Purification, Structural Characterization, and Immunomodulatory Activity of an Exopolysaccharide from Acetilactobacillus jinshanensis BJ01 in Baijiu Fermentation Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction and Purification of EPS
2.3. EPS-1 Characterization
2.3.1. UV-vis Spectroscopy
2.3.2. Determination of Moisture Content, Solubility, Viscosity, and Gelling Capacity of EPS-1
2.3.3. Determination of Molecular Weight
2.3.4. Analysis of Monosaccharide Composition
2.3.5. FT-IR Analysis
2.3.6. Methylation Analysis
2.3.7. NMR Analysis
2.3.8. SEM and AFM Observation
2.4. In Vitro Immunomodulatory Activity of EPS-1
2.4.1. Cell Culture
2.4.2. Assessment of Cell Proliferation
2.4.3. Evaluation of Phagocytic Uptake Capacity
2.4.4. Quantification of NO and Cytokines
2.4.5. Quantification of iNOS, IL-6, and TNF-α mRNA Levels via qRT-PCR
2.4.6. Western Blot
2.5. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Purification
3.2. Characterization of EPS-1
3.2.1. UV-vis Spectroscopy Analysis
3.2.2. Moisture Content, Solubility, Viscosity, and Gelling Capacity of EPS-1
3.2.3. Molecular Weight Determination, and Monosaccharide Analysis
3.2.4. FT-IR Spectroscopy
3.2.5. Methylation Analysis
3.2.6. NMR Spectroscopy Analysis
3.2.7. SEM and AFM Observation of EPS-1
3.3. Immunomodulatory Activity of EPS-1
3.3.1. Impact of EPS-1 on RAW 264.7 Cell Viability
3.3.2. Influence of EPS-1 on Phagocytic Activity in RAW 264.7 Cells
3.3.3. Influence of EPS-1 on the Production of NO, IL-6, and TNF-α in RAW 264.7 Cells
3.3.4. Impact of EPS-1 on mRNA Levels of iNOS, IL-6, and TNF-α
3.3.5. Western Blot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primer | Primer Sequences |
---|---|
iNOS | Forward (5′-3′): GACGAGACGGATAGGCAGAGATTG |
Reverse (5′-3′): AACTCTTCAAGCACCTCCAGGAAC | |
IL-6 | Forward (5′-3′): TCTATACCACTTCACAAGTCGGA |
Reverse (5′-3′): GAATTGCCATTGCACAACTCTTT | |
TNF-α | Forward (5′-3′): ACGCTCTTCTGTCTACTGAACTTCG |
Reverse (5′-3′): TGGTTTGTGAGTGTGAGGGTCTG | |
GAPDH | Forward (5′-3′): GCAAATTCAACGGCACAGTCAAG |
Reverse (5′-3′): TCGCTCCTGGAAGATGGTGATG |
Appendix B
References
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Daba, G.M.; Elnahas, M.O.; Elkhateeb, W.A. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int. J. Biol. Macromol. 2021, 173, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Di Martino, L.; Li, J. Natural polysaccharides-based postbiotics and their potential applications. Explor. Med. 2024, 5, 444–458. [Google Scholar] [CrossRef]
- Sorensen, H.M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Exopolysaccharides of lactic acid bacteria: Production, purification and health benefits towards functional food. Nutrients 2022, 14, 2938. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, K.; Yin, S.; Liu, S.; Zhu, Y.; Yang, Y.; Wang, C. Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle. Int. J. Biol. Macromol. 2019, 134, 516–526. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Dueñas, M.T.; Prieto, A.; Garrote, G.L.; Abraham, A.G. Exopolysaccharide-producing Lacticaseibacillus paracasei strains isolated from kefir as starter for functional dairy products. Front. Microbiol. 2023, 14, 1110177. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, D.-M.; Huang, Y.-Y. Exopolysaccharides from Lactiplantibacillus plantarum: Isolation, purification, structure–function relationship, and application. Eur. Food Res. Technol. 2023, 249, 1431–1448. [Google Scholar] [CrossRef]
