Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy

A special issue of Galaxies (ISSN 2075-4434).

Deadline for manuscript submissions: 1 March 2026 | Viewed by 4057

Special Issue Editor


E-Mail Website
Guest Editor
School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
Interests: stellar spectroscopy; Galactic chemical evolution; planet formation

Special Issue Information

Dear Colleagues,

In the current era of Gaia, large-scale spectroscopic surveys such as Gaia-ESO, APOGEE, GALAH, and LAMOST have collected millions of stellar spectra with varying resolutions and signal-to-noise ratios. This wealth of data represents the most extensive repository of kinematic and chemical information about stars within the Milky Way. The confluence of comprehensive spectral analysis techniques, including line-by-line differential analysis, coupled with advancements in modeling stellar atmospheres and the determination of accurate molecular and atomic line data, has propelled cutting-edge research in both theoretical and observational astrophysics—from the study of our galaxy to the study of exoplanets. The primary objective of this Special Issue is to establish a comprehensive platform for the exploration of novel ideas and the in-depth discussion of a diverse array of pertinent topics within the realms of stellar spectroscopy, molecular astronomy, and atomic astronomy. By facilitating the convergence of contributions from researchers and experts across the globe in these interconnected disciplines, this Special Issue aims to nurture collaboration and propel the collective advancement of knowledge in the dynamic fields of stellar spectroscopy, molecular astronomy, and atomic astronomy.

Suggested topics:

  1. Large Spectroscopic Surveys in the Gaia Era:
  • Exploring the impact of Gaia and other large-scale surveys on our understanding of the Milky Way's stellar populations, kinematics, and chemical properties.
  1. Advances in High-Resolution Stellar Spectroscopy:
  • Investigating the latest techniques and breakthroughs in high-resolution spectroscopy to unravel the intricate details of stellar atmospheres, compositions, and physical properties.
  1. Stellar Atmospheres and Abundances:
  • Delving into the complexities of stellar atmospheres and the determination of elemental abundances, and connecting observational data with theoretical models.
  1. Galactic Chemical Evolution:
  • Examining the chemical evolution of the Milky Way and other galaxies, and considering the role of stars in shaping the composition of the interstellar medium over cosmic time.
  1. Stellar Nucleosynthesis and Element Abundances:
  • Unraveling the processes responsible for stellar nucleosynthesis and their implications for the elemental abundances observed in stars.
  1. Innovations in Observational Instruments and Spectroscopic Techniques:
  • Reviewing the latest advancements in observational tools and spectroscopic methodologies, with a focus on how these technologies enhance our ability to explore the cosmos.
  1. Interstellar Molecules and Star Formation:
  • Investigating the molecular composition of interstellar environments and its role in the formation of stars and planetary systems.
  1. Chemical Connections Between Stars and Their Planets:
  • Examining the chemical relationships between stars and their planetary systems, and shedding light on the origins and diversity of planetary compositions.
  1. Transmission Spectra of Planetary Atmospheres:
  • Exploring the observational techniques and analyses of transmission spectra to gain insights into the atmospheres of exoplanets and their distinctive features.
  1. Biosignatures of Planets—Formation and Beyond:
  • Investigating the potential biosignatures associated with planetary formation processes and considering their relevance in the search for life beyond our solar system.
  1. Atomic Transitions and Spectral Line Formation:
  • Examining the fundamental atomic processes that govern spectral line formation, and influencing the observed features in stellar spectra.
  1. Theoretical Developments Supporting Observational Efforts:
  • Assessing theoretical advancements that play a crucial role in supporting and interpreting observational data, and bridging the gap between theory and empirical insights in astrophysics.

Dr. Fan Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Galaxies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stellar spectroscopy
  • stars and planetary systems
  • Galactic chemical evolution
  • atmospheres of stars
  • elemental abundances of stars
  • interstellar medium

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1034 KiB  
Article
Light Variability from UV to Near-Infrared in the Ap Star CU Vir Induced by Chemical Spots
by Yury Pakhomov, Ilya Potravnov and Tatiana Ryabchikova
Galaxies 2025, 13(4), 97; https://doi.org/10.3390/galaxies13040097 - 21 Aug 2025
Abstract
Multiwavelength modelling of the light variations in the chemically peculiar star CU Vir is presented. The modelling is based on the recent Doppler Imaging of CU Vir, which provides maps of the surface distribution of Si, Fe, He, and Cr. Intensity maps in [...] Read more.
Multiwavelength modelling of the light variations in the chemically peculiar star CU Vir is presented. The modelling is based on the recent Doppler Imaging of CU Vir, which provides maps of the surface distribution of Si, Fe, He, and Cr. Intensity maps in both individual photometric filters and in the wide wavelength range from UV to NIR were calculated, taking into account the individual chemical abundances on the stellar surface. Comparison with observations revealed good agreement of both the light curves and their amplitude along the spectrum. Additionally, we analysed changes in the photometric period of the CU Vir from 1955 to 2022, including TESS measurements. The data of the last decades clearly indicate a gradual decrease in this period. Measurements of the CU Vir period over the next two decades will be crucial for verifying or refuting the periodic nature of its variations. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Graphical abstract

10 pages, 343 KiB  
Article
Distant Resolved Spectroscopic Binaries: Orbital Parallaxes Contradict Trigonometric Parallaxes
by Oleg Y. Malkov and Arseniy M. Sachkov
Galaxies 2025, 13(4), 96; https://doi.org/10.3390/galaxies13040096 - 21 Aug 2025
Viewed by 52
Abstract
Resolved spectroscopic binaries (RSB) are the only way (besides trigonometric parallax) to determine the dynamical, hypothesis-free distances to the stars of the galaxy. Analyzing the most comprehensive up-to-date data on RSB, we found that trigonometric parallaxes of all distant (d> [...] Read more.
Resolved spectroscopic binaries (RSB) are the only way (besides trigonometric parallax) to determine the dynamical, hypothesis-free distances to the stars of the galaxy. Analyzing the most comprehensive up-to-date data on RSB, we found that trigonometric parallaxes of all distant (d> 0.5 kpc) binaries overestimate the distance by 10–50%. Such objects appear as single stars in Gaia and Hipparcos data, but their binarity can be detected/suspected by comparing trigonometric parallaxes in different data releases from these space missions. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

22 pages, 5394 KiB  
Article
Unveiling the Variability and Chemical Composition of AL Col
by Surath C. Ghosh, Santosh Joshi, Samrat Ghosh, Athul Dileep, Otto Trust, Mrinmoy Sarkar, Jaime Andrés Rosales Guzmán, Nicolás Esteban Castro-Toledo, Oleg Malkov, Harinder P. Singh, Kefeng Tan and Sarabjeet S. Bedi
Galaxies 2025, 13(4), 93; https://doi.org/10.3390/galaxies13040093 - 14 Aug 2025
Viewed by 222
Abstract
In this study, we present analysis of TESS photometry, spectral energy distribution (SED), high-resolution spectroscