation of the population exposed to natural hazards is a fundamental step in addressing natural hazard management and emergency planning. Although much progress has been made in recent years in population geolocation by competent public bodies, gathering historical data [...] Read more.
Assessing the size and situation of the population exposed to natural hazards is a fundamental step in addressing natural hazard management and emergency planning. Although much progress has been made in recent years in population geolocation by competent public bodies, gathering historical data beyond the present century to learn about the sequential evolution the affected population has experienced remains a difficult task. The recent publication of a historical population grid with adequate resolution allows progress to be made in resolving this problem. This paper is based on these data together with a map of landslide susceptibility in the study area and on the abundant resources provided by the Spanish Cadastre on dates of construction, surface area, and location of built plots. The size of the residential area built in the risk zone and its affected population was calculated since the early 1900s and with a decennial sequence. The risk to the population has been found to be stable or decreasing slightly over the entire historical series in the study area. However, the intensive tourism in some coastal municipalities in the north of Alicante has led to the construction of holiday homes in unsuitable locations in mountainous areas and with it an appreciable increase in risk. Full article
Show Figures

Figure 1

Back to TopTop