Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = hollow sections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12805 KiB  
Article
Efficient Probabilistic Modelling of Corrosion Initiation in RC Structures Considering Non-Diffusive Barriers and Censored Data
by Guilherme Henrique Rossi Vieira, Ritermayer Monteiro Teixeira, Leila Cristina Meneghetti and Sandoval José Rodrigues Júnior
Buildings 2025, 15(15), 2690; https://doi.org/10.3390/buildings15152690 - 30 Jul 2025
Viewed by 203
Abstract
This article presents a probabilistic methodology for assessing corrosion initiation in reinforced concrete structures exposed to chloride ingress. The approach addresses key limitations of conventional analytical models by accounting for non-diffusive barriers and incorporating a rigorous statistical treatment of censored data to mitigate [...] Read more.
This article presents a probabilistic methodology for assessing corrosion initiation in reinforced concrete structures exposed to chloride ingress. The approach addresses key limitations of conventional analytical models by accounting for non-diffusive barriers and incorporating a rigorous statistical treatment of censored data to mitigate biases introduced by limited simulation durations. A combination of analytical solutions for diffusion from opposite sides with time-dependent boundary conditions is also proposed and validated. The probabilistic study includes the depassivation assessment of a hollow pier section. The blocking effect caused by rebars is statistically characterised through correction factors derived from finite element simulations. These factors are used to adjust analytical solutions, which are computationally inexpensive. Results show that neglecting the rebar blocking effect can overestimate the mean corrosion initiation time by up to 42%, while the use of censored data reduces bias in lifetime estimates. The observed frequency of censored events reached up to 20% when simulations were truncated at 100 years. The corrected analytical models closely match the finite element results, statistically validating their application. The case study indicates premature corrosion initiation (less than 10 years to achieve target reliability), underscoring the need to better reconcile the desired levels of reliability with realistic input parameters for depassivation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

8 pages, 926 KiB  
Proceeding Paper
Formulation of a Torsion Displacement Equation for the Compatibility with Bending in Rectangular Section Thin-Walled Hollow-Box Beams
by Hugo Miguel Silva
Eng. Proc. 2025, 87(1), 95; https://doi.org/10.3390/engproc2025087095 - 17 Jul 2025
Viewed by 195
Abstract
In this work, a novel analytical equation is developed to accurately predict the mechanical behavior of thin-walled beams. The FEM was used for building the model and obtaining the results. The new equation developed is useful for the calculation of the displacement of [...] Read more.
In this work, a novel analytical equation is developed to accurately predict the mechanical behavior of thin-walled beams. The FEM was used for building the model and obtaining the results. The new equation developed is useful for the calculation of the displacement of a beam simply supported at its ends subjected to torsion loads, applied in opposite side areas of the Finite Element Method (FEM) model. The software Eureqa 1.24.0 was used to find hidden analytical models that were validated thereafter. The aim is to provide a formula that makes possible the comparison of analytic calculations with numerical calculations on bending and torsion combined load. A FEM model of a hollow-box beam with rectangular cross-section loaded with torsion was built and analytical calculations were performed. The analytic calculations were compared with the numeric results in order to know if the results are approximated. The results show good agreement. In the future, other models, such as internally reinforced beams, could also be tested with this methodology. Also, different conditions could be applied to the model studied in this work in order to evaluate the limitations and validity of the developed analytical model. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 6132 KiB  
Article
Calculation Method of Axial Compressive Capacity of 7075-T6 Aluminum Alloy Rectangular Tubes Based on Continuous Strength Method
by Zhiguan Huang, Hailin Li, Cheng Zhang and Junli Liu
Buildings 2025, 15(14), 2387; https://doi.org/10.3390/buildings15142387 - 8 Jul 2025
Viewed by 200
Abstract
This study systematically investigates the axial compression capacity calculation method for 7075-T6 aluminum alloy rectangular hollow section (RHS) members based on the Continuous Strength Method (CSM). Axial compression tests were conducted on nine RHS specimens using a YAW-500 electro-hydraulic servo testing machine, and [...] Read more.
This study systematically investigates the axial compression capacity calculation method for 7075-T6 aluminum alloy rectangular hollow section (RHS) members based on the Continuous Strength Method (CSM). Axial compression tests were conducted on nine RHS specimens using a YAW-500 electro-hydraulic servo testing machine, and nonlinear finite element models considering material plasticity and geometric imperfections were established using ABAQUS/CAE. The numerical results showed good agreement with experimental data, verifying the model’s reliability. Parametric analysis was then performed on RHS members, leading to the development of a CSM-based capacity calculation method and a modified curve for predicting the stability reduction factors of square hollow section members. The approach combining this modified curve with Chinese codes is termed the Modified Chinese Code Method. The axial capacities calculated by the CSM-based method, Modified Chinese Code Method, EN 1999-1-1, and AASTM were compared for accuracy evaluation. The conclusions indicate that the proposed modified curve provides more accurate predictions of stability coefficients for square tubes, and the CSM-based method yields more precise capacity predictions than existing international design codes, though it may overestimate the capacity for Class 4 cross-section members and thus requires further refinement. Full article
Show Figures

