Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,046)

Search Parameters:
Keywords = helium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 15363 KB  
Communication
Fractional-Order Identification of Gyroscope MEMS Noise Under Helium Exposure
by Dominik Sierociuk, Michal Macias and Konrad Andrzej Markowski
Sensors 2025, 25(22), 6954; https://doi.org/10.3390/s25226954 - 13 Nov 2025
Abstract
This paper tackles the problem of noise analysis and identification in the gyroscope of the LSM06DSO32 inertial navigation sensor based on MEMS technology, under helium exposure. This study focuses on analyzing the bias and variance of the gyroscope noise, as well as identifying [...] Read more.
This paper tackles the problem of noise analysis and identification in the gyroscope of the LSM06DSO32 inertial navigation sensor based on MEMS technology, under helium exposure. This study focuses on analyzing the bias and variance of the gyroscope noise, as well as identifying its model’s order using fractional-order calculus. The order was estimated using methods based on variance and correlation analysis of data collected from the sensor at various time intervals during helium exposure. This work extends previous research on analyzing and identifying inertial sensor noise under varying temperature conditions. Considering that helium exposure may significantly influence IMU measurements, this study presents a detailed investigation into the evolution of gyroscope noise under prolonged helium exposure, followed by an analysis of the sensor’s behavior after its removal from the helium environment. Full article
(This article belongs to the Special Issue MEMS Resonators and Sensors)
Show Figures

Figure 1

19 pages, 4593 KB  
Article
Effects of Grooved Surfaces and Lubrication Media on the Performance of Hybrid Gas Journal Bearings
by Adesh Kumar Tomar, Krishnkant Sahu, Satish C. Sharma and Max Marian
Lubricants 2025, 13(11), 492; https://doi.org/10.3390/lubricants13110492 - 10 Nov 2025
Viewed by 108
Abstract
Gas bearings are attractive for sustainable, high-speed, and cryogenic applications, where gases replace liquid lubricants. This study numerically analyzed hybrid gas journal bearings lubricated with hydrogen, nitrogen, air, and helium, and quantifies the impact of circumferential micro-grooves. The compressible Reynolds equation was solved [...] Read more.
Gas bearings are attractive for sustainable, high-speed, and cryogenic applications, where gases replace liquid lubricants. This study numerically analyzed hybrid gas journal bearings lubricated with hydrogen, nitrogen, air, and helium, and quantifies the impact of circumferential micro-grooves. The compressible Reynolds equation was solved by the finite element method with constant-flow valve restrictors, while Gauss–Seidel iterations were used for convergence. The model was verified against published theoretical and experimental data with maximum deviations below 6%, and mesh independence is confirmed. The parametric results show that the gas type and texturing jointly controlled static and dynamic performance. Helium (highest viscosity) yielded the largest minimum film thickness, whereas hydrogen (lowest viscosity) attained higher peak pressures at a lower film thickness for a given load. Grooves redistributed pressure and reduced both the maximum pressure and the minimum film thickness, but they also lowered the frictional torque. Quantitatively, the hydrogen-lubricated grooved bearing reduced the frictional torque by up to 50% compared with the non-grooved air-lubricated bearing at the same load. Relative to air, hydrogen increased stiffness and damping by up to 10% and 50%, respectively, and raised the stability threshold speed by 110%. Conversely, grooves decreased the stiffness, damping, and stability threshold speed compared with non-grooved surfaces, revealing a trade-off between friction reduction and dynamic stability. These findings provide design guidance for selecting gas media and surface texturing to tailor hybrid gas journal bearings to application-specific requirements. Full article
(This article belongs to the Special Issue Advances in Lubricated Bearings, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 4415 KB  
Article
Hydrogen–Dislocation Interactions at Cryogenic Temperatures: Serrated Yielding and Embrittlement Resistance in High-Strength Austenitic Alloys
by Nina Damm, Marina Lukas, Jan Platl, Andreas Drexler, Matthias Eichinger, Magdalena Eskinja, Gregor Mori, Zoltán Simon, Michael Scheerer, Stefan Marsoner and Vsevolod I. Razumovskiy
Materials 2025, 18(22), 5109; https://doi.org/10.3390/ma18225109 - 10 Nov 2025
Viewed by 239
Abstract
Comprehensive studies of hydrogen embrittlement in high-strength austenitic alloys under cryogenic conditions are scarce, leaving the combined effect of hydrogen charging and extreme temperatures largely unexplored. Given the demands of cryogenic applications such as hydrogen storage and transport, understanding material behavior under these [...] Read more.
Comprehensive studies of hydrogen embrittlement in high-strength austenitic alloys under cryogenic conditions are scarce, leaving the combined effect of hydrogen charging and extreme temperatures largely unexplored. Given the demands of cryogenic applications such as hydrogen storage and transport, understanding material behavior under these conditions is crucial. Here, we present the first systematic study of hydrogen’s effect at liquid helium temperature (4.2 K) on the mechanical properties of precipitation hardened austenitic alloys, specifically the nickel-based Alloy 718 and austenitic stainless steel A286. Both materials were subjected to pressurized hydrogen charging at 473 K followed by slow strain rate tensile testing at room temperature and at 4.2 K. Hydrogen charging caused significant ductility loss at room temperature in both alloys. In contrast, testing at 4.2 K resulted in increased strength and no evidence of hydrogen embrittlement. Notably, materials pre-charged with hydrogen and tested at 4.2 K exhibited higher stress drop amplitudes and increased strain accumulation during serration events, suggesting persistent hydrogen–dislocation interactions and possible enhanced dislocation pinning by obstacles such as Lomer–Cottrell locks. These results indicate that while hydrogen influences plasticity mechanisms at cryogenic temperatures, embrittlement is suppressed, providing new insight into the safe development of austenitic alloys in cryogenic hydrogen environments. Full article
(This article belongs to the Special Issue Corrosion and Tribological Behaviour of Materials)
Show Figures

