Hydrogen–Dislocation Interactions at Cryogenic Temperatures: Serrated Yielding and Embrittlement Resistance in High-Strength Austenitic Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Characterization
3.2. Slow Strain Rate Tests
3.3. Fracture Surfaces
4. Discussion
4.1. Ductility Loss at RT and Liquid Helium Temperature
4.2. Low Temperature Serrated Deformation
4.3. Effect of Hydrogen on Serrations at Liquid Helium Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PH | Precipitation hardened |
| RT | Room temperature |
| LTSD | Low temperature serrated deformation |
| SFE | Stacking fault energy |
| SSRT | Slow strain rate tests |
| SEM | Scanning electron microscopy |
| LC | Lomer–Cottrell |
| DFT | Density functional theory |
| EMTO | Exact muffin-tin orbitals |
| TEM | Transmission electron microscopy |
| SE | Secondary electron |
| BSE | Backscattered electron |
References
- Liu, J.; Zhao, M.; Rong, L. Overview of Hydrogen-Resistant Alloys for High-Pressure Hydrogen Environment: On the Hydrogen Energy Structural Materials. Clean Energy 2023, 7, 99–115. [Google Scholar] [CrossRef]
- Fritzemeier, L.C.; Chandler, W.T. 15-Hydrogen Embrittlement—Rocket Engine Applications. In Superalloys Supercomposites Superceramics; Tien, J.K., Caulfield, T., Eds.; Academic Press: Boston, MA, USA, 1989; pp. 491–524. ISBN 978-0-12-690845-9. [Google Scholar]
- Thompson, A.W.; Brooks, J.A. Hydrogen Performance of Precipitation-Strengthened Stainless Steels Based on A-286. Metall. Trans. A 1975, 6, 1431–1442. [Google Scholar] [CrossRef]
- Brooks, J.A.; Thompson, A.W. Microstructure and Hydrogen Effects on Fracture in the Alloy A-286. Metall. Trans. A 1993, 24, 1983–1991. [Google Scholar] [CrossRef]
- Takakuwa, O.; Ogawa, Y.; Yamabe, J.; Matsunaga, H. Hydrogen-Induced Ductility Loss of Precipitation-Strengthened Fe-Ni-Cr-Based Superalloy. Mater. Sci. Eng. A 2019, 739, 335–342. [Google Scholar] [CrossRef]
- Liu, L.; Tanaka, K.; Hirose, A.; Kobayashi, K.F. Effects of Precipitation Phases on the Hydrogen Embrittlement Sensitivity of Inconel 718. Sci. Technol. Adv. Mater. 2002, 3, 335–344. [Google Scholar] [CrossRef]
- Michler, T.; San Marchi, C.; Naumann, J.; Weber, S.; Martin, M. Hydrogen Environment Embrittlement of Stable Austenitic Steels. Int. J. Hydrogen Energy 2012, 37, 16231–16246. [Google Scholar] [CrossRef]
- Obasi, G.C.; Zhang, Z.; Sampath, D.; Morana, R.; Akid, R.; Preuss, M. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys. Metall. Mater. Trans. A 2018, 49, 1167–1181. [Google Scholar] [CrossRef]
- Stenerud, G.; Wenner, S.; Olsen, J.S.; Johnsen, R. Effect of Different Microstructural Features on the Hydrogen Embrittlement Susceptibility of Alloy 718. Int. J. Hydrogen Energy 2018, 43, 6765–6776. [Google Scholar] [CrossRef]
- Lu, X.; Ma, Y.; Wang, D. On the Hydrogen Embrittlement Behavior of Nickel-Based Alloys: Alloys 718 and 725. Mater. Sci. Eng. A 2020, 792, 139785. [Google Scholar] [CrossRef]
- Lee, J.A.; Woods, S. Hydrogen Embrittlement; National Aeronautics and Space Administration: Huntsville, AL, USA, 2016. [Google Scholar]
- Lee, W.-J.; Lee, J.-Y.; Oh, S.-K.; Yang, H.; Park, J.; Baek, U.B.; Lee, Y.-K. Temperature Dependency of Hydrogen Embrittlement Resistance of Austenitic Fe–24Mn–3Cr-0.5Cu-0.47C Steel. Mater. Sci. Eng. A 2024, 889, 145838. [Google Scholar] [CrossRef]
- Ogawa, Y.; Noguchi, K.; Takakuwa, O. Criteria for Hydrogen-Assisted Crack Initiation in Ni-Based Superalloy 718. Acta Mater. 2022, 229, 117789. [Google Scholar] [CrossRef]
- Patel, S.; deBarbadillo, J.; Coryell, S. Superalloy 718: Evolution of the Alloy from High to Low Temperature Application. In Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications; Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–49. [Google Scholar]
- Ogata, T.; Yuri, T.; Sumiyoshi, H.; Ono, Y.; Matsuoka, S.; Okita, K. Data Sheet Program and Mechanical Properties of Ti–5Al–2.5Sn ELI and Alloy 718 at Cryogenic Temperatures. AIP Conf. Proc. 2004, 711, 122–129. [Google Scholar]
- Elkot, M.N.; Sun, B.; Zhou, X.; Ponge, D.; Raabe, D. Hydrogen-Assisted Decohesion Associated with Nanosized Grain Boundary κ-Carbides in a High-Mn Lightweight Steel. Acta Mater. 2022, 241, 118392. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Lee, J.H.; Kim, S.-M.; Lee, D.-H.; Kim, H.-T.; Kim, J.-H.; Kim, M.; Kim, S.-K.; Lee, J.-M. Temperature-Dependent Hydrogen Embrittlement of Austenitic Stainless Steel on Phase Transformation. Metals 2023, 13, 35. [Google Scholar] [CrossRef]
- Kim, M.-S.; Chun, K.W. A Comprehensive Review on Material Compatibility and Safety Standards for Liquid Hydrogen Cargo and Fuel Containment Systems in Marine Applications. J. Mar. Sci. Eng. 2023, 11, 1927. [Google Scholar] [CrossRef]
- Cho, H.-J.; Kim, D.H.; Lee, S.; Kim, S.-J. Cryogenic Impact Toughness Characteristics of Ni/Mn Replaced Austenitic Stainless Steels Subjected to High-Pressure Gaseous Hydrogen. Int. J. Hydrogen Energy 2024, 92, 877–894. [Google Scholar] [CrossRef]
- Morohoshi, R.; Kawabata, T. Effect of Pre-Strain on Ductile Fracture Resistance in Metastable Austenitic Stainless Steel. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; Volume 1, pp. 4396–4403. [Google Scholar]
- Ma, L.; Liang, G.; Li, Y. Effect of Hydrogen Charging on Ambient and Cryogenic Mechanical Properties of a Precipitate-Strengthened Austenitic Steel. In Materials; Fickett, F.R., Reed, R.P., Eds.; Springer: Boston, MA, USA, 1992; pp. 77–84. ISBN 978-1-4757-9050-4. [Google Scholar]
- Thompson, A.W. Hydrogen-Induced Ductility Loss in Commercial Precipitation-Strengthened Stainless Steels. Metall. Trans. A 1976, 7, 315–318. [Google Scholar]
- Klopčič, N.; Schatz, M.; Sartory, M.; Pertl, P.; Winkler, F.; Drexler, A.; Hermann, R.; Trattner, A. Thermodynamic Modeling and Simulation of LH2 Refueling with Conditioning Vessel. Int. J. Hydrogen Energy 2025, 134, 164–180. [Google Scholar] [CrossRef]
- Pustovalov, V.V. Serrated Deformation of Metals and Alloys at Low Temperatures (Review). Low Temp. Phys. 2008, 34, 683–723. [Google Scholar] [CrossRef]
- Jin, K.; Mu, S.; An, K.; Porter, W.D.; Samolyuk, G.D.; Stocks, G.M.; Bei, H. Thermophysical Properties of Ni-Containing Single-Phase Concentrated Solid Solution Alloys. Mater. Des. 2017, 117, 185–192. [Google Scholar] [CrossRef]
- Tirunilai, A.S.; Hanemann, T.; Weiss, K.-P.; Freudenberger, J.; Heilmaier, M.; Kauffmann, A. Dislocation-Based Serrated Plastic Flow of High Entropy Alloys at Cryogenic Temperatures. Acta Mater. 2020, 200, 980–991. [Google Scholar] [CrossRef]
- Tirunilai, A.S.; Hanemann, T.; Reinhart, C.; Tschan, V.; Weiss, K.-P.; Laplanche, G.; Freudenberger, J.; Heilmaier, M.; Kauffmann, A. Comparison of Cryogenic Deformation of the Concentrated Solid Solutions CoCrFeMnNi, CoCrNi and CoNi. Mater. Sci. Eng. A 2020, 783, 139290. [Google Scholar] [CrossRef]
- Tabin, J.; Skoczeń, B.; Bielski, J. Discontinuous Plastic Flow in Stainless Steels Subjected to Combined Loads at Extremely Low Temperatures. Int. J. Mech. Sci. 2021, 200, 106448. [Google Scholar] [CrossRef]
- Pu, Z.; Xie, Z.C.; Sarmah, R.; Chen, Y.; Lu, C.; Ananthakrishna, G.; Dai, L.H. Spatio-Temporal Dynamics of Jerky Flow in High-Entropy Alloy at Extremely Low Temperature. Philos. Mag. 2021, 101, 154–178. [Google Scholar] [CrossRef]
- Eichinger, M.; Pengg, J.; Raab, S.; Mori, G. On the Hydrogen Uptake of Line Pipe Steels L80 and P110 under Gaseous Hydrogen Charging up to 1000 Bar and 200 °C. Int. J. Hydrogen Energy 2024, 50, 388–399. [Google Scholar] [CrossRef]
- Baranowski, B.; Filipek, S.M. 45 Years of Nickel Hydride—History and Perspectives. J. Alloys Compd. 2005, 404–406, 2–6. [Google Scholar] [CrossRef]
- Dwyer, D.J.; Pang, X.J.; Gao, M.; Wei, R.P. Surface Enrichment of Niobium on Inconel 718 (100) Single Crystals. Appl. Surf. Sci. 1994, 81, 229–235. [Google Scholar] [CrossRef]
- Fukunaga, A. Effect of High-Pressure Hydrogen Environment in Elastic and Plastic Deformation Regions on Slow Strain Rate Tensile Tests for Iron-Based Superalloy A286. Int. J. Hydrogen Energy 2023, 48, 18116–18128. [Google Scholar] [CrossRef]
- Turnbull, A.; Ballinger, R.G.; Hwang, I.S.; Morra, M.M.; Psaila-Dombrowski, M.; Gates, R.M. Hydrogen Transport in Nickel-Base Alloys. Metall. Trans. A 1992, 23, 3231–3244. [Google Scholar] [CrossRef]
- Jebaraj, J.J.M.; Morrison, D.J.; Suni, I.I. Hydrogen Diffusion Coefficients through Inconel 718 in Different Metallurgical Conditions. Corros. Sci. 2014, 80, 517–522. [Google Scholar] [CrossRef]
- EN ISO 6892-1:2019; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. ISO: Geneva, Switzerland, 2019. [CrossRef]
- ASTM E112-24; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2024.
- Younes, C.M.; Steele, A.M.; Nicholson, J.A.; Barnett, C.J. Influence of Hydrogen Content on the Tensile Properties and Fracture of Austenitic Stainless Steel Welds. Int. J. Hydrogen Energy 2013, 38, 4864–4876. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Barhoumi, E.M.; Ben Belgacem, I.; Mansir, I.B.; Aliyu, M.; Emori, W.; Uzoma, P.C.; Beitelmal, W.H.; Akyüz, E.; Radwan, A.B.; et al. A Focused Review of the Hydrogen Storage Tank Embrittlement Mechanism Process. Int. J. Hydrogen Energy 2023, 48, 12935–12948. [Google Scholar] [CrossRef]
- Botinha, J.; Alves, H.; Gehrmann, B. A Theoretical Investigation on the Role of Microstructural Particularities on the Hydrogen Embrittlement of Nickel Alloys. In Proceedings of the Association for Materials Protection and Performance, San Antonio, TX, USA, 6–10 March 2022; p. D041S038R005. [Google Scholar]
- Hirayama, T.; Ogirima, M. Influence of Chemical Composition on Martensitic Transformation in Fe-Cr-Ni Stainless Steel. J. Jpn. Inst. Met. 1970, 34, 507–510. [Google Scholar] [CrossRef]
- Omura, T.; Nakamura, J.; Hirata, H.; Jotoku, K.; Ueyama, M.; Osuki, T.; Terunuma, M. Effect of Surface Hydrogen Concentration on Hydrogen Embrittlement Properties of Stainless Steels and Ni Based Alloys. ISIJ Int. 2016, 56, 405–412. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Li, R.X. Entropic Alloys for Cryogenic Applications. In Stainless Steels and Alloys; Duriagina, Z., Ed.; IntechOpen: Rijeka, Croatia, 2018; ISBN 978-1-78985-370-4. [Google Scholar]
- Skoczeń, B.; Bielski, J.; Sgobba, S.; Marcinek, D. Constitutive Model of Discontinuous Plastic Flow at Cryogenic Temperatures. Int. J. Plast. 2010, 26, 1659–1679. [Google Scholar] [CrossRef]
- Fellinger, J.H.H.; Bykov, V.; Schauer, F. Serrated Yielding at Cryogenic Temperatures in Structural Components of Wendelstein 7-X. IEEE Trans. Appl. Supercond. 2012, 22, 4801504. [Google Scholar] [CrossRef]
- Obst, B.; Nyilas, A. Experimental Evidence on the Dislocation Mechanism of Serrated Yielding in f.c.c. Metals and Alloys at Low Temperatures. Mater. Sci. Eng. A 1991, 137, 141–150. [Google Scholar] [CrossRef]
- Tirunilai, A.S.; Sas, J.; Weiss, K.-P.; Chen, H.; Szabó, D.V.; Schlabach, S.; Haas, S.; Geissler, D.; Freudenberger, J.; Heilmaier, M.; et al. Peculiarities of Deformation of CoCrFeMnNi at Cryogenic Temperatures. J. Mater. Res. 2018, 33, 3287–3300. [Google Scholar] [CrossRef]
- Cottrell, A.H. Theory of Dislocations. Prog. Met. Phys. 1953, 4, 205–264. [Google Scholar] [CrossRef]
- Shapovalov, I. Serrated Yielding of the Fe–Cr–Ni Alloys in Liquid Helium. Ukr. Fiz. Zhurnal 1984, 29, 1562–1566. [Google Scholar]
- Xie, H.; Yu, T.; Tang, C. Motion Mechanism of the Edge Dislocation Slipping in the Cubic Plane of Ni3Al Single Crystals. Model. Simul. Mater. Sci. Eng. 2013, 21, 055008. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, M.; Rong, L. Hydrogen-Induced Cracking Behavior of Twin Boundary in Γ′ Phase Strengthened Fe–Ni Based Austenitic Alloys. Mater. Sci. Eng. A 2013, 561, 7–12. [Google Scholar] [CrossRef]
- Mantri, S.A.; Dasari, S.; Sharma, A.; Alam, T.; Pantawane, M.V.; Pole, M.; Sharma, S.; Dahotre, N.B.; Banerjee, R.; Banerjee, S. Effect of Micro-Segregation of Alloying Elements on the Precipitation Behaviour in Laser Surface Engineered Alloy 718. Acta Mater. 2021, 210, 116844. [Google Scholar] [CrossRef]