Figure 1

19 pages, 2789 KiB  
Article
A Proposal for a Deflection-Based Evaluation Method for Barrel Support Brackets in the Extended Application of Fire Shutters in Logistics Facilities
by Jong Won Shon, Heewon Seo, Daehoi Kim, Seungjea Lee, Sungho Hong and Subin Jung
Fire 2025, 8(7), 253; https://doi.org/10.3390/fire8070253 - 27 Jun 2025
Viewed by 246
Abstract
This study proposes a deflection-based criterion for the assessment of barrel support brackets to ensure the structural stability of large fire shutters installed in large-scale buildings such as logistics facilities. While the current extended application method in the BS EN 15269 standard allows [...] Read more.
This study proposes a deflection-based criterion for the assessment of barrel support brackets to ensure the structural stability of large fire shutters installed in large-scale buildings such as logistics facilities. While the current extended application method in the BS EN 15269 standard allows for the evaluation of the structural adequacy of the barrel—primarily based on stress analysis—this research aims to establish a more reliable design guideline by additionally considering the deflection of barrel support brackets, which may become structurally vulnerable under high-temperature conditions. To achieve this, the bracket was modeled as a cantilever beam, and deflection equations were applied. The deflection and stress were analyzed for various rectangular hollow sections. Furthermore, the support capacities at ambient temperature and at 700 °C were compared, and regression analysis was conducted to assess the Accuracy and error rates associated with different deflection limits (L/180 to L/480). The results indicate that setting the deflection limit to L/180 yields the most favorable outcome in terms of structural safety and error minimization across most conditions. It is expected that the adoption of deflection criteria for barrel support brackets in the design of large fire shutters will contribute significantly to preventing the spread of fire and ensuring structural safety. Full article
Show Figures

Figure 1

22 pages, 13594 KiB  
Article
Numerical Modelling of the Multiphase Flow in an Agricultural Hollow Cone Nozzle
by Paweł Karpiński, Zbigniew Czyż and Stanisław Parafiniuk
Appl. Sci. 2025, 15(13), 7214; https://doi.org/10.3390/app15137214 - 26 Jun 2025
Viewed by 230
Abstract
In the field of agriculture, various types of pesticides are used to control crop pests. These chemical agents are applied using nozzles with different geometries. Regardless of their configuration and operational liquid parameters, the applied liquid jet encounters issues with wind drift and [...] Read more.
In the field of agriculture, various types of pesticides are used to control crop pests. These chemical agents are applied using nozzles with different geometries. Regardless of their configuration and operational liquid parameters, the applied liquid jet encounters issues with wind drift and penetration efficiency. Therefore, it is necessary to optimize the spraying process. In this study, 3D numerical calculations were performed using computational fluid dynamics (CFD). A two-phase flow model based on the volume of fluid (VOF) method was used to simulate the mixing of water and air. The k-ω SST turbulence model was adopted to capture vortex phenomena. A hollow cone nozzle geometry, commonly used in orchards, was selected. Simulations allowed the analysis of pressure, velocity, and turbulence kinetic energy (TKE) in selected cross-sections. Results show that the maximum velocity of the liquid jet at the nozzle outlet exceeded 23 m/s, with the highest TKE reaching 35 m2/s2 in the vortex chamber. The computed spray cone angle was approximately 88°, while the experimental value was 80°, and the simulated mass flow rate differed by 16.7% from the measured reference. The critical flow region was identified between the vortex insert and the ceramic stem, where the highest gradients of pressure and velocity were observed. Full article
Show Figures

Figure 1

24 pages, 5108 KiB  
Article
Research on the Defect Detection Method of Steel-Reinforced Concrete Based on Piezoelectric Technology and Weight Analysis
by Yilong Yu, Yulin Dong, Yulong Jiang, Fan Wang, Qianfan Zhou and Panfeng Ba
Sensors 2025, 25(13), 3844; https://doi.org/10.3390/s25133844 - 20 Jun 2025
Viewed by 339
Abstract
Aiming at the complex internal working conditions of steel-reinforced concrete structures, this paper proposes an active detection method for the internal hollow defects of steel-reinforced concrete based on wave analysis by using the driving and sensing functions of piezoelectric ceramic materials. The feasibility [...] Read more.
Aiming at the complex internal working conditions of steel-reinforced concrete structures, this paper proposes an active detection method for the internal hollow defects of steel-reinforced concrete based on wave analysis by using the driving and sensing functions of piezoelectric ceramic materials. The feasibility was verified through the single-condition detection test, revealing the propagation and attenuation characteristics of the stress wave signal under various detection conditions, and it was applied to the damage identification of steel-reinforced concrete rectangular section columns. Combined with the wavelet packet energy theory, the data processing of the original detection signal is carried out based on composite weighting by energy distribution entropy. Finally, the analytic hierarchy process (AHP) was introduced to study the weight vectors of different damage metrics on the detection signal, and a linear regression model based on different damage metrics was proposed as the comprehensive defect evaluation index. The research results show that the detection of internal defects in steel-reinforced concrete structures based on piezoelectric technology is applicable to concrete of different strength grades. With the increase of the detection distance and the degree of damage, the energy of the stress wave signal decreases. For example, under defect-free conditions, the energy value of the stress wave signal with a detection distance of 400 mm decreases by 92.94% compared to that with a detection distance of 100 mm. Meanwhile, it can be known from the defect detection test results of steel-reinforced concrete columns that the wavelet packet energy value under the defect condition with three obstacles decreased by 85.42% compared with the barrier-free condition, and the defect evaluation index (DI) gradually increased from 0 to 0.859. The comprehensive application of piezoelectric technology and weight analysis methods has achieved qualitative and quantitative analysis of defects, providing reference value for the maintenance and repair of steel-reinforced concrete structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 9033 KiB  
Article
Design and Evaluation of a Novel Efficient Air-Assisted Hollow-Cone Electrostatic Nozzle
by Li Zhang, Zhi Li, Huaxing Chu, Qiaolin Chen, Yang Li and Xinghua Liu
Agriculture 2025, 15(12), 1293; https://doi.org/10.3390/agriculture15121293 - 16 Jun 2025
Viewed by 493
Abstract
For crop protection, electrostatic spraying technology significantly improves deposition uniformity and pesticide utilization through the “wraparound-adsorption” effect of charged droplets. However, existing electrostatic nozzles using hydraulic atomization suffer from low charge-to-mass ratios due to unclear principles for optimizing electrode parameters. To this end, [...] Read more.
For crop protection, electrostatic spraying technology significantly improves deposition uniformity and pesticide utilization through the “wraparound-adsorption” effect of charged droplets. However, existing electrostatic nozzles using hydraulic atomization suffer from low charge-to-mass ratios due to unclear principles for optimizing electrode parameters. To this end, this study designs and evaluates a novel air-assisted hydraulic-atomization hollow-cone electrostatic nozzle. First, the air-assisted hollow-cone nozzle was designed. High-speed imaging was then employed to obtain morphological parameters of the liquid film (length: 2.14 mm; width: 1.96 mm; and spray angle: 49.25°). Based on these parameters, an electric field simulation model of the electrostatic nozzle was established to analyze the influence of electrode parameters on the charging performance and identify the optimal parameter combination. Finally, feasibility and efficiency evaluation experiments were conducted on the designed electrostatic nozzle. The experimental results demonstrate that cross-sectional dimensions of the electrode exhibit a positive correlation with the surface charge density of the pesticide liquid film. In addition, optimal charging performance is obtained when the electrode plane coincides with the tangent plane of the liquid film leading edge. Based on these charging laws, the optimal electrode parameters were determined as follows: 2.0 × 2.0 mm cross-section with an electrode-to-nozzle tip distance of 3.8 mm. With these parameters, the nozzle achieved a droplet charge-to-mass ratio of 4.9 mC/kg at a charging voltage of 3.0 kV. These charged droplets achieved deposition coverages of 12.19%, 5.72%, and 5.91% on abaxial leaf surfaces in the upper, middle, and lower soybean canopies, respectively, which is a significant improvement in deposition uniformity. This study designed a novel air-assisted hollow-cone electrostatic nozzle, elucidated the optimization principles for annular induction electrodes, and achieved improved spraying performance. The findings contribute to enhanced pesticide application efficiency in crops, providing valuable theoretical guidance and technical references for electrostatic nozzle design and application. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 11998 KiB  
Article
Construction of Structures with Thin-Section Ceramic Masonry
by Cinta Lluis-Teruel and Josep Lluis i Ginovart
Buildings 2025, 15(12), 2042; https://doi.org/10.3390/buildings15122042 - 13 Jun 2025
Viewed by 388
Abstract
Current regulatory principles focus on resistance and durability to ensure long-term robustness while optimizing sections to maximize efficiency and minimize material use, thus enhancing sustainability and reducing environmental impact. Historical ceramic masonry constructions fully adhere to these principles; however, they have been largely [...] Read more.
Current regulatory principles focus on resistance and durability to ensure long-term robustness while optimizing sections to maximize efficiency and minimize material use, thus enhancing sustainability and reducing environmental impact. Historical ceramic masonry constructions fully adhere to these principles; however, they have been largely supplanted by modern materials. The compressive strength and functional advantages of structures built with ceramic masonry, particularly those featuring extremely thin wall sections, warrant a reassessment of their structural properties. This is exemplified by thin-tile vaults (ranging from 0.015 to 0.020 m in thickness) and hollow brick vaults with a thickness of less than 0.050 m, both of which represent highly efficient solutions. The proposed examples inherently meet these structural system properties due to their low energy dispersion, minimal gravitational weight, superior thermal performance, and monolithic tectonic composition using a single, easily recyclable material. This paper reviews the historical background of these construction systems, emphasizing their relevance in post-war periods when concrete and steel were scarce. It is concluded that these construction systems remain valid and are consistent with the principles of the circular economy, as well as with the structural safety standards of the 21st century. Full article
Show Figures

Figure 1

13 pages, 4682 KiB  
Communication
Seven-Channel Polyethersulfone Hollow-Fiber Membrane Preparation with Vapor-Induced Phase Separation
by Xiaoyao Wang, Zhiyuan Hao, Rui Huang, Yajing Huang, Huiqun Zhang and Xiujuan Hao
Membranes 2025, 15(6), 175; https://doi.org/10.3390/membranes15060175 - 10 Jun 2025
Viewed by 936
Abstract
Polyethersulfone (PES) has been widely used to fabricate hollow-fiber ultrafiltration membranes due to its good oxidative, thermal, and hydrolytic stability. Typical PES hollow-fiber membranes with a single bore have limited strength and may break under uneven pressure and vibration during membrane backwashing. Multi-channel [...] Read more.
Polyethersulfone (PES) has been widely used to fabricate hollow-fiber ultrafiltration membranes due to its good oxidative, thermal, and hydrolytic stability. Typical PES hollow-fiber membranes with a single bore have limited strength and may break under uneven pressure and vibration during membrane backwashing. Multi-channel hollow-fiber membranes have stronger breaking force due to their larger cross-sectional area, but fabricating them remains challenging due to the difficulty in controlling the phase inversion process. This study uses the vapor-induced phase separation (VIPS) method to fabricate a seven-channel PES hollow-fiber membrane, and the air gap and air relative humidity can help in membrane morphology control. Moreover, carboxylic graphene quantum dots (CGQDs) are first used in ultrafiltration membranes to increase membrane porosity and hydrophilicity. We found that the membrane prepared with a 7.5% CGQD mass fraction, a 10 cm air gap, and 99% relative humidity had the highest flux and porosity; the membrane pore size distribution was concentrated at 72 nm, and the pure water flux could reach 464 L·m−2 h−1·bar−1. In the long-term filtration performance test, the membrane can reject more than about 15% TOC and 84% turbidity at 50 L·m−2 h−1 flux, confirming its stability for water purification applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

15 pages, 2833 KiB  
Article
Solid and Hollow Pre-Tensioned, Pre-Stressed Concrete Orchard Posts—Computational and Experimental Comparative Analysis
by Jarosław Michałek and Jacek Dudkiewicz
Materials 2025, 18(11), 2525; https://doi.org/10.3390/ma18112525 - 27 May 2025
Viewed by 1869
Abstract
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete [...] Read more.
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete posts most often have a trapezoidal cross-section, which is ideally suitable for mass production in a self-supporting non-dismantlable steel mould on a pre-stressing bed. Posts with 70 mm × 75 mm, 80 mm × 85 mm and 90 mm × 95 mm cross-sections are typically produced, whereas 100 mm × 120 mm and 130 mm × 140 mm posts are manufactured to order. Furthermore, it is proposed to produce hollow posts. Such posts are lighter than solid posts, but they require a more complicated production technology. This paper presents selected parts of a comparative computational–experimental analysis of solid and hollow posts. In the Building Structures Laboratory in the Building Structures Department at the Civil Engineering Faculty of the Wrocław University of Science and Technology, experimental tests of pre-stressed concrete orchard posts of 70 mm × 75 mm and 90 mm × 95 mm with solid and hollow cross-sections were carried out on a full scale. The theoretical analysis and research has shown that the resistance to bending, cracking resistance and rigidity of hollow posts (with their cross-sectional outline unchanged) will not significantly differ from those of the currently produced solid posts. At same time, material savings will be achieved. Therefore, the main task is to master the continuous moulding of hollow posts from dense plastic concrete with the simultaneous pulling out of the cores, producing longitudinal hollows in the posts. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Concrete Structures and RC Beams)
Show Figures