Figure 1

13 pages, 2651 KB  
Article
Inactivation Effect and Influencing Factors of Cold Atmospheric Plasma Treatment with Bacteria on Food Contact Materials
by Mingyan Chen, Chenhong Wang, Tian Xie, Zheng Chen and Guimin Xu
Plasma 2025, 8(4), 46; https://doi.org/10.3390/plasma8040046 - 10 Nov 2025
Viewed by 185
Abstract
This study investigated the inactivation effect and influencing factors of cold atmospheric plasma (CAP) treatment with Salmonella typhimurium and Staphylococcus aureus populations on three food contact materials (FCMs)—kraft paper, 304 stainless steel, and glass. The CAP was generated as an atmospheric helium plasma [...] Read more.
This study investigated the inactivation effect and influencing factors of cold atmospheric plasma (CAP) treatment with Salmonella typhimurium and Staphylococcus aureus populations on three food contact materials (FCMs)—kraft paper, 304 stainless steel, and glass. The CAP was generated as an atmospheric helium plasma jet (15 kV, 10.24 kHz, He 4 L/m), and the experimental results indicated that its inactivation effects on two bacterial species gradually increased as the plasma treatment duration increased (0, 1, 2, 3, 4, and 5 min). Three classical sterilization kinetic models (Log-linear, Weibull, and Log-linear + Shoulder + Tail) were employed to evaluate the inactivation efficiency of plasma against bacteria FCMs. Combined with the coefficient of determination (R2), accuracy factor (Af), and bias factor (Bf), together with the root mean square error (RMSE), it can be concluded that the Log-linear + Shoulder + Tail model had the highest fitting degree among the three sterilization kinetics models. Salmonella typhimurium exhibited weaker resistance than Staphylococcus aureus to the same CAP treatment. Under the same conditions, CAP had the strongest bactericidal effect on the bacteria on the glass surface, followed by those on the 304 stainless steel, and had the weakest bactericidal effect on the bacteria on the kraft paper surface, which might be related to the surface hydrophilicity and roughness of the FCMs. The above results indicated that CAP’s inactivation effect may be influenced by the microbial species as well as the surface characteristics of FCMs. This study provides useful information for future applications of CAP in enhancing food safety. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

