Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = high-Q resonators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3600 KiB  
Article
Performance of Large Language Models in Recognizing Brain MRI Sequences: A Comparative Analysis of ChatGPT-4o, Claude 4 Opus, and Gemini 2.5 Pro
by Ali Salbas and Rasit Eren Buyuktoka
Diagnostics 2025, 15(15), 1919; https://doi.org/10.3390/diagnostics15151919 - 30 Jul 2025
Viewed by 215
Abstract
Background/Objectives: Multimodal large language models (LLMs) are increasingly used in radiology. However, their ability to recognize fundamental imaging features, including modality, anatomical region, imaging plane, contrast-enhancement status, and particularly specific magnetic resonance imaging (MRI) sequences, remains underexplored. This study aims to evaluate [...] Read more.
Background/Objectives: Multimodal large language models (LLMs) are increasingly used in radiology. However, their ability to recognize fundamental imaging features, including modality, anatomical region, imaging plane, contrast-enhancement status, and particularly specific magnetic resonance imaging (MRI) sequences, remains underexplored. This study aims to evaluate and compare the performance of three advanced multimodal LLMs (ChatGPT-4o, Claude 4 Opus, and Gemini 2.5 Pro) in classifying brain MRI sequences. Methods: A total of 130 brain MRI images from adult patients without pathological findings were used, representing 13 standard MRI series. Models were tested using zero-shot prompts for identifying modality, anatomical region, imaging plane, contrast-enhancement status, and MRI sequence. Accuracy was calculated, and differences among models were analyzed using Cochran’s Q test and McNemar test with Bonferroni correction. Results: ChatGPT-4o and Gemini 2.5 Pro achieved 100% accuracy in identifying the imaging plane and 98.46% in identifying contrast-enhancement status. MRI sequence classification accuracy was 97.7% for ChatGPT-4o, 93.1% for Gemini 2.5 Pro, and 73.1% for Claude 4 Opus (p < 0.001). The most frequent misclassifications involved fluid-attenuated inversion recovery (FLAIR) sequences, often misclassified as T1-weighted or diffusion-weighted sequences. Claude 4 Opus showed lower accuracy in susceptibility-weighted imaging (SWI) and apparent diffusion coefficient (ADC) sequences. Gemini 2.5 Pro exhibited occasional hallucinations, including irrelevant clinical details such as “hypoglycemia” and “Susac syndrome.” Conclusions: Multimodal LLMs demonstrate high accuracy in basic MRI recognition tasks but vary significantly in specific sequence classification tasks. Hallucinations emphasize caution in clinical use, underlining the need for validation, transparency, and expert oversight. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

22 pages, 6682 KiB  
Article
An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology
by Jingwen Han, Ningning Yan and Kaixue Ma
Electronics 2025, 14(15), 3041; https://doi.org/10.3390/electronics14153041 - 30 Jul 2025
Viewed by 140
Abstract
An FR4-based X-band low phase noise oscillator loading an additional high-Q cavity resonator was designed in this study using substrate-integrated suspended line (SISL) technology. The additional resonator was coupled to an oscillator by the transmission line (coupling TL). The impact of the [...] Read more.
An FR4-based X-band low phase noise oscillator loading an additional high-Q cavity resonator was designed in this study using substrate-integrated suspended line (SISL) technology. The additional resonator was coupled to an oscillator by the transmission line (coupling TL). The impact of the additional resonator on startup conditions, Q factor enhancement, and phase noise reduction was thoroughly investigated. Three oscillators loading an additional high-Q cavity resonator, loading an additional high-Q cavity resonator and performing partial dielectric extraction, and loading an original parallel feedback oscillator for comparison were presented. The experimental results showed that the proposed oscillator had a low phase noise of −131.79 dBc/Hz at 1 MHz offset from the carrier frequency of 10.088 GHz, and the FOM was −197.79 dBc/Hz. The phase noise was reduced by 1.66 dB through loading the additional resonator and further reduced by 1.87 dB through partially excising the substrate. To the best of our knowledge, the proposed oscillator showed the lowest phase noise and FOM compared with other all-FR4-based oscillators. The cost of fabrication was markedly reduced. The proposed oscillator also has the advantages of compact size and self-packaging properties. Full article
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 193
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 162
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation
by Anatolii Shcherba, Dmytro Vinnychenko, Nataliia Suprunovska, Sergy Roziskulov, Artur Dyczko and Roman Dychkovskyi
Electronics 2025, 14(15), 2923; https://doi.org/10.3390/electronics14152923 - 22 Jul 2025
Viewed by 228
Abstract
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality [...] Read more.
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality (Q) factor and operating at high frequencies, typically in the range of 40–50 kHz or higher. Practical implementations of the LC circuit with Q-factors exceeding 200 have been achieved using advanced materials and configurations. Specifically, ceramic capacitors with a capacitance of approximately 3.5 nF and Q-factors over 1000, in conjunction with custom-made coils possessing Q-factors above 280, have been employed. These coils are constructed using multi-core, insulated, and twisted copper wires of the Litzendraht type to minimize losses at high frequencies. Voltage amplification within the system is effectively controlled by adjusting the current frequency, thereby maximizing voltage across the load without increasing the system’s size or complexity. This frequency-tuning mechanism enables significant reductions in the weight and dimensional characteristics of the electrical system, facilitating the development of compact, mobile installations. These systems are particularly suitable for on-site testing and diagnostics of high-voltage insulation in power cables, large rotating machines such as turbogenerators, and other critical infrastructure components. Beyond insulation diagnostics, the proposed system architecture offers potential for broader applications, including the charging of capacitive energy storage units used in high-voltage pulse systems. Such applications extend to the synthesis of micro- and nanopowders with tailored properties and the electrohydropulse processing of materials and fluids. Overall, this research demonstrates a versatile, efficient, and portable solution for advanced electrical diagnostics and energy applications in the high-voltage domain. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, 3rd Edition)
Show Figures

