Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (244)

Search Parameters:
Keywords = high-effective flame retardant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2012 KiB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 270
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Article
A Tandem MS Platform for Simultaneous Determination of Urinary Malondialdehyde and Diphenyl Phosphate
by Gabriela Chango, Diego García-Gómez, Carmelo García Pinto, Encarnación Rodríguez-Gonzalo and José Luis Pérez Pavón
Int. J. Environ. Res. Public Health 2025, 22(7), 1130; https://doi.org/10.3390/ijerph22071130 - 17 Jul 2025
Viewed by 271
Abstract
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography [...] Read more.
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography (HILIC), a type of liquid chromatography suitable for polar compounds, for MDA separation, and an online restricted access material (RAM), a preconcentration column, for DPhP isolation, achieving high specificity and sensitivity. Validation with certified urine samples confirmed its robustness across diverse analyte concentrations and complex biological matrices. The optimized clean-up steps effectively minimized carryover, allowing for high-throughput analysis. Application to 72 urine samples revealed a significant positive correlation (ρ = 0.702, p-value = 1.9 × 10−7) between MDA and DPhP levels, supporting a potential link between oxidative stress and TPhP exposure. The subset analysis demonstrated a statistically significant moderate positive correlation in women (ρ = 0.622, p-value = 0.020), although this result should be interpreted with caution because of the limited sample size (N = 14). This method provides a powerful tool for biomonitoring oxidative stress and environmental contaminants, offering valuable insights into exposure-related health risks. Full article
(This article belongs to the Special Issue Research on Environmental Exposure, Pollution, and Epidemiology)
Show Figures

Graphical abstract

18 pages, 4231 KiB  
Article
Effect Mechanism of Phosphorus-Containing Flame Retardants with Different Phosphorus Valence States on the Safety and Electrochemical Performance of Lithium-Ion Batteries
by Peng Xi, Fengling Sun, Xiaoyu Tang, Xiaoping Fan, Guangpei Cong, Ziyang Lu and Qiming Zhuo
Processes 2025, 13(7), 2248; https://doi.org/10.3390/pr13072248 - 14 Jul 2025
Viewed by 314
Abstract
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional [...] Read more.
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional electrolytes is an effective method to improve battery safety. In this paper, trimethyl phosphate (TMP) and trimethyl phosphite (TMPi) were used as research objects, and the flame-retardant test and differential scanning calorimetry (DSC) of the electrolytes configured by them were first carried out. The self-extinguishing time of the electrolyte with 5% TMP and TMPi is significantly reduced, achieving a flame-retardant effect. Secondly, the electrochemical performance of LiFePO4|Li half-cells after adding different volume ratios of TMP and TMPi was studied. Compared with TMPi5, the peak potential difference between the oxidation peak and the reduction peak of the LiFePO4|Li half-cell with TMP5 added is reduced, the battery polarization is reduced, the discharge specific capacity after 300 cycles is large, the capacity retention rate is as high as 99.6%, the discharge specific capacity is larger at different current rates, and the electrode resistance is smaller. TMPi5 causes the discharge-specific capacity to attenuate, which is more obvious at high current rates. LiFePO4|Li half-cells with 5% volume ratio of flame retardant have the best electrochemical performance. Finally, the influence mechanism of the phosphorus valence state on battery safety and electrochemical performance was compared and studied. After 300 cycles, the surface of the LiFePO4 electrode with 5% TMP added had a smoother and more uniform CEI film and higher phosphorus (P) and fluorine (F) content, which was beneficial to the improvement of electrochemical performance. The cross-section of the LiFePO4 electrode showed slight collapse and cracks, which slowed down the attenuation of battery capacity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 4865 KiB  
Article
Thermal Behavior and Smoke Suppression of Polyamide 6,6 Fabric Treated with ALD-ZnO and DOPO-Based Silane
by Wael Ali, Raphael Otto, Ana Raquel Lema Jimenez, Sebastian Lehmann, Eui-Young Shin, Ying Feng, Milijana Jovic, Sabyasachi Gaan, Jochen S. Gutmann, Kornelius Nielsch, Amin Bahrami and Thomas Mayer-Gall
Materials 2025, 18(13), 3195; https://doi.org/10.3390/ma18133195 - 7 Jul 2025
Viewed by 645
Abstract
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic [...] Read more.
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic layer deposition (ALD) of ZnO with a phosphorus–silane-based flame retardant (DOPO-ETES). ALD allowed precise control of ZnO layer thickness (50, 84, and 199 nm), ensuring uniform coating. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) revealed that ZnO altered the degradation pathway of PA6,6 through catalytic effects, promoting char formation and reducing heat release. The combination of ZnO and DOPO-ETES resulted in further reductions in heat release rates. However, direct flame tests showed that self-extinguishing behavior was not achieved, emphasizing the limitations related to the melting of PA6,6. TG-IR and cone calorimetry confirmed that ZnO coatings suppressed the release of smoke-related volatiles and incomplete combustion products. These findings highlight the potential of combining metal-based catalytic flame retardants like ZnO with phosphorus-based coatings to improve flame retardancy while addressing the specific challenges of polyamide textiles. This approach may also be adapted to other fabric types and integrated with additional flame retardants, broadening its relevance for textile applications. Full article
Show Figures

Graphical abstract

34 pages, 8870 KiB  
Review
Advances in Graphene-Based Flame-Retardant for Polystyrene Applications: Synthesis, Mechanisms, and Future Perspectives
by Mutawakkil Isah, Farrukh Shehzad and Mamdouh A. Al-Harthi
Polymers 2025, 17(13), 1811; https://doi.org/10.3390/polym17131811 - 29 Jun 2025
Viewed by 663
Abstract
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. [...] Read more.
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. However, despite these advantages, challenges such as agglomeration, high thermal conductivity, poor interfacial compatibility, and processing limitations hinder their full-scale adoption in building insulation and other applications. This review presents an in-depth analysis of recent progress in graphene-enhanced flame-retardant systems for polystyrene applications, focusing on synthesis methods, flame-retardant mechanisms, and material performance. It also discusses strategies to address these challenges, such as surface functionalization, hybrid flame-retardant formulations, optimized graphene loading, and improved dispersion techniques. Furthermore, future research directions are proposed to enhance the effectiveness and commercial viability of graphene-based flame-retardant polystyrene composites. Overcoming these challenges is essential for high-performance, eco-friendly, flame-retardant materials on a larger scale. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 2023 KiB  
Article
Flame Retardance and Antistatic Polybutylene Succinate/Polybutylene Adipate-Co-Terephthalate/Magnesium Composite
by Pornchai Rachtanapun, Jonghwan Suhr, Eunyoung Oh, Nanthicha Thajai, Thidarat Kanthiya, Krittameth Kiattipornpithak, Kannikar Kaewapai, Siriphan Photphroet, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Pitiwat Wattanachai, Kittisak Jantanasakulwong and Choncharoen Sawangrat
Polymers 2025, 17(12), 1675; https://doi.org/10.3390/polym17121675 - 17 Jun 2025
Viewed by 758
Abstract
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to [...] Read more.
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to improve the antistatic properties of the composites. The PBS/E1/PBAT/MgO 15% composite exhibited an improvement in V-1 rating of flame retardancy, indicating an enhancement in the flame retardancy of biodegradable composite films. The tensile strength of the PBS/PBAT blend increased from 19 MPa to 25 MPa with the addition of 1% epoxy due to the epoxy reaction increasing compatibility between PBS and PBAT. The PBS/E1/PBAT and PBS/E1/PBAT blends with MgO 0, 0.5, and 1% showed increases in the contact angle to 80.9°, 83.0°, and 85.7°, respectively, because the epoxy improved the reaction between PBS and PBAT via the MgO catalyst effect. Fourier-transform infrared spectroscopy confirmed the reaction between the epoxy groups of the epoxy resin and the carboxyl end groups of PBS and PBAT by new peaks at 1246 and 1249 cm−1. Plasma technology (sputtering) presents better antistatic properties than the sparking process because of the high consistency of the metal nanoparticles on the surface. This composite can be applied for electronic devices as sustainable packaging. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 4956 KiB  
Article
Construction of Fire-Retardant PEO Composite Based on Calcium Sulfate Whiskers Fabricated from Phosphogypsum and DOPO Derivatives
by Jie Zhang, Wei Yan, Weijiang Huang, Kui Wang, Qin Tian, Chunyun Tu, Xingyu Guan, Shaoyuan Wu, Xuan Ba, Chunle Wei, Tong Ye, Jingyu Chen and Yi Zhang
Polymers 2025, 17(12), 1588; https://doi.org/10.3390/polym17121588 - 6 Jun 2025
Viewed by 533
Abstract
Incorporating a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based derivative (1,4-bis(diphenoxyphosphoryl)piperazine, DIDOPO) in combination with modified calcium sulfate whiskers (MCSWs) improved the flame retardancy, thermal stability, and rheological properties of a polyethylene oxide (PEO) composite. The synergistic flame-retardant effect of DIDOPO and MCSW on the PEO system was investigated. [...] Read more.
