polymers-logo

Journal Browser

Journal Browser

Advances in Fire-Safe Polymer Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2030

Special Issue Editors

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
Interests: flame retardant; polymer composites; thermal stability; bio-based polymer
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
Interests: flame retardant; epoxy resin; fire safety; composites
China Academy of Building Research, Beisanhuan East Road, Chaoyang District, Beijing 100013, China
Interests: flame retardant; fire safety; combustion behavior, mechanical performance

Special Issue Information

Dear Colleagues,

We are pleased to invite you to submit your original research to this Special Issue of Polymers dedicated to the progress of flame-retardant and fireproof polymeric materials.

Although the science and technological applications of flame-retardant polymers have made great progress in the past decades, the demand for the development of new flame-retardant polymers and polymer systems is still increasing. We encourage the submission of manuscripts covering scientific findings in the broad field of fire protection and thermal management of polymer composites.

Original papers and reviews are invited for this issue in the following areas:

  • Design and synthesis of new high-efficiency and environmentally friendly flame retardants;
  • Development of synergistic systems;
  • Flame retardancy of polymer-based composites/coatings/textiles;
  • Characterization and testing of polymer combustion behavior.

Dr. Fei Xiao
Dr. Shuang Yang
Dr. Jinhan Lu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flame retardant
  • thermal stability
  • fire resistant
  • composites
  • coating
  • textiles
  • bio-based flame retardants
  • intumescent flame retardant
  • fire protection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5792 KiB  
Article
Phosphorous-Based, Halogen-Free Flame Retardants for Thin, Flexible Polyurethane Artificial Leathers
by Miriam Bader, Maren Lehmann and Michael Meyer
Polymers 2025, 17(7), 841; https://doi.org/10.3390/polym17070841 - 21 Mar 2025
Viewed by 274
Abstract
Polyurethane (PUR)-based artificial leathers are often used as interior materials in public area, making flame retardants (FRs) necessary. The mode of action of different FRs varies depending on the chemical class and the structure of the supplied material. Usually, FRs are designed for [...] Read more.
Polyurethane (PUR)-based artificial leathers are often used as interior materials in public area, making flame retardants (FRs) necessary. The mode of action of different FRs varies depending on the chemical class and the structure of the supplied material. Usually, FRs are designed for bulk materials like foams, e.g., for upholstery, the main application of PUR. However, in thin materials, FRs act differently, thus leaving the PUR without sufficient flame resistance. In this study, PUR films and artificial leathers were equipped with twelve commercially available, halogen-free FRs in various concentrations and combinations. Fire resistance was tested with LOI measurements, cone calorimetry, horizontal burning behavior, and thermogravimetric analyses. An organophosphorus FR proved to be the most suited for flame-resistant artificial leather. The LOI was increased from 20 to 24.2%, the peak heat release rate was reduced by about 30%, and the sample was self-extinguishing in horizontal burning behavior. Phosphinates and aluminum trihydroxide were the least efficient FRs. Combinations of bentonite with phosphorus-based FRs showed synergistic effects in reducing the probability of igniting the material. The results demonstrate that sufficient flame retardancy for PUR-based thin materials can be achieved with commercially available halogen-free FRs, paving the way for more sustainable and greener materials by substituting ecologically harmful and health-damaging FRs. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

22 pages, 9843 KiB  
Article
Viscoelastic Polyurethane Foam Biocomposites with Enhanced Flame Retardancy
by Grzegorz Węgrzyk, Dominik Grzęda, Milena Leszczyńska, Bartosz Nędza, Katarzyna Bulanda, Mariusz Oleksy, Joanna Ryszkowska and Ugis Cabulis
Polymers 2024, 16(22), 3189; https://doi.org/10.3390/polym16223189 - 16 Nov 2024
Cited by 2 | Viewed by 1415
Abstract
The growing demand for viscoelastic polyurethane foams creates a need for new sustainable raw materials that support cost-effective production while maintaining the desired material performance and fire safety standards. In this regard, our study aimed to develop viscoelastic polyurethane foam composites with reduced [...] Read more.
The growing demand for viscoelastic polyurethane foams creates a need for new sustainable raw materials that support cost-effective production while maintaining the desired material performance and fire safety standards. In this regard, our study aimed to develop viscoelastic polyurethane foam composites with reduced flammability and a high proportion of renewable raw materials. To achieve this, blackcurrant pomace, expandable graphite and a third-generation blowing agent were introduced to a viscoelastic polyurethane foam composition containing a reactive flame retardant in the formulation. The effects of the incorporated additives on the foaming process, flammability, chemical structure, cellular structure, thermal properties and physico-mechanical properties of the composites were determined. The results showed that the viscoelastic foam composite containing 30 php of blackcurrant pomace and 15 php of expandable graphite had a pHRRmax 52% lower than that of the reference material. The additional use of a blowing agent enhanced the flame-retardant effect of the materials, resulting in a 67% reduction in pHRRmax of the composite compared to the reference material. Moreover, the developed biocomposites exhibited promising limiting oxygen index values of 26–28%, compared to the 21% shown for the reference sample. Consequently, the best-performing biocomposites achieved the V-0 flammability rating according to the UL-94 standard. This study’s results indicate the composites’ high application potential due to their reduced flammability and the materials’ desirable physical and mechanical properties. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

Back to TopTop