- Yang, Y.J.; Chen, G.Q.; Zhao, X.Q.; Cao, X.H.; Wang, L.; Mu, J.J.; Qi, F.H.; Liu, L.J.; Zhang, H.B. Structural characterization, antioxidant and antitumor activities of the two novel exopolysaccharides produced by Debaryomyces hansenii DH-1. Int. J. Mol. Sci. 2023, 24, 335. [Google Scholar] [CrossRef]
- Qi, M.X.; Zheng, C.J.; Wu, W.H.; Yu, G.L.; Wang, P.P. Exopolysaccharides from marine microbes: Source, structure and application. Mar. Drugs 2022, 20, 512. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Z.H.; Qiu, L.; Zhang, F.; Xu, X.P.; Wei, H.; Tao, X.Y. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J. Dairy Sci. 2017, 100, 6895–6905. [Google Scholar] [CrossRef]
- Xia, W.; Han, J.; Zhu, S.; Wang, Y.; Zhang, W.; Wu, Z. Structural elucidation of the exopolysaccharide from Streptococcus thermophilus XJ53 and the effect of its molecular weight on immune activity. Int. J. Biol. Macromol. 2023, 230, 123177. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.T.; Huang, X.; Dou, M.K.; Tang, S.Q.; Wang, G.; Fan, Y.J.; Luo, A.X.; Wang, G.; Wang, Y. Structural characterization and immunoenhancing properties of polysaccharide CPTM-P1 from Taxus media. Molecules 2024, 29, 1370. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.H.; Zhao, M.H.; Xie, S.W.; Peng, D.; An, M.Q.; Chen, Y.; Li, P.; Du, B. Effect of steam explosion pretreatment on polysaccharide isolated from Poria cocos: Structure and immunostimulatory activity. J. Food Biochem. 2022, 46, e14355. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cui, Y.; Qu, X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr. Polym. 2019, 207, 317–332. [Google Scholar] [CrossRef]
- Ayyash, M.; Abu-Jdayil, B.; Olaimat, A.; Esposito, G.; Itsaranuwat, P.; Osaili, T.; Obaid, R.; Kizhakkayil, J.; Liu, S.-Q. Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydr. Polym. 2020, 229, 115462. [Google Scholar] [CrossRef]
- Kanmani, P.; Albarracin, L.; Kobayashi, H.; Hebert, E.M.; Saavedra, L.; Komatsu, R.; Gatica, B.; Miyazaki, A.; Ikeda-Ohtsubo, W.; Suda, Y.; et al. Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of theantiviral activities of its extracellularpolysaccharides in porcine intestinal epithelial cells. Front. Immunol. 2018, 9, 2178. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Sun, Q.; Zhang, S.M.; Sun, X.Y.; Li, C.Y.; Zheng, M.X.; Xiang, W.L.; Tang, J. Characterization and antioxidant activity of released exopolysaccharide from potential probiotic Leuconostoc mesenteroides LM187. J. Microbiol. Biotechnol. 2021, 31, 1144–1153. [Google Scholar] [CrossRef]
- Liao, Y.; Gao, M.; Wang, Y.; Liu, X.; Zhong, C.; Jia, S. Structural characterization and immunomodulatory activity of exopolysaccharide from Aureobasidium pullulans CGMCC 23063. Carbohydr. Polym. 2022, 288, 119366. [Google Scholar] [CrossRef]
- Lee, M.-G.; Joeng, H.; Shin, J.; Kim, S.; Lee, C.; Song, Y.; Lee, B.-H.; Park, H.-G.; Lee, T.-H.; Jiang, H.-H.; et al. Potential probiotic properties of exopolysaccharide-producing Lacticaseibacillus paracasei EPS DA-BACS and prebiotic activity of its exopolysaccharide. Microorganisms 2022, 10, 2431. [Google Scholar] [CrossRef]
- Sun, L.; Yang, Y.; Lei, P.; Li, S.; Xu, H.; Wang, R.; Qiu, Y.; Zhang, W. Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Pantoea alhagi NX-11. Carbohydr. Polym. 2021, 261, 117872. [Google Scholar] [CrossRef]
- Salimi, F.; Farrokh, P. Recent advances in the biological activities of microbial exopolysaccharides. World J. Microbiol. Biotechnol. 2023, 39, 213. [Google Scholar] [CrossRef] [PubMed]
- Netrusov, A.I.; Liyaskina, E.V.; Kurgaeva, I.V.; Liyaskina, A.U.; Yang, G.; Revin, V.V. Exopolysaccharides producing bacteria: A review. Microorganisms 2023, 11, 1541. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Li, Y.; Zhang, Y.; Yang, Y.; Yang, T.; Miao, L. Comparative analysis of the transcriptional responses of Acetilactobacillus jinshanensis BJ01 to organic acids. Arch. Microbiol. 2023, 205, 381. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Li, W.T.; Guo, Y.L.; Chen, H.M.; Chen, W.X.; Zhang, H.L.; Zhang, M.; Zhong, Q.P.; Chen, W.J. Physicochemical characterization of an exopolysaccharide produced by Lipomyces sp. and investigation of rheological and interfacial behavior. Gels 2021, 7, 156. [Google Scholar] [CrossRef]
- Dai, G.A.; Wang, J.L.; Zheng, J.M.; Xia, C.L.; Wang, Y.P.; Duan, B.Z. Bioactive polysaccharides from lotus as potent food supplements: A review of their preparation, structures, biological features and application prospects. Front. Nutr. 2023, 10, 1171004. [Google Scholar] [CrossRef]
- Mete, M.; Ojha, A.; Bhattacharjee, H.; Das, D. Rheological, hygroscopic, and bioactive properties of prebiotic dextran from Limosilactobacillus fermentum CFW6: Optimization and application as a texture enhancer in soy and ragi milk. Food Biosci. 2025, 69, 106858. [Google Scholar] [CrossRef]
- Li, J.; Hao, X.D.; Gan, W.; van Loosdrecht, M.C.M.; Wu, Y.Y. Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation. Water Res. 2021, 205, 117706. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, R.; Wen, P.; Song, Y.; He, B.; Tan, J.; Hao, H.; Wang, H. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohydr. Polym. 2021, 254, 117371. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, S.; Li, H.; An, J.; Li, C.; Zhou, R.; Teng, L.; Zhu, Y.; Liao, S.; Yang, Y.; et al. Structural characterization of Alpiniae oxyphyllae fructus polysaccharide 2 and its activation effects on RAW264.7 macrophages. Int. Immunopharmacol. 2021, 97, 107708. [Google Scholar] [CrossRef]
- Pozzolini, M.; Scarfi, S.; Benatti, U.; Giovine, M. Interference in MTT cell viability assay in activated macrophage cell line. Anal. Biochem. 2003, 313, 338–341. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Yue, Y.; Wu, Y.; Zhang, W.; Xia, W.; Wu, M. Purification, structure identification and immune activity of a neutral polysaccharide from Cynanchum auriculatum. Int. J. Biol. Macromol. 2023, 237, 124142. [Google Scholar] [CrossRef] [PubMed]
- van der Zande, H.J.P.; Nitsche, D.; Schlautmann, L.; Guigas, B.; Burgdorf, S. The mannose receptor: From endocytic receptor and biomarker to regulator of (Meta) inflammation. Front. Immunol. 2021, 12, 765034. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ke, S.; Strappe, P.; Ning, M.; Zhou, Z. Structurally Orientated Rheological and Gut Microbiota Fermentation Property of Mannans Polysaccharides and Oligosaccharides. Foods 2023, 12, 4002. [Google Scholar] [CrossRef]
- Ge, Z.W.; Wang, D.; Zhao, W.T.; Wang, P.; Dai, Y.Q.; Dong, M.S.; Wang, J.J.; Zhao, Y.Y.; Zhao, X.Y. Structural and functional characterization of exopolysaccharide from Leuconostoc citreum BH10 discovered in birch sap. Carbohydr. Res. 2024, 535, 108994. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, A.; Manivannan, A.C.; Bharathi, G.S.J.; Balasubramanian, V.; Velmurugan, P.; Sivasubramanian, K.; Muruganandham, M.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; et al. Production and characterization of exopolysaccharide (EPS) from marine Bacillus halotolerans and its antibacterial activity against clinical pathogens. Biologia 2024, 79, 605–619. [Google Scholar] [CrossRef]
- Jiang, G.Y.; Li, R.; He, J.; Yang, L.; Chen, J.; Xu, Z.; Zheng, B.J.; Yang, Y.C.; Xia, Z.M.; Tian, Y.Q. Extraction, structural analysis, and biofunctional properties of exopolysaccharide from Lactiplantibacillus pentosus B8 isolated from Sichuan Pickle. Foods 2022, 11, 2327. [Google Scholar] [CrossRef]
- Silva, L.A.; Neto, J.; Cardarelli, H.R. Exopolysaccharides produced by Lactobacillus plantarum: Technological properties, biological activity, and potential application in the food industry. Ann. Microbiol. 2019, 69, 321–328. [Google Scholar] [CrossRef]
- Yu, L.S.; Ye, G.B.; Qi, X.T.; Yang, Y.; Zhou, B.S.; Zhang, Y.Y.; Du, R.P.; Ge, J.P.; Ping, W.X. Purification, characterization and probiotic proliferation effect of exopolysaccharides produced by Lactiplantibacillus plantarum HDC-01 isolated from sauerkraut. Front. Microbiol. 2023, 14, 1210302. [Google Scholar] [CrossRef]
- Wu, Y.T.; Jin, Z.; Wang, X.R.; Ji, Q.Y.; Bao, D.; Jin, G.G.; Shan, B.; Mei, L.; Qi, J. Characterization of the exopolysaccharide produced by Pediococcus acidilactici S1 and its effect on the gel properties of fat substitute meat mince. Int. J. Biol. Macromol. 2024, 270, 132262. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Luo, Z.T.; Zhao, Z.Y.; Mu, Y.C.; Xu, J.H.; Dai, S.S.; Cui, Y.M.; Ying, M.; Hu, X.; Huang, L. Isolation, structural characterization and multiple activity of a novel exopolysaccharide produced by Gelidibacter sp. PG-2. Int. J. Biol. Macromol. 2025, 305, 141127. [Google Scholar] [CrossRef]
- Qi, Z.; Gao, T.; Li, J.; Zhou, S.; Zhang, Z.; Yin, M.; Hu, H.; Liu, H. Structural characterization and prebiotic potential of polysaccharides from Polygonatum sibiricum. Food Sci. Hum. Wellness 2024, 13, 2208–2220. [Google Scholar] [CrossRef]
- Huang, T.Y.; Yang, F.L.; Chiu, H.W.; Chao, H.C.; Yang, Y.J.; Sheu, J.H.; Hua, K.F.; Wu, S.H. An immunological polysaccharide from Tremella fuciformis: Essential role of acetylation in immunomodulation. Int. J. Mol. Sci. 2022, 23, 10392. [Google Scholar] [CrossRef] [PubMed]
- Penroj, P.; Mitchell, J.R.; Hill, S.E.; Ganjanagunchorn, W. Effect of konjac glucomannan deacetylation on the properties of gels formed from mixtures of kappa carrageenan and konjac glucomannan. Carbohydr. Polym. 2005, 59, 367–376. [Google Scholar] [CrossRef]
- Sheng, S.; Fu, Y.; Pan, N.; Zhang, H.; Xiu, L.; Liang, Y.; Liu, Y.; Liu, B.; Ma, C.; Du, R.; et al. Novel exopolysaccharide derived from probiotic Lactobacillus pantheris TCP102 strain with immune-enhancing and anticancer activities. Front. Microbiol. 2022, 13, 1015270. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Chang, S.L.; Tian, Y.M.; Li, W.; Ren, J.L. Glucan polysaccharides isolated from Lactarius hatsudake Tanaka mushroom: Structural characterization and in vitro bioactivities. Carbohydr. Polym. 2024, 337, 122171. [Google Scholar] [CrossRef]
- You, X.; Yang, L.; Zhao, X.; Ma, K.; Chen, X.; Zhang, C.; Wang, G.; Dong, M.; Rui, X.; Zhang, Q.; et al. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. Int. J. Biol. Macromol. 2020, 158, 408–419. [Google Scholar] [CrossRef]
- Du, B.; Yang, Y.D.; Bian, Z.X.; Xu, B.J. Characterization and anti-inflammatory potential of an exopolysaccharide from submerged mycelial culture of Schizophyllum commune. Front. Pharmacol. 2017, 8, 252. [Google Scholar] [CrossRef]
- Wang, Z.N.; Guan, Y.; Yang, R.; Li, J.J.; Wang, J.S.; Jia, A.Q. Anti-inflammatory activity of 3-cinnamoyltribuloside and its metabolomic analysis in LPS-activated RAW 264.7 cells. BMC Complement. Med. Ther. 2020, 20, 329. [Google Scholar] [CrossRef]
- Goyal, M.; Baranwal, M.; Pandey, S.K.; Reddy, M.S. Hetero-polysaccharides secreted from Dunaliella salina exhibit immunomodulatory activity against peripheral blood mononuclear cells and RAW 264.7 macrophages. Indian J. Microbiol. 2019, 59, 428–435. [Google Scholar] [CrossRef]
- Lu, Y.M.; Wu, Y.Y.; Pan, L.A.; Wang, J.Q.; Tang, R.X.; Deng, F.M.; Kang, W.L.; Zhao, L.Y. In Vitro screening of lactic acid bacteria with RAW264.7 macrophages and the immunoregulatory mechanism. Processes 2024, 12, 903. [Google Scholar] [CrossRef]
- Hwang, C.H.; Kim, K.T.; Lee, N.K.; Paik, H.D. Immune-enhancing effect of heat-treated Levilactobacillus brevis KU15159 in RAW 264.7 cells. Probiotics Antimicrob. Proteins 2023, 15, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef] [PubMed]
- Phulphagar, K.; Kuhn, L.I.; Ebner, S.; Frauenstein, A.; Swietlik, J.J.; Rieckmann, J.; Meissner, F. Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Rep. 2021, 34, 108826. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) immunotherapy. Cold Spring Harb. Perspect. Biol. 2018, 10, a028456. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012, 119, 651–665. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.X.; Xie, L.M.; Xie, J.H.; Shen, M.Y. Sulfated Chinese yam polysaccharide enhances the immunomodulatory activity of RAW 264.7 cells via the TLR4-MAPK/NF-κB signaling pathway. Food Funct. 2022, 13, 1316–1326. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Bi, D.C.; Wu, M.C.; Yu, B.M.; Hu, L.; Liu, C.C.; Gu, L.; Zhu, H.; Lei, A.P.; Xu, X.; et al. Immune activation of murine RAW264.7 macrophages by sonicated and alkalized paramylon from Euglena gracilis. BMC Microbiol. 2020, 20, 171. [Google Scholar] [CrossRef]
- Gilmore, T.D.; Garbati, M.R. Inhibition of NF-kappaB signaling as a strategy in disease therapy. Curr. Top. Microbiol. Immunol. 2011, 349, 245–263. [Google Scholar] [CrossRef]
- Sehnert, B.; Burkhardt, H.; Dubel, S.; Voll, R.E. Cell-type targeted NF-kappaB inhibition for the treatment of inflammatory diseases. Cells 2020, 9, 1627. [Google Scholar] [CrossRef]