25 pages, 717 KB  
Review
A Review of the Research and Development of Brayton Cycle Technology in Nuclear Power Applications with a Focus on Compressor Technology
by Aidan Rigby, Logan Williams, Václav Novotný, Tyler Westover, Rami Saeed and Junyung Kim
Energies 2025, 18(22), 5870; https://doi.org/10.3390/en18225870 - 7 Nov 2025
Viewed by 263
Abstract
This study reviews the integration of Brayton Cycle (BC) systems in nuclear power generation, emphasizing their potential to enhance thermal efficiency and operational flexibility over traditional Rankine Cycle (RC) systems. Key working fluids, such as helium (He), supercritical carbon dioxide (sCO2), [...] Read more.
This study reviews the integration of Brayton Cycle (BC) systems in nuclear power generation, emphasizing their potential to enhance thermal efficiency and operational flexibility over traditional Rankine Cycle (RC) systems. Key working fluids, such as helium (He), supercritical carbon dioxide (sCO2), nitrogen (N2), and air, are evaluated for their performance, efficiency, and compatibility with nuclear systems. He is recognized for its high thermal conductivity and inertness at elevated temperatures, while sCO2 demonstrates advantages in compactness and efficiency in midrange temperatures. This article also highlights the importance of compressor designs in optimizing BC performance and reviews, available compressor technologies. Axial and centrifugal compressor designs enable efficient gas compression while managing the thermal and mechanical stresses associated with high-pressure operations in nuclear systems. Combined with variable geometry components and advanced materials, these technologies address the challenges posed by varying load conditions. Despite the promising features of BC systems, several challenges persist, including high leakage rates and material degradation under extreme conditions, which necessitate robust sealing technologies and thorough testing. The insights gained from operational experiences at facilities, such as the Oberhausen II plant and the High-Temperature He Test Facility (HHV), underscore the complexities involved in designing high-temperature gas turbines for nuclear applications. This review concludes that as the nuclear industry evolves, BC systems hold significant promise for contributing to a sustainable energy future, particularly in the context of small modular reactors (SMRs) and microreactors. Further exploration of combined cycle configurations that combine BCs with RCs may enhance overall efficiency and flexibility in power generation. Full article
Show Figures

Figure 1

18 pages, 7087 KB  
Article
Fractal Characterization and Quantitative Petrophysical Prediction of Low-Permeability Glutenite Reservoirs in the Qaidam Basin, NW China
by Yuhang Ren, Zhengbin Wu, Cheng Yang, Kun Shu and Shu Jiang
Eng 2025, 6(11), 311; https://doi.org/10.3390/eng6110311 - 5 Nov 2025
Viewed by 175
Abstract
Low-permeability glutenite reservoirs in the Qaidam Basin, NW China, exhibit intricate pore networks and strong heterogeneity that hinder effective hydrocarbon development. Here, we integrate thin-section petrography, scanning electron microscopy (SEM), mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR) to characterize pore [...] Read more.
Low-permeability glutenite reservoirs in the Qaidam Basin, NW China, exhibit intricate pore networks and strong heterogeneity that hinder effective hydrocarbon development. Here, we integrate thin-section petrography, scanning electron microscopy (SEM), mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR) to characterize pore types and establish quantitative links between fractal dimension and petrophysical properties. The reservoirs are mainly pebbly sandstones and sandy conglomerates with 15–23% quartz, 27–37% feldspar, and 2–20% carbonate/muddy matrix. Helium porosity ranges from 5.12% to 18.11% (mean 9.39%) and air permeability from 60 to 3270 mD (mean 880 mD). Fine pores (1–10 μm) dominate, throats are short and poorly connected, and illite (up to 16.76%) lines pore walls, further reducing permeability. Fractal analysis yields weighted-average dimensions of 2.55, 2.50, and 2.15 for macro-, meso-, and micropores, respectively, giving an overall dimension of 2.52. Higher dimensions correlate negatively with porosity and permeability. Empirical models (quadratic for porosity and exponential for permeability) predict core data within 0.86% and 5.4% error, validated by six blind wells. Reservoirs are classified as Class I (>12%, >1.0 mD), Class II (8–12%, 0.5–1.0 mD), and Class III (<8%, <0.5 mD), providing a robust tool for stimulation design and numerical simulation. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