Figure 1

25 pages, 5991 KiB  
Article
Wind Tunnel Tests and Buffeting Response Analysis of Concrete-Filled Steel Tubular Arch Ribs During Cantilever Construction
by Qing Hu, Xinrong Wu, Shilong Zhang and Dagang Lu
Buildings 2025, 15(11), 1837; https://doi.org/10.3390/buildings15111837 - 27 May 2025
Viewed by 343
Abstract
During the construction of concrete-filled steel tubular (CFST) arch bridges, hollow steel tube arch ribs are typically erected using the cantilever method with cable hoisting. In this construction stage, the arch ribs exhibit low out-of-plane stiffness and are thus highly susceptible to wind-induced [...] Read more.
During the construction of concrete-filled steel tubular (CFST) arch bridges, hollow steel tube arch ribs are typically erected using the cantilever method with cable hoisting. In this construction stage, the arch ribs exhibit low out-of-plane stiffness and are thus highly susceptible to wind-induced vibrations, which may lead to cable failure or even collapse of the structure. Despite these critical risks, research on the aerodynamic performance of CFST arch ribs with different cross-sectional forms during cantilever construction remains limited. Most existing studies focus on individual bridge cases rather than generalized aerodynamic behavior. To obtain generalized aerodynamic parameters and buffeting response characteristics applicable to cantilevered CFST arch ribs, this study investigates two common cross-sectional configurations: four-tube trussed and horizontal dumbbell trussed sections. Sectional model wind tunnel tests were conducted to determine the aerodynamic force coefficients and aerodynamic admittance functions (AAFs) of these arch ribs. Comparisons with commonly used empirical AAF formulations (e.g., the Sears function) indicate that these simplified models, or assumptions equating aerodynamic forces with quasi-steady values, are inaccurate for the studied cross-sections. Considering the influence of the curved arch axis on buffeting behavior, a buffeting analysis computational program was developed, incorporating the experimentally derived aerodynamic characteristics. The program was validated against classical theoretical results and practical measurements from an actual bridge project. Using this program, a parametric analysis was conducted to evaluate the effects of equivalent AAF formulations, coherence functions, first-order mode shapes, and the number of structural modes on the buffeting response. The results show that the buffeting response of cantilevered hollow steel arch ribs is predominantly governed by the first-order mode, which can be effectively approximated using a bending-type mode shape expression. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Research on an Intelligent Design Method for the Geometric Structure of Three-Layer Hollow Fan Blades
by Jialin Lei, Jiale Chao, Chuipin Kong and Xionghui Zhou
Aerospace 2025, 12(6), 469; https://doi.org/10.3390/aerospace12060469 - 26 May 2025
Viewed by 371
Abstract
The geometric structure design of three-layer hollow fan blades is extremely complex, which is not only directly related to the blade quality and manufacturing cost but also has a significant impact on engine performance. Based on geometric algorithms and combined with design rules [...] Read more.
The geometric structure design of three-layer hollow fan blades is extremely complex, which is not only directly related to the blade quality and manufacturing cost but also has a significant impact on engine performance. Based on geometric algorithms and combined with design rules and process constraints, an intelligent design method for the geometric structure of three-layer hollow blades is proposed: A new cross-section curve design method based on a non-equidistant offset is presented to enable the rapid design of wall plate structure. An innovative parametric design method for the corrugation structure in cross-sections driven by process constraints such as diffusion bonding angle thresholds is put forward. The spanwise rib smoothing optimization is realized based on the minimum energy method with the corrugation angle change term. The cross-section densification design is carried out to improve the accuracy of wireframe structure and achieve the rapid solid modeling of hollow blades. Finally, the proposed methods are seamlessly integrated into the NX software (version 12), and a three-layer hollow fan blade intelligent design system is developed, which enables the automated design and modeling of the complex geometric structure of the hollow blade under an aerodynamic shape and a large number of design and process constraints. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 3278 KiB  
Article
Study on Flexural Performance of Recycled Aggregate Concrete Beams Incorporating Glazed Hollow Beads
by Jingguang Hou, Yuanzhen Liu, Xiangzheng Li and Zhaoxu Wang
Materials 2025, 18(11), 2435; https://doi.org/10.3390/ma18112435 - 23 May 2025
Cited by 1 | Viewed by 363
Abstract
Recycled aggregate concrete incorporating glazed hollow beads (GHBRC) achieves the dual objectives of energy conservation and emission reduction by combining recycled coarse aggregate with glazed hollow bead aggregate, aligning with the construction industry’s “dual-carbon” goals for the development of low-carbon concrete. This study [...] Read more.
Recycled aggregate concrete incorporating glazed hollow beads (GHBRC) achieves the dual objectives of energy conservation and emission reduction by combining recycled coarse aggregate with glazed hollow bead aggregate, aligning with the construction industry’s “dual-carbon” goals for the development of low-carbon concrete. This study systematically investigates the flexural performance of GHBRC beams to establish calculation formulas for ultimate limit state bearing capacity and serviceability limit state verification. Six full-scale GHBRC beams were tested under simply supported conditions with two-point symmetric mid-span loading. Three critical variables (concrete composition, longitudinal tensile reinforcement ratio, and stirrup reinforcement configuration) were examined. Experimental results indicate that GHBRC beams exhibit failure modes consistent with conventional concrete beams, confirming the validity of the plane section assumption. At identical reinforcement ratios, GHBRC beams demonstrated a 3.1% increase in ultimate bearing capacity and an 18.78% higher mid-span deflection compared to ordinary concrete beams, highlighting their superior deformation performance. Building on methodologies for conventional concrete beams, this study recalibrated key short-term stiffness parameters using a stiffness analytical method and proposed a computational model for mid-span deflection prediction. These findings provide theoretical and practical foundations for optimizing the structural design of GHBRC beams in alignment with sustainable construction objectives. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 5373 KiB  
Article
Novel Spatio-Temporal Joint Learning-Based Intelligent Hollowing Detection in Dams for Low-Data Infrared Images
by Lili Zhang, Zihan Jin, Yibo Wang, Ziyi Wang, Zeyu Duan, Taoran Qi and Rui Shi
Sensors 2025, 25(10), 3199; https://doi.org/10.3390/s25103199 - 19 May 2025
Viewed by 470
Abstract
Concrete dams are prone to various hidden dangers after long-term operation and may lead to significant risk if failed to be detected in time. However, the existing hollowing detection techniques are few as well as inefficient when facing the demands of comprehensive coverage [...] Read more.
Concrete dams are prone to various hidden dangers after long-term operation and may lead to significant risk if failed to be detected in time. However, the existing hollowing detection techniques are few as well as inefficient when facing the demands of comprehensive coverage and intelligent management for regular inspections. Hence, we proposed an innovative, non-destructive infrared inspection method via constructed dataset and proposed deep learning algorithms. We first modeled the surface temperature field variation of concrete dams as a one-dimensional, non-stationary partial differential equation with Robin boundary. We also designed physics-informed neural networks (PINNs) with multi-subnets to compute the temperature value automatically. Secondly, we obtained the time-domain features in one-dimensional space and used the diffusion techniques to obtain the synthetic infrared images with dam hollowing by converting the one-dimensional temperatures into two-dimensional ones. Finally, we employed adaptive joint learning to obtain the spatio-temporal features. We designed the experiments on the dataset we constructed, and we demonstrated that the method proposed in this paper can handle the low-data (few shots real images) issue. Our method achieved 94.7% of recognition accuracy based on few shots real images, which is 17.9% and 5.8% higher than maximum entropy and classical OTSU methods, respectively. Furthermore, it attained a sub-10% cross-sectional calculation error for hollowing dimensions, outperforming maximum entropy (70.5% error reduction) and OTSU (7.4% error reduction) methods, which shows our method being one novel method for automated intelligent hollowing detection. Full article
Show Figures