- Feng, S.B.; Ding, H.Y.; Liu, L.H.; Peng, C.L.; Huang, Y.Y.; Zhong, F.C.; Li, W.; Meng, T.T.; Li, J.C.; Wang, X.C.; et al. Astragalus polysaccharide enhances the immune function of RAW264.7 macrophages via the NF-κB p65/MAPK signaling pathway. Exp. Ther. Med. 2021, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.M.; Li, Y.; Su, Q.; Chen, S.Y.; Li, Q.H.; Guo, H.X.; Meng, X.C.; Liu, F. A mannose-rich exopolysaccharide-1 isolated from Bifidobacterium breve mitigates ovalbumin-induced intestinal damage in mice by modulation CD4+T cell differentiation and inhibiting NF-κB signaling pathway. Int. J. Biol. Macromol. 2024, 280, 135850. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.M.; Guo, H.X.; Shang, J.C.; Meng, X.C. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from Bifidobacterium breve H4-2. J. Agric. Food Chem. 2023, 71, 19791–19803. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
Parameters | EPS-1 |
---|---|
Mn(kDa) | 69.65 |
Mw | 156.58 |
Mz | 220.03 |
Monosaccharides | (mg/g) |
Mannose | 391.49 |
Xylose | 62.11 |
Glucose | 12.88 |
Linkage Type | Mass Fragments (m/z) | Molar Ratio (%) |
---|---|---|
t-Manp | 87, 102, 118, 129, 145, 161, 162, 205 | 33.80 |
2-Xylp | 88, 101, 117, 129, 130, 161, 190 | 2.19 |
3-Manp | 87, 101, 118, 129, 161, 202, 234 | 14.72 |
2-Manp | 88, 101, 129, 130, 161, 190, 205 | 19.44 |
6-Manp | 87, 99, 102, 118, 129, 162, 189, 233 | 4.09 |
3,4-Glcp | 87, 118, 129, 143, 185, 203, 305 | 2.11 |
2,6-Manp | 87, 88, 99, 100, 129, 130, 189, 190 | 22.48 |
2,3,6-Glcp | 71, 87, 100, 129, 130, 159, 160, 189, 202, 262 | 1.17 |
Code | Residues | Chemical Shifts (δ, ppm) | |||||
---|---|---|---|---|---|---|---|
H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6,6′/C6 | ||
A | α-D-Manp-(1→ | 4.98/102.17 | 4.16/69.60 | 3.82/70.33 | 3.96/69.59 | 3.71/73.29 | 3.83,3.77/61.08 |
B | →2,6)-α-D-Manp-(1→ | 5.23/100.54 | 4.05/78.41 | 3.86/70.30 | 3.91/69.72 | 3.61/73.39 | 3.69,3.58/66.88 |
C | →2)-α-D-Manp-(1→ | 5.03/98.21 | 3.96/78.64 | 3.68/71.17 | 3.85/69.54 | 3.57/70.34 | 3.69,3.81/61.04 |
D | →3)-α-D-Manp-(1→ | 5.08/102.17 | 4.01/70.04 | 3.88/77.88 | 3.79/69.60 | 3.76/70.51 | 3.61/60.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, T.; Wan, B.; Xiong, Y.; Wang, H.; An, Y.; Gao, R.; Liu, P.; Zhang, M.; Miao, L.; Liao, W. Purification, Structural Characterization, and Immunomodulatory Activity of an Exopolysaccharide from Acetilactobacillus jinshanensis BJ01 in Baijiu Fermentation Grains. Foods 2025, 14, 2162. https://doi.org/10.3390/foods14132162
Tian T, Wan B, Xiong Y, Wang H, An Y, Gao R, Liu P, Zhang M, Miao L, Liao W. Purification, Structural Characterization, and Immunomodulatory Activity of an Exopolysaccharide from Acetilactobacillus jinshanensis BJ01 in Baijiu Fermentation Grains. Foods. 2025; 14(13):2162. https://doi.org/10.3390/foods14132162
Chicago/Turabian StyleTian, Tian, Bo Wan, Ying Xiong, Han Wang, Yuanyuan An, Ruijie Gao, Pulin Liu, Mingchun Zhang, Lihong Miao, and Weifang Liao. 2025. "Purification, Structural Characterization, and Immunomodulatory Activity of an Exopolysaccharide from Acetilactobacillus jinshanensis BJ01 in Baijiu Fermentation Grains" Foods 14, no. 13: 2162. https://doi.org/10.3390/foods14132162
APA StyleTian, T., Wan, B., Xiong, Y., Wang, H., An, Y., Gao, R., Liu, P., Zhang, M., Miao, L., & Liao, W. (2025). Purification, Structural Characterization, and Immunomodulatory Activity of an Exopolysaccharide from Acetilactobacillus jinshanensis BJ01 in Baijiu Fermentation Grains. Foods, 14(13), 2162. https://doi.org/10.3390/foods14132162