- Razumovskiy, V.I.; Reyes-Huamantinco, A.; Puschnig, P.; Ruban, A.V. Effect of Thermal Lattice Expansion on the Stacking Fault Energies of Fcc Fe and Fe75Mn25 Alloy. Phys. Rev. B 2016, 93, 054111. [Google Scholar] [CrossRef]
- Martínez, E.; Marian, J.; Arsenlis, A.; Victoria, M.; Perlado, J.M. Atomistically Informed Dislocation Dynamics in Fcc Crystals. J. Mech. Phys. Solids 2008, 56, 869–895. [Google Scholar] [CrossRef]
- Zhou, X.W.; Nowak, C.; Skelton, R.S.; Foster, M.E.; Ronevich, J.A.; San Marchi, C.; Sills, R.B. An Fe–Ni–Cr–H Interatomic Potential and Predictions of Hydrogen-Affected Stacking Fault Energies in Austenitic Stainless Steels. Int. J. Hydrogen Energy 2022, 47, 651–665. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Lu, C.; Dai, L. Sluggish Hydrogen Diffusion and Hydrogen Decreasing Stacking Fault Energy in a High-Entropy Alloy. Mater. Today Commun. 2021, 26, 101902. [Google Scholar] [CrossRef]
- Stumpf, G.C.; Bertoli, G.; Coury, F.G.; Neta, A.C.I.; Montoro, L.A.; Figueiredo, R.B.; Wolf, W. Stacking-Fault Networks with Lomer-Cottrell Locks Induced by Carbon Addition in a Severely Strained Cr-Co-Ni Alloy. J. Alloys Compd. 2025, 1033, 181162. [Google Scholar] [CrossRef]







| Alloy | UNS Number | Al | C | Cr | Fe | Mo | Nb | Ni | Ti |
|---|---|---|---|---|---|---|---|---|---|
| A286 | S66286 | ≤0.35 | ≤0.08 | 13.5–16.0 | bal. | 1.0–1.5 | - | 24–27 | 1.90–2.35 |
| Alloy 718 | N07718 | 0.5 | 0.01 | 18 | 18 | 3 | 5 | bal. | 1 |
| SSRT at RT (3 × 10−5 s−1) | SSRT at 4.2 K (3 × 10−5 s−1) | |
|---|---|---|
| uncharged | A286 RT (#1, #2) 718 RT (#1, #2) | A286 4K (#1, #2, #3) 718 4K (#1, #2, #3) |
| H2 1000 bar, 473 K, 14 days (pre-charged) | A286 RT H (#1, #2) 718 RT H (#1, #2) | A286 4K H (#1, #2, #3) 718 4K H (#1, #2, #3) |
| Alloy/State | Datasets (n) | Serrations (n) | Frequency (Events/% Strain) | Δσ (MPa) | Δε (% Strain) |
|---|---|---|---|---|---|
| A286 4K | 2 | 116 | 5.8 | 37 | 0.16 |
| A286 4K H | 3 | 103 | 3.4 | 50 | 0.25 |
| 718 4K | 3 | 188 | 6.3 | 32 | 0.14 |
| 718 4K H | 2 | 67 | 3.4 | 46 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damm, N.; Lukas, M.; Platl, J.; Drexler, A.; Eichinger, M.; Eskinja, M.; Mori, G.; Simon, Z.; Scheerer, M.; Marsoner, S.; et al. Hydrogen–Dislocation Interactions at Cryogenic Temperatures: Serrated Yielding and Embrittlement Resistance in High-Strength Austenitic Alloys. Materials 2025, 18, 5109. https://doi.org/10.3390/ma18225109
Damm N, Lukas M, Platl J, Drexler A, Eichinger M, Eskinja M, Mori G, Simon Z, Scheerer M, Marsoner S, et al. Hydrogen–Dislocation Interactions at Cryogenic Temperatures: Serrated Yielding and Embrittlement Resistance in High-Strength Austenitic Alloys. Materials. 2025; 18(22):5109. https://doi.org/10.3390/ma18225109
Chicago/Turabian StyleDamm, Nina, Marina Lukas, Jan Platl, Andreas Drexler, Matthias Eichinger, Magdalena Eskinja, Gregor Mori, Zoltán Simon, Michael Scheerer, Stefan Marsoner, and et al. 2025. "Hydrogen–Dislocation Interactions at Cryogenic Temperatures: Serrated Yielding and Embrittlement Resistance in High-Strength Austenitic Alloys" Materials 18, no. 22: 5109. https://doi.org/10.3390/ma18225109
APA StyleDamm, N., Lukas, M., Platl, J., Drexler, A., Eichinger, M., Eskinja, M., Mori, G., Simon, Z., Scheerer, M., Marsoner, S., & Razumovskiy, V. I. (2025). Hydrogen–Dislocation Interactions at Cryogenic Temperatures: Serrated Yielding and Embrittlement Resistance in High-Strength Austenitic Alloys. Materials, 18(22), 5109. https://doi.org/10.3390/ma18225109