23 pages, 1650 KB  
Review
Development of Cryogenic Structural Steels for Magnetic Confinement Fusion
by Jingjing Dai and Chuanjun Huang
Cryo 2025, 1(4), 13; https://doi.org/10.3390/cryo1040013 - 30 Oct 2025
Viewed by 211
Abstract
With the growth in global energy demand and increasing concern over the environmental issues associated with fossil fuels, magnetic confinement fusion (MCF) has gained widespread attention as a clean and sustainable energy solution. The superconducting magnet systems in MCF devices operate under liquid [...] Read more.
With the growth in global energy demand and increasing concern over the environmental issues associated with fossil fuels, magnetic confinement fusion (MCF) has gained widespread attention as a clean and sustainable energy solution. The superconducting magnet systems in MCF devices operate under liquid helium temperature of 4.2 K and strong magnetic fields, requiring structural materials to possess exceptional high strength, high toughness, and non-magnetic properties. This paper reviews recent research advances in cryogenic high-strength and high-toughness austenitic stainless steels (ASSs) for MCF devices, focusing on modified grades like 316LN and JK2LB used in the International Thermonuclear Experimental Reactor (ITER) project, as well as China’s CHN01 steel developed for the China Fusion Engineering Test Reactor (CFETR) project. The mechanical properties at 4.2 K (including yield strength (Rp0.2), fracture toughness (K(J)Ic), and Elongation (e)), microstructural evolutions, weldability, and manufacturing challenges of these materials are systematically analyzed. Finally, the different technical approaches and achievements in material development among Japan, the United States, and China are compared, the current limitations of these materials in terms of weld integrity and manufacturability are discussed, and future research directions are outlined. Full article
Show Figures

Figure 1

22 pages, 11428 KB  
Article
Cold Atmospheric Plasma Selectively Targets Neuroblastoma: Mechanistic Insights and In Vivo Validation
by Ligi Milesh, Bindu Nair, Ha M. Nguyen, Taylor Aiken, J. Leon Shohet and Hau D. Le
Cancers 2025, 17(21), 3432; https://doi.org/10.3390/cancers17213432 - 25 Oct 2025
Viewed by 455
Abstract
Background: Neuroblastoma (NB) presents significant challenges in pediatric oncology, particularly in high-risk cases where local recurrence occurs in ~35% of patients. Cold Atmospheric Plasma (CAP) has emerged as a promising treatment due to its selective cytotoxicity toward cancer cells while sparing normal cells. [...] Read more.
Background: Neuroblastoma (NB) presents significant challenges in pediatric oncology, particularly in high-risk cases where local recurrence occurs in ~35% of patients. Cold Atmospheric Plasma (CAP) has emerged as a promising treatment due to its selective cytotoxicity toward cancer cells while sparing normal cells. Methods: This study assessed CAP efficacy using in vitro NB cell lines (SK-N-AS and LAN-5) and in vivo xenograft murine models. In vitro, CAP was applied via a helium jet, and cellular responses were evaluated for viability, reactive oxygen species (ROS), lipid peroxidation, DNA damage, and cell cycle, while apoptosis was measured by Annexin V/PI flow cytometry. In vivo, CAP was applied to unresected tumors and residual tumors after incomplete resection. Tumor regrowth was monitored, and histological analysis was performed. Results: CAP reduced NB cell viability in a dose- and time-dependent manner by increasing intracellular ROS and lipid peroxidation. CAP-treated NB cells showed a 50% rise in oxidative DNA damage, a two-fold increase in apoptosis, and alterations in cell-cycle progression, while normal fibroblasts showed modest effects. CAP predominantly induced apoptosis, though secondary necrosis appeared with prolonged exposures, consistent with caspase-3 and PARP pathways. In xenografts, CAP reduced tumor diameter by 60% and increased caspase-3-positive cells, with minimal effects on normal tissue. Conclusions: CAP demonstrates strong therapeutic potential as a targeted, non-invasive NB treatment, particularly for residual tumors near vascular structures with consistent exposure times (60–300 s). Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

19 pages, 1855 KB  
Article
Quantitative Reliability Evaluation for Cryogenic Impact Test Equipment
by Jae Il Bae, Young IL Park and Jeong-Hwan Kim
Appl. Sci. 2025, 15(20), 11280; https://doi.org/10.3390/app152011280 - 21 Oct 2025
Viewed by 410
Abstract
Cryogenic industries handling liquid hydrogen and helium require rigorous safety verification. However, current standards (ASTM, ASME, ISO) are optimized for LNG at −163 °C and remain inadequate for extreme cryogenic conditions such as −253 °C. As the temperature decreases, materials experience ductile-to-brittle transition, [...] Read more.
Cryogenic industries handling liquid hydrogen and helium require rigorous safety verification. However, current standards (ASTM, ASME, ISO) are optimized for LNG at −163 °C and remain inadequate for extreme cryogenic conditions such as −253 °C. As the temperature decreases, materials experience ductile-to-brittle transition, raising the risk of sudden fracture in testing equipment. This study presents a fuzzy-integrated reliability framework that combines fault tree analysis (FTA) and Failure Modes, Effects, and Criticality Analysis (FMECA). The method converts qualitative expert judgments into quantitative risk indices for use in data-scarce conditions. When applied to a cryogenic impact testing apparatus, the framework produced a total failure probability of 1.52 × 10−3, about 7.5% lower than the deterministic FTA result (1.64 × 10−3). These results confirm the framework’s robustness and its potential use in cryogenic testing and hydrogen systems. Full article
Show Figures

Figure 1

14 pages, 3001 KB  
Article
Investigation of Debris Mitigation in Droplet-Based Terbium Plasma Sources Produced by Laser Ablation Under Varying Buffer Gas Pressures
by Shuaichao Zhou, Tao Wu, Ziyue Wu, Junjie Tian and Peixiang Lu
Photonics 2025, 12(10), 1035; https://doi.org/10.3390/photonics12101035 - 19 Oct 2025
Viewed by 338
Abstract
The fragment suppression ability of terbium plasma generated by laser at different environmental pressures is investigated, with a focus on exploring the slowing effect of buffer gas on high-energy particles. Using two-dimensional radiation hydrodynamic simulations with the FLASH code, this study evaluates the [...] Read more.
The fragment suppression ability of terbium plasma generated by laser at different environmental pressures is investigated, with a focus on exploring the slowing effect of buffer gas on high-energy particles. Using two-dimensional radiation hydrodynamic simulations with the FLASH code, this study evaluates the debris mitigation efficiency of terbium plasma across a range of buffer gas pressures (50–1000 Pa). Key findings reveal that helium buffer gas exhibits a nonlinear pressure-dependent response in plasma dynamics and debris suppression. Specifically, at 1000 Pa helium, the plasma shockwave stops within stopping distance xst = 12.13 mm with an attenuation coefficient of b = 0.0013 ns−1, reducing radial expansion by 40% compared to 50 Pa (xst = 23.15 mm, b = 0.0010). This pressure scaling arises from enhanced collisional dissipation, confining over 80% of debris kinetic energy below 200 eV under 1000 Pa conditions. In contrast, argon exhibits superior stopping power within ion energy domains (≤1300 eV), attaining a maximum stopping power of 2000 eV·mm−1 at 1300 eV–a value associated with a 6.4-times-larger scattering cross-section compared to helium under equivalent conditions. The study uncovers a nonlinear relationship between kinetic energy and gas pressure, where the deceleration capability of buffer gases intensifies with increasing kinetic energy. This work demonstrates that by leveraging argon’s broadband stopping efficiency and helium’s confinement capacity, debris and high energy ions can be effectively suppressed, thereby securing mirror integrity and source efficiency at high repetition rates. Full article
(This article belongs to the Special Issue The Principle and Application of Photonic Metasurfaces)
Show Figures