Incorporating a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based derivative (1,4-bis(diphenoxyphosphoryl)piperazine, DIDOPO) in combination with modified calcium sulfate whiskers (MCSWs) improved the flame retardancy, thermal stability, and rheological properties of a polyethylene oxide (PEO) composite. The synergistic flame-retardant effect of DIDOPO and MCSW on the PEO system was investigated. After introducing 5 wt.% MCSW and 10 wt.% DIDOPO into PEO, the UL-94 rating of the composite reached V-0, and the limiting oxygen index was increased to 26.5%. Additionally, the peak and average heat release rates and total heat release of the PEO/10% DIDOPO/5% MCSW composite decreased by 38.9%, 22%, and 20.07%, respectively. The results of a thermogravimetric analysis (TGA) revealed that PEO/10% DIDOPO/5% MCSW displayed an improved initial thermal stability and rate of char formation compared to those of the PEO matrix. The results of TGA/Fourier transform infrared analysis indicated that the composites exhibited phosphorus-containing groups during thermal degradation, based on the characteristic absorption peaks, and increased amounts of gas-phase volatiles. The morphologies and structures of the residues indicated that the PEO/10% DIDOPO/5% MCSW blend was less stable than PEO during combustion. The MCSW mixture formed a denser, more continuous carbon layer on the composite surface during combustion. The rheological behavior indicated that the high complex viscosity and moduli of PEO/10% DIDOPO/5% MCSW promoted the cross-linking network structure of the condensed phase during combustion. MCSW exhibited an excellent flame retardancy and improved thermal stability, which are potentially promising for use in fire safety applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 1479 KiB  
Article
Cashmere Blended with Calcium Alginate Fibers: Eco-Friendly Improvement of Flame Retardancy and Maintenance of Hygroscopicity
by Yujie Cai, Zewen Li, Bin Wang, Chao Xu, Xing Tian and Fengyu Quan
Polymers 2025, 17(11), 1497; https://doi.org/10.3390/polym17111497 - 28 May 2025
Viewed by 462
Abstract
As a natural fiber, cashmere is favored for its softness, finesse, and warmth. However, its poor flame-retardant properties seriously affect the safety of cashmere. Current flame-retardant treatments for cashmere tend to lead to heavy metal pollution and significantly reduce wearer comfort. In this [...] Read more.
As a natural fiber, cashmere is favored for its softness, finesse, and warmth. However, its poor flame-retardant properties seriously affect the safety of cashmere. Current flame-retardant treatments for cashmere tend to lead to heavy metal pollution and significantly reduce wearer comfort. In this work, natural and environmentally friendly calcium alginate fibers were blended with cashmere to obtain blended fibers. The blended fibers exhibited good hygroscopicity and softness. The incorporation of calcium alginate fibers enhanced the flame retardancy of the blends, and the LOI of the blended fibers reached 40.2 without smoldering. It was due to a stable CaO protective layer formed by Ca2+ during combustion and the dense carbon layer with the decomposition intermediates of cashmere, which exerted a flame-retardant effect in the condensed phase. This study provided an eco-friendly approach to producing high-quality flame-retardant cashmere products. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Unveiling Thermal Degradation and Fire Behavior of 110 kV Ultra-High-Voltage Flame-Retardant Cable Sheath After Thermal Aging
by Yaqiang Jiang, Wei He, Xinke Huo, Xuelian Lu, Kaiyuan Li and Fei Xiao
Polymers 2025, 17(9), 1273; https://doi.org/10.3390/polym17091273 - 6 May 2025
Viewed by 574
Abstract
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 [...] Read more.
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 vertical burning, cone calorimeter, open flame, and muffle furnace tests. The results showed that thermal aging causes a slight decrease in the LOI value of the cable sheath (28.3% vs. 28.5%), but it also passed the UL-94 V-0 test. The butane torch test showed that the cable sheath was more easily ignited after aging; however, a better char layer was formed in the later stage of burning, which led to a longer failure time. Interestingly, the aging treatment prolonged the ignition time of the cable sheaths and reduced the peak heat release rate (pHRR) and total heat release (THR) by 17.5% and 24.4%, respectively, in the cone calorimeter test, indicating that aging resulted in a reduction in the fire hazard of the cable sheaths. Moreover, aging mechanisms were proposed based on the composition and structural evolution of the cable sheaths. In summary, this work comprehensively evaluated the fire hazard of 110 kV ultra-high-voltage cables and provided theoretical support for the formulation improvement, durability enhancement, and fire protection design of cable sheath materials. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

14 pages, 1831 KiB  
Article
Effects of Organophosphorus Flame Retardants on the Dissipation Factor of Flame-Retardant Polymers
by Peng Jin, Qiang Yao, Weihong Cao, Jinhao Sun and Yueying Zhao
Polymers 2025, 17(9), 1254; https://doi.org/10.3390/polym17091254 - 5 May 2025
Viewed by 457
Abstract
To understand the effect of the hydroxyl group and processing temperatures on dielectric losses of flame retardants and flame-retardant polymers, the performance difference between 6-methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-Me) and 6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-HM) has been investigated, respectively, in non-polar and polar polymers at 7–20 GHz. [...] Read more.
To understand the effect of the hydroxyl group and processing temperatures on dielectric losses of flame retardants and flame-retardant polymers, the performance difference between 6-methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-Me) and 6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-HM) has been investigated, respectively, in non-polar and polar polymers at 7–20 GHz. DOPO-HM and DOPO-Me differ by only one OH group. The former demonstrates a lower dissipation factor (Df) than the latter, owing to hydrogen bonds. In polystyrene and crosslinked polyphenylene oxide, both flame retardants increase a dielectric loss of flame-retardant polymers, with DOPO-HM being less detrimental because of its higher crystallizability and lower plasticization. In polar poly(methyl methacrylate) (PMMA), conformational changes in PMMA main chains caused by flame retardants and high processing temperatures lead to an early Df drop of PMMA at low loadings of the flame retardants. At high loadings, a change in the physical form of flame retardants from a primitive crystalline state to an amorphous state increases a dielectric loss of flame retardant PMMA, with DOPO-HM resulting in a slightly higher dielectric loss than DOPO-Me. These results prove that the effect of a hydroxyl group in organophosphorus structures on the dielectric loss of flame-retardant polymers is crucially dependent on its interaction with the polymer matrix. Full article
(This article belongs to the Special Issue Thermal Behavior of Polymer Materials II)
Show Figures

Graphical abstract

13 pages, 3055 KiB  
Article
Phosphotungstic Acid Intercalated MgAlLa Ternary Layered Double Hydroxides as High-Efficiency Additives for Epoxy Resin: Synergistic Enhancement of Flame Retardancy and Smoke Suppression
by Wensheng Zhao, Jiao Jin, Zhengkai Guang, Haosen Chen, Yangu Liu, Xiaoling Cheng, Yuan Liu, Xing Wei, Jiebing He and Wenlin Zhao
Coatings 2025, 15(5), 523; https://doi.org/10.3390/coatings15050523 - 27 Apr 2025
Viewed by 456
Abstract
The inherent flammability and toxic smoke emission of epoxy resins (EPs) pose significant challenges to their advanced engineering applications. To address this limitation, we developed a novel flame-retardant additive through the organic modification of layered double hydroxides (LDHs) using a ternary MgAlLa hydrotalcite [...] Read more.
The inherent flammability and toxic smoke emission of epoxy resins (EPs) pose significant challenges to their advanced engineering applications. To address this limitation, we developed a novel flame-retardant additive through the organic modification of layered double hydroxides (LDHs) using a ternary MgAlLa hydrotalcite structure intercalated with phosphotungstic acid (PWA). This innovative design established a synergistic mechanism by combining the catalytic carbonization effect of lanthanum with the radical scavenging capability of PWA. The optimized MgAlLa-PWA/EP composite demonstrated remarkable flame retardancy and smoke suppression improvements, exhibiting 77.9% and 62.4% reductions in the peak heat release rate (pHRR) and total heat release (THR), respectively, compared to pure EP. Particularly noteworthy was the 72.6% decrease in total smoke release (TSR), accompanied by a significant elevation of the limiting oxygen index (LOI) value to 26.8% and achievement of UL-94 V-0 rating. Microstructural analysis revealed that the modified composite formed a continuous and uniform layer with increased density during combustion, effectively inhibiting oxygen exchange, smoke diffusion, and heat transfer. This study provides a novel strategy for designing multi-element synergistic LDHs additive for high-efficiency flame retardancy and smoke suppression of EP. Full article
(This article belongs to the Special Issue Research Progress and Future Prospects of Thermal Protection Coatings)
Show Figures

Graphical abstract

26 pages, 4983 KiB  
Article
Mechanical, Thermal, and Flammability Properties of Eco-Friendly Nanocomposites from Recycled PET/PA-11 Blends Reinforced with Graphene Nanoplatelets
by Unsia Habib, Mohammed E. Ali Mohsin, Zahid Iqbal Khan, Zurina Mohamad, Norhayani Othman, Suleiman Mousa, SK Safdar Hossain and Syed Sadiq Ali
Polymers 2025, 17(8), 1038; https://doi.org/10.3390/polym17081038 - 11 Apr 2025
Cited by 1 | Viewed by 768
Abstract
This study investigates the development of sustainable nanocomposites using recycled polyethylene terephthalate (RPET) and polyamide 11 (PA-11) blends reinforced with graphene nanoplatelets (GNPs). RPET/PA-11 blends were compatibilized with 2 phr Joncryl® and processed using melt blending followed by injection moulding. The effects [...] Read more.
This study investigates the development of sustainable nanocomposites using recycled polyethylene terephthalate (RPET) and polyamide 11 (PA-11) blends reinforced with graphene nanoplatelets (GNPs). RPET/PA-11 blends were compatibilized with 2 phr Joncryl® and processed using melt blending followed by injection moulding. The effects of varying GNP contents (1–4 phr) on mechanical, thermal, and flame-retardant properties were analysed. The nanocomposite with 1 phr GNPs exhibited an optimal balance of mechanical, flame-retardant, and thermal properties, along with improved dispersion compared to higher GNP loadings. Higher GNP concentrations led to increased stiffness but also promoted agglomeration, which negatively impacted tensile and impact strength. Thermal analysis revealed that GNPs influenced the cold crystallization behaviour of RPET, while the TGA results indicated a moderate enhancement in thermal stability. The maximum degradation temperature (Tmax) increased from 410.38 °C to 430.06 °C with 1 phr GNPs but declined at higher loadings. Similarly, flammability tests showed an improvement in the limiting oxygen index (LOI) from 19 to 24. Morphological analysis confirmed that GNPs facilitated PA-11 dispersion within the RPET matrix, particularly at lower GNP concentrations (1 phr). These findings highlight the potential of RPET/PA-11/GNP nanocomposites for multifunctional applications, providing an optimal balance between mechanical performance, thermal stability, and flame resistance. This research highlights the synergistic effect of GNPs in achieving sustainable, high-performance materials, addressing the challenges of plastic waste management and the need for eco-friendly engineering solutions for industries such as automotive, packaging, and construction. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 6670 KiB  
Article
Fire Reconstruction and Flame Retardant with Water Mist for Double-Roofed Ancient Buddhist Buildings
by Chen Zhong, Ting Li, Hui Liu, Lei Zhang and Xiaoyan Wen
Buildings 2025, 15(7), 1109; https://doi.org/10.3390/buildings15071109 - 28 Mar 2025
Viewed by 309
Abstract
Fire is one of the most serious threatening conditions that endanger the safety of human life and building property. Religious buildings, where activities such as ritual incense burning and parishioner worship are conducted year-round, suffer from high fire risks and incomplete coverage of [...] Read more.
Fire is one of the most serious threatening conditions that endanger the safety of human life and building property. Religious buildings, where activities such as ritual incense burning and parishioner worship are conducted year-round, suffer from high fire risks and incomplete coverage of fire protection facilities, which have led to the frequent occurrence of fire accidents in ancient religious buildings around the globe. This study focuses on fire reconstruction and flame-retardant research for double-roofed ancient Buddhist buildings, addressing a gap in fire protection research for ancient religious buildings, particularly those with unique double-roofed structures. A systematic fire simulation method integrating building information modeling (BIM) and computational fluid dynamics (CFD) is proposed. This approach not only accurately models the complex structures of ancient buildings but also simulates fire and smoke spread paths, providing a scientific basis for fire warnings and firefighting strategies. Firstly, the double-roofed ancient Buddhist building is modeled according to its size through building information modeling (BIM). Secondly, the building modeling is revised, and the fire hazard is modeled based on computational fluid dynamics (CFD). Thirdly, the smoke and temperature sensors for fire warning and sprinkler systems for flame retardant are set. Finally, the fire and smoke spread paths are simulated for determining the location for installing the warning sensor and providing valuable fire rescues strategy. Based on simulations, a fire warning system using smoke and temperature sensors, along with a sprinkler-based flame retardant system, is designed. This integrated design significantly enhances the fire prevention and control capabilities of ancient buildings, reducing the occurrence of fire accidents. By simulating fire and smoke spread paths, the optimal locations for sensor installation are determined, and valuable fire rescue strategies are provided. This simulation-based analytical method greatly improves the precision and effectiveness of fire prevention and control. Experiments validate the flame-retardant and fire warning capabilities of the proposed method, demonstrating its practical application value in protecting ancient buildings from fire. The method offers new insights and technical support for fire protection in religious ancient buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 8841 KiB  
Article
Preparation of Superhydrophobic Flame-Retardant UHMWPE Fabrics with Excellent Mechanical Stability by Simple Coating Method
by Xiakeer Saitaer, Jianing Wang, Qiang Gao, Ying Li, Jiahao Sun, Jiqiang Cao, Ying Wang, Zengying Liu and Xiang Liu
Coatings 2025, 15(4), 366; https://doi.org/10.3390/coatings15040366 - 21 Mar 2025
Cited by 1 | Viewed by 487
Abstract
Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is widely used in many fields due to its excellent properties such as high modulus, high strength, and impact resistance. However, its high flammability prevents its application in high-temperature environments. Therefore, it is important to develop multifunctional UHMWPE fabric [...] Read more.
Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is widely used in many fields due to its excellent properties such as high modulus, high strength, and impact resistance. However, its high flammability prevents its application in high-temperature environments. Therefore, it is important to develop multifunctional UHMWPE fabric to meet its different requirements in firefighting, military, and other scenarios. Here, we have prepared a durable flame-retardant superhydrophobic UHMWPE fabric by a simple coating method. A polyurethane solution mixed with decabromodiphenylethane and antimony trioxide is scraped on the surface of the fabric to form a coating, which endows the fabric with flame retardancy. The sprayed fluorinated hydrophobic agent provides superhydrophobic properties to the fabric. It is worth mentioning that plasma pretreatment greatly improves the adhesion properties of the coating by stimulating the active groups on the surface of the fabric. Tests have shown that the adhesion between the coating and the surface of the plasma-treated UHMWPE fabric has been greatly improved. The limiting oxygen index value of the coating UHMWPE fabric has increased by 90%, and it immediately extinguishes after leaving the flame, demonstrating excellent flame retardancy. The contact angle between its surface and water reaches 156°, exhibiting excellent superhydrophobicity and self-cleaning properties. This study provides a simple, convenient, and effective method for the development of multifunctional UHMWPE fabric, greatly expanding its application scenarios and providing ideas for future development. Full article
(This article belongs to the Special Issue Functional Coatings for Flexible Materials)
Show Figures

Figure 1

18 pages, 2560 KiB  
Review
A Review on Flame Retardants in Soils: Occurrence, Environmental Impact, Health Risks, Remediation Strategies, and Future Perspectives
by Trang Le Thuy, Tuan-Dung Hoang, Van-Hiep Hoang and Minh-Ky Nguyen
Toxics 2025, 13(3), 228; https://doi.org/10.3390/toxics13030228 - 20 Mar 2025
Viewed by 1354
Abstract
As novel pollutants, flame retardants (FRs) are prone to accumulating in soil and might increase human health risks. It is advisable to emphasize the biomagnification of FRs within the terrestrial food chain, particularly concerning mammals occupying higher trophic levels. Exposure to soil particles [...] Read more.
As novel pollutants, flame retardants (FRs) are prone to accumulating in soil and might increase human health risks. It is advisable to emphasize the biomagnification of FRs within the terrestrial food chain, particularly concerning mammals occupying higher trophic levels. Exposure to soil particles laden with FRs may result in numerous health complications. These findings offer significant insights into FR pollutant profiles, tracing origins and recognizing health risks associated with soil samples. Reports have revealed that exposure to FRs can pose serious health risks, including neurodevelopmental impairments, endocrine system disruption, and an increased likelihood of cancer. Nanomaterials, with their high surface area and flexible properties, possess the ability to utilize light for catalytic reactions. This unique capability allows them to effectively degrade harmful contaminants, such as FRs, in soil. Additionally, biological degradation, driven by microorganisms, offers a sustainable method for breaking down these pollutants, providing an eco-friendly approach to soil remediation. These approaches, combined with optimum remediation strategies, hold great potential for effectively addressing soil contamination in the future. Further research should prioritize several key areas, including ecological behavior, contaminant monitoring, biological metabolomics, toxicity evaluation, and ecological impact assessment. Full article
Show Figures

Figure 1

Back to TopTop