Figure 1

13 pages, 1483 KiB  
Article
Investigation on the Buckling Behavior of Normal Steel CHS Beam–Columns: A Revised Design Approach with Reliability Analysis
by Musab Rabi
Buildings 2025, 15(10), 1708; https://doi.org/10.3390/buildings15101708 - 18 May 2025
Cited by 2 | Viewed by 496
Abstract
This paper focuses on the buckling behavior of circular hollow section (CHS) beam–columns. The literature review highlights the need for further investigations to improve the accuracy of structural performance predictions and optimize the design guidelines for CHS beam–columns. A comprehensive parametric study was [...] Read more.
This paper focuses on the buckling behavior of circular hollow section (CHS) beam–columns. The literature review highlights the need for further investigations to improve the accuracy of structural performance predictions and optimize the design guidelines for CHS beam–columns. A comprehensive parametric study was conducted using the developed finite element model, which included a total of 1400 simulations, including sections made from cold-formed and hot-finished steel. An assessment of the existing design provisions in Eurocode 3 is presented. Based on the results, a revised buckling design approach is proposed. The existing design provisions in Eurocode 3 provide conservative predictions on the buckling resistance of CHS beam–columns for both cold-formed and hot-finished sections. The proposed design approach demonstrated improved accuracy in predicting the buckling resistance, with mean predicted-to-test ratios and RMSE values of 0.99 and 8.1 kN for Class 1–2 sections, and 1.00 and 6.4 kN for Class 3–4 sections. Finally, a reliability analysis was conducted to assess the safety and reliability of the proposed design approach, resulting in a partial safety factor of 1.12 compared to 1.14 for Eurocode 3, indicating slightly reduced conservatism, while maintaining adequate safety levels. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

Back to TopTop