Figure 1

10 pages, 4124 KiB  
Article
High-Power Coupled Wideband Low-Frequency Antenna Design for Enhanced Long-Range Loran-C Timing Synchronization
by Jingqi Wu, Xueyun Wang, Juncheng Liu, Chenyang Fan, Chenxi Zhang, Zilun Zeng, Liwei Wang and Jianchun Xu
Sensors 2025, 25(14), 4352; https://doi.org/10.3390/s25144352 - 11 Jul 2025
Viewed by 241
Abstract
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity [...] Read more.
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity and bandwidth due to inherent quality factor (Q) limitations. A sub-cubic-meter impedance matching (IM) antenna is proposed, featuring a −20 dB bandwidth of 18 kHz and over 7-fold radiation enhancement. The proposed design leverages a planar-transformer-based impedance matching network to enable efficient 100 kHz operation in a compact form factor, while a resonant coil structure is adopted at the receiver side to enhance the system’s sensitivity. The miniaturized Loran-C timing system incorporating the IM antenna achieves an extended decoding range of >100 m with merely 100 W input power, exceeding conventional loop antennas limited to 30 m operation. This design successfully achieves overall miniaturization of the Loran-C timing system while breaking through the current transmission distance limitations of compact antennas, extending the effective transmission range to the hundred-meter scale. The design provides a case for developing compact yet high-performance Loran-C systems. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

17 pages, 4763 KiB  
Article
Multi-Band Terahertz Metamaterial Absorber Integrated with Microfluidics and Its Potential Application in Volatile Organic Compound Sensing
by Liang Wang, Bo Zhang, Xiangrui Dong, Qi Lu, Hao Shen, Yi Ni, Yuechen Liu and Haitao Song
Electronics 2025, 14(13), 2731; https://doi.org/10.3390/electronics14132731 - 7 Jul 2025
Viewed by 260
Abstract
In this study, a terahertz microfluidic multi-band sensor was designed. Unlike previous microfluidic absorption sensors that rely on dipole resonance, the proposed sensor uses a physical mechanism for absorption by exciting higher-order lattice resonances in microfluidic structures. With a Fabry–Perot cavity, the sensor [...] Read more.
In this study, a terahertz microfluidic multi-band sensor was designed. Unlike previous microfluidic absorption sensors that rely on dipole resonance, the proposed sensor uses a physical mechanism for absorption by exciting higher-order lattice resonances in microfluidic structures. With a Fabry–Perot cavity, the sensor can form an absorption peak with a high quality factor (Q) and narrow full width at half maximum (FWHM). A high Q value and a narrow FWHM are valuable in the field of sensing and provide strong support for high-precision sensing. On this basis, the sensing performance of the device was investigated. The simulation results clearly show that the absorption sensor has ultra-high sensitivity, which reaches 400 GHz/Refractive Index Unit (RIU). In addition, the sensor generates three absorption peaks, overcoming the limitations of a single frequency band in a composite resonance mode and multidimensional frequency response, which has potential application value in the field of volatile organic compound (VOC) sensing. Full article
Show Figures

Figure 1

11 pages, 2553 KiB  
Article
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Viewed by 186
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized [...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd3m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

13 pages, 3092 KiB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Viewed by 351
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

17 pages, 6103 KiB  
Article
Development of Certified Reference Material of L-Thyroxine by Using Mass Balance and Quantitative Nuclear Magnetic Resonance
by Qiang Zhao, Weifei Zhang, Dan Song, Xirui Zhou, Xianjiang Li, Huan Yao, Wenjing Xing, Hongmei Li, Jian Ma and Peng Xiao
Molecules 2025, 30(13), 2840; https://doi.org/10.3390/molecules30132840 - 2 Jul 2025
Viewed by 356
Abstract
L-thyroxine (T4) is an important hormone for diagnosing and evaluating thyroid function disorders. As outlined in ISO17511, having a certified reference material (CRM) is crucial for ensuring that the results of clinical tests are traceable to the SI-unit. This study employed two principal [...] Read more.
L-thyroxine (T4) is an important hormone for diagnosing and evaluating thyroid function disorders. As outlined in ISO17511, having a certified reference material (CRM) is crucial for ensuring that the results of clinical tests are traceable to the SI-unit. This study employed two principal methods to evaluate the purity of T4, mass balance (MB) and quantitative nuclear magnetic resonance (qNMR), both of which are SI-traceable (International System of Units) approaches. The MB method involved a detailed analysis of impurities, including water, structurally related compounds, and volatile and non-volatile substances. A variety of techniques were employed to characterize T4 and its impurities, including liquid-phase tandem high-resolution mass spectrometry, ultraviolet spectrophotometry, infrared spectroscopy, and both 1H-NMR and 13C-NMR. Additionally, impurities were quantified using Karl Fischer coulometric titration, ion chromatography, gas chromatography–mass spectrometry, and inductively coupled plasma–mass spectrometry. In qNMR, ethylparaben was used as the internal standard for direct value assignment. The results showed T4 purities of 94.92% and 94.88% for the MB and qNMR methods, respectively. The water content was determined to be 3.563% (n = 6), representing the highest impurity content. Ten structurally related organic impurities were successfully separated, and five of them were quantified. Ultimately, a purity of 94.90% was assigned to T4 CRM, with an expanded uncertainty of 0.34% (k = 2). Full article
Show Figures

Figure 1

23 pages, 4929 KiB  
Article
Low Phase Noise, Dual-Frequency Pierce MEMS Oscillators with Direct Print Additively Manufactured Amplifier Circuits
by Liguan Li, Di Lan, Xu Han, Tinghung Liu, Julio Dewdney, Adnan Zaman, Ugur Guneroglu, Carlos Molina Martinez and Jing Wang
Micromachines 2025, 16(7), 755; https://doi.org/10.3390/mi16070755 (registering DOI) - 26 Jun 2025
Cited by 1 | Viewed by 396
Abstract
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 [...] Read more.
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 MHz and 437 MHz) without the need for additional circuitry. The MEMS resonators, fabricated on silicon-on-insulator (SOI) wafers, exhibit high-quality factors (Q), ensuring superior phase noise performance. Experimental results indicate that the oscillator packaged using 3D-printed chip-carrier assembly achieves a 2–3 dB improvement in phase noise compared to the PCB-based oscillator, attributed to the ABS substrate’s lower dielectric loss and reduced parasitic effects at radio frequency (RF). Specifically, phase noise values between −84 and −77 dBc/Hz at 1 kHz offset and a noise floor of −163 dBc/Hz at far-from-carrier offset were achieved. Additionally, the 3D-printed ABS-based oscillator delivers notably higher output power (4.575 dBm at 260 MHz and 0.147 dBm at 437 MHz). To facilitate modular characterization, advanced packaging techniques leveraging precise 3D-printed encapsulation with sub-100 μm lateral interconnects were employed. These ensured robust packaging integrity without compromising oscillator performance. Furthermore, a comparison between two transistor technologies—a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) and an enhancement-mode pseudomorphic high-electron-mobility transistor (E-pHEMT)—demonstrated that SiGe HBT transistors provide superior phase noise characteristics at close-to-carrier offset frequencies, with a significant 11 dB improvement observed at 1 kHz offset. These results highlight the promising potential of 3D-printed chip-carrier packaging techniques in high-performance MEMS oscillator applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 937 KiB  
Article
Insular Cortex Modulation by Repetitive Transcranial Magnetic Stimulation with Concurrent Functional Magnetic Resonance Imaging: Preliminary Findings
by Daphné Citherlet, Olivier Boucher, Manon Robert, Catherine Provost, Arielle Alcindor, Ke Peng, Louis De Beaumont and Dang Khoa Nguyen
Brain Sci. 2025, 15(7), 680; https://doi.org/10.3390/brainsci15070680 - 25 Jun 2025
Viewed by 990
Abstract
Background/Objectives: The insula is a deep, functionally heterogeneous region involved in various pathological conditions. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic avenue for neuromodulation, yet very few studies have directly investigated its effects on insular activity. Moreover, empirical evidence [...] Read more.
Background/Objectives: The insula is a deep, functionally heterogeneous region involved in various pathological conditions. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic avenue for neuromodulation, yet very few studies have directly investigated its effects on insular activity. Moreover, empirical evidence of target engagement of this region remains scarce. This study aimed to stimulate the insula with rTMS and assess blood oxygen level-dependent (BOLD) signal modulation using concurrent functional magnetic resonance imaging (fMRI). Methods: Ten participants were recruited, six of whom underwent a single session of 5 Hz high-frequency rTMS over the right insular cortex inside the MRI scanner. Stimulation was delivered using a compatible MRI-B91 TMS coil. Stimulation consisted of 10 trains of 10 s each, with a 50 s interval between trains. Frameless stereotactic neuronavigation ensured precise targeting. Paired t-tests were used to compare the mean BOLD signal obtained between stimulation trains with resting-state fMRI acquired before the rTMS stimulation session. A significant cluster threshold of q < 0.01 (False Discovery Rate; FDR) with a minimum cluster size of 10 voxels was applied. Results: Concurrent rTMS-fMRI revealed the significant modulation of BOLD activity within insular subregions. Increased activity was observed in the anterior, middle, and middle-inferior insula, while decreased activity was identified in the ventral anterior and posterior insula. Additionally, two participants reported transient dysgeusia following stimulation, which provides further evidence of insular modulation. Conclusions: These findings provide preliminary evidence that rTMS can modulate distinct subregions of the insular cortex. The combination of region-specific BOLD responses and stimulation-induced dysgeusia supports the feasibility of using rTMS to modulate insular activity. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

32 pages, 11250 KiB  
Article
Novel Dielectric Resonator-Based Microstrip Filters with Adjustable Transmission and Equalization Zeros
by David Espinosa-Adams, Sergio Llorente-Romano, Vicente González-Posadas, José Luis Jiménez-Martín and Daniel Segovia-Vargas
Electronics 2025, 14(13), 2557; https://doi.org/10.3390/electronics14132557 - 24 Jun 2025
Viewed by 483
Abstract
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of [...] Read more.
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of both transmission zeros (4-2-0 configuration) and equalization zeros (4-0-2 configuration), specifically designed for demanding space and radar receiver applications, while the loaded quality factor (QL) and insertion loss do not match those of dielectric resonator cavity filters (DRCFs), our solution significantly surpasses conventional microstrip filters (MFs), achieving QL> 3000 compared to typical QL≈ 200 for coupled-line MFs in X-band. The fabricated filters exhibit exceptional performance as follows: input reflection (S11) below −18 dB (4-2-0) and −16.5 dB (4-0-2), flat transmission response (S21), and out-of-band rejection exceeding −30 dB. Mechanical tuning enables precise control of input–output coupling, inter-resonator coupling, cross-coupling, and frequency synthesis, while equalization zeros provide tailored group delay characteristics. This study positions DRMFs as a viable intermediate technology for high-performance RF systems, bridging the gap between conventional solutions. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

21 pages, 3380 KiB  
Article
Purification, Structural Characterization, and Immunomodulatory Activity of an Exopolysaccharide from Acetilactobacillus jinshanensis BJ01 in Baijiu Fermentation Grains
by Tian Tian, Bo Wan, Ying Xiong, Han Wang, Yuanyuan An, Ruijie Gao, Pulin Liu, Mingchun Zhang, Lihong Miao and Weifang Liao
Foods 2025, 14(13), 2162; https://doi.org/10.3390/foods14132162 - 20 Jun 2025
Viewed by 431
Abstract
This study aims to identify the chemical structure and immunomodulatory activity of exopolysaccharides (EPSs) from Acetilactobacillus jinshanensis BJ01 and suggest its potential applications in the pharmaceutical field and as functional food additives. The EPS-1 produced by A. jinshanensis BJ01 was purified using [...] Read more.
This study aims to identify the chemical structure and immunomodulatory activity of exopolysaccharides (EPSs) from Acetilactobacillus jinshanensis BJ01 and suggest its potential applications in the pharmaceutical field and as functional food additives. The EPS-1 produced by A. jinshanensis BJ01 was purified using column chromatography. The lyophilized powder obtained by vacuum freeze-drying was used for structural characterization and immunomodulatory activity analysis. Gel permeation chromatography (GPC) determined its molecular weight as 156.58 kDa. High-performance anion-exchange chromatography (HPAEC) identified that the EPS-1 is composed of mannose, xylose, and glucose. The structural characterization of EPS-1 by gas chromatography–mass spectrometry (GC-MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopy demonstrated that EPS-1 is primarily composed of α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →2)-α-D-Manp-(1→, and →3)-α-D-Manp-(1→. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) illustrated that EPS-1 exhibited a round, flake-like morphology. In vitro experiments with RAW264.7 macrophages demonstrated the high immunomodulatory activity of EPS-1. Significant upregulation of iNOS, IL-6, and TNF-α mRNA levels was confirmed by qRT-PCR (p < 0.05). Western blotting revealed that EPS-1 (6.25 μg/mL) induced phosphorylation of NF-κB (p65, IκBα) and MAPK (ERK) signaling proteins. This study provides the first structural and immunomodulatory characterization of an exopolysaccharide from A. jinshanensis BJ01, highlighting its potential as a novel immune adjuvant. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

15 pages, 2016 KiB  
Article
Metabolomics Signatures of a Respiratory Tract Infection During an Altitude Training Camp in Elite Rowers
by Félix Boudry, Fabienne Durand and Corentine Goossens
Metabolites 2025, 15(6), 408; https://doi.org/10.3390/metabo15060408 - 17 Jun 2025
Viewed by 449
Abstract
Background: Respiratory pathologies, such as COVID-19 and bronchitis, pose significant challenges for high-level athletes, particularly during demanding altitude training camps. Metabolomics offers a promising approach for early detection of such pathologies, potentially minimizing their impact on performance. This study investigates the metabolic [...] Read more.
Background: Respiratory pathologies, such as COVID-19 and bronchitis, pose significant challenges for high-level athletes, particularly during demanding altitude training camps. Metabolomics offers a promising approach for early detection of such pathologies, potentially minimizing their impact on performance. This study investigates the metabolic differences between athletes with and without respiratory illnesses during an altitude training camp using urine samples and multivariate analysis. Methods: Twenty-seven elite rowers (15 males, 12 females) participated in a 12-day altitude training camp at 1850 m. Urine samples were collected daily, with nine athletes developing respiratory pathologies (8 COVID-19, 1 bronchitis). Nuclear Magnetic Resonance spectroscopy was used to analyze the samples, followed by data processing with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), allowing to use Variable Importance in Projection (VIP) scores to identify key metabolites contributing to group separation. Results: The PLS-DA model for respiratory illness showed good performance (R2 = 0.89, Q2 = 0.35, p < 0.05). Models for altitude training achieved higher predictive power (Q2 = 0.51 and 0.72, respectively). Metabolites kynurenine, N-methylnicotinamide, pyroglutamate, propionate, N-formyltryptophan, tryptophan and glucose were significantly highlighted in case of respiratory illness while trigonelline, 3-hydroxyphenylacetate, glutamate, creatine, citrate, urea, o-hydroxyhippurate, creatinine, hippurate and alanine were correlated to effort in altitude. This distinction confirms that respiratory illness induces a unique metabolic profile, clearly separable from hypoxia and training-induced adaptations. Conclusions: This study highlights the utility of metabolomics in identifying biomarkers of respiratory pathologies in athletes during altitude training, offering the potential for improved monitoring and intervention strategies. These findings could enhance athlete health management, reducing the impact of illness on performance during critical training periods. Further research with larger cohorts is warranted to confirm these results and explore targeted interventions. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

Back to TopTop