Figure 1

17 pages, 8936 KB  
Article
Grain Boundary Engineering of an Additively Manufactured AlSi10Mg Alloy for Advanced Energy Systems: Grain Size Effects on He Bubbles Distribution and Evolution
by Przemysław Snopiński, Marek Barlak, Jerzy Zagórski and Marek Pagač
Energies 2025, 18(20), 5445; https://doi.org/10.3390/en18205445 - 15 Oct 2025
Viewed by 358
Abstract
The development of advanced energy materials is critical for the safety and efficiency of next-generation nuclear energy systems. Aluminum alloys present a compelling option due to their excellent neutronic properties, notably a low thermal neutron absorption cross-section. However, their historically poor high-temperature performance [...] Read more.
The development of advanced energy materials is critical for the safety and efficiency of next-generation nuclear energy systems. Aluminum alloys present a compelling option due to their excellent neutronic properties, notably a low thermal neutron absorption cross-section. However, their historically poor high-temperature performance has limited their use in commercial power reactors. This makes them prime candidates for specialized, lower-temperature but high-radiation environments, such as research reactors, spent fuel storage systems, and spallation neutron sources. In these applications, mitigating radiation damage—particularly swelling and embrittlement from helium produced during irradiation—remains a paramount challenge. Grain Boundary Engineering (GBE) is a potent strategy to mitigate radiation damage by increasing the fraction of low-energy Coincident Site Lattice (CSL) boundaries. These interfaces act as effective sinks for radiation-induced point defects (vacancies and self-interstitials), suppressing their accumulation and subsequent clustering into damaging dislocation loops and voids. By controlling the defect population, GBE can substantially reduce macroscopic effects like volumetric swelling and embrittlement, enhancing material performance in harsh radiation environments. In this article we evaluate the efficacy of GBE in an AlSi10Mg alloy, a candidate material for nuclear applications. Samples were prepared via KOBO extrusion, with a subset undergoing subsequent annealing to produce varied initial grain sizes and grain boundary character distributions. This allows for a direct comparison of how these microstructural features influence the material’s response to helium ion irradiation, which simulates damage from fission and fusion reactions. The resulting post-irradiation defect structures and their interaction with the engineered grain boundary network were characterized using a combination of Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM), providing crucial insights for designing next-generation, radiation-tolerant energy materials. Full article
Show Figures

Figure 1

19 pages, 274 KB  
Article
Stark Broadening of O I Spectral Lines
by Milan S. Dimitrijević and Sylvie Sahal-Bréchot
Galaxies 2025, 13(5), 116; https://doi.org/10.3390/galaxies13050116 - 15 Oct 2025
Viewed by 448
Abstract
We do not know a priori chemical composition of a star. However, with more high resolution spectra becoming more abundant thanks to the development of space-born observations, atomic data including Stark broadening parameters for various spectral lines for elements in various ionisation stages [...] Read more.
We do not know a priori chemical composition of a star. However, with more high resolution spectra becoming more abundant thanks to the development of space-born observations, atomic data including Stark broadening parameters for various spectral lines for elements in various ionisation stages are becoming more feasible. Particularly are important spectral lines of C-N-O peak in the distribution of abundances of chemical elements. For the calculation of Stark broadening parameters, spectral line full widths at half intensity maximum (FWHM) and shifts, we used semiclassical perturbation method. As the result, Stark widths and shifts for 36 spectral lines of neutral oxygen, broadened by the collisions with electrons, protons and helium ions, have been obtained and compared with other theoretical calculations. These data are of interest for a number of problems in astrophysics, plasma physics, as well as for inertial fusion and various plasmas in technology. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
17 pages, 1813 KB  
Review
On Grid-Generated Quantum Turbulence
by Ladislav Skrbek
Entropy 2025, 27(10), 1054; https://doi.org/10.3390/e27101054 - 10 Oct 2025
Viewed by 561
Abstract
Nearly homogeneous and isotropic turbulence, generated in flows through grids of various forms in wind tunnels or by towing or oscillating grids in stationary samples of classical viscous fluids and the superfluid phases of helium, have played an essential role in studies of [...] Read more.
Nearly homogeneous and isotropic turbulence, generated in flows through grids of various forms in wind tunnels or by towing or oscillating grids in stationary samples of classical viscous fluids and the superfluid phases of helium, have played an essential role in studies of the still partly unresolved problem of turbulence in fluids. This review describes a selected class of complementary grid experiments performed with classical viscous fluids such as air or water and with the superfluid liquid phases of 4He (He II) and 3He-B, which led to a deeper understanding of the underlying physics of turbulent quantum flows. In particular, we discuss the pioneering experiments on generating and probing quantum turbulence by oscillating grids in He II in the zero temperature limit, performed by Peter McClintock’s group in Lancaster. Full article
Show Figures

Figure 1

16 pages, 296 KB  
Article
Nonlocal Internal Variable and Superfluid State in Liquid Helium II
by Vito Antonio Cimmelli
Mathematics 2025, 13(19), 3134; https://doi.org/10.3390/math13193134 - 1 Oct 2025
Viewed by 230
Abstract
We present a model of superfluidity based on the internal variable theory. We consider a two-component fluid endowed with a scalar internal variable whose gradient is the counterflow velocity. The restrictions imposed by the second law of thermodynamics are obtained by applying a [...] Read more.
We present a model of superfluidity based on the internal variable theory. We consider a two-component fluid endowed with a scalar internal variable whose gradient is the counterflow velocity. The restrictions imposed by the second law of thermodynamics are obtained by applying a generalized Coleman–Noll procedure. A set of constitutive equations of the Landau type, with entropy, entropy flux and stress tensor depending on the counterflow velocity, is obtained. The propagation of acceleration waves is investigated as well. It is shown that the first-and-second sound waves may propagate along the system with speeds depending on the physical parameters of the two fluids. First sound waves may propagate in the same direction or in the opposite direction of the counterflow velocity, depending on the concentration of normal and superfluid components. The speeds of second sound waves have the same mathematical form of those propagating in dielectric crystals. Full article
(This article belongs to the Section E4: Mathematical Physics)
18 pages, 3181 KB  
Article
Defying Lunar Dust: A Revolutionary Helmet Design to Safeguard Astronauts’ Health in Long-Term Lunar Habitats
by Christopher Salvino, Kenneth Altshuler, Paul Beatty, Drew DeJarnette, Jesse Ybanez, Hazel Obana, Edwin Osabel, Andrew Dummer, Eric Lutz and Moe Momayez
Aerospace 2025, 12(10), 888; https://doi.org/10.3390/aerospace12100888 - 30 Sep 2025
Viewed by 412
Abstract
Lunar dust remains one of the most critical unresolved challenges to long-duration lunar missions. Its sharp, abrasive, and electrostatically charged particles are easily inhaled and can penetrate deep into the lungs, reaching the bloodstream and the brain. Despite airlocks and HEPA filtration systems, [...] Read more.
Lunar dust remains one of the most critical unresolved challenges to long-duration lunar missions. Its sharp, abrasive, and electrostatically charged particles are easily inhaled and can penetrate deep into the lungs, reaching the bloodstream and the brain. Despite airlocks and HEPA filtration systems, dust will inevitably infiltrate lunar habitats and threaten astronaut health. We present a novel patent protected helmet design. This system uses a multilayered, synergistic mitigation approach combining mechanical and electrostatic defenses. The mechanical system delivers HEPA-filtered, ionized air across the user’s face, while the electrostatic barrier repels charged particles away from the respiratory zone. These two systems work together to prevent dust from entering the user’s breathing space. Designed for use inside lunar habitats, this helmet represents a potential solution to an unaddressed, life-threatening problem. It allows astronauts to eat, talk, and sleep while maintaining a protected respiratory zone and provides targeted inhalation-level protection in an environment where dust exposure is otherwise unavoidable. This concept is presented at Technology Readiness Level 2 (TRL 2) to prompt early engagement and feedback from the scientific and engineering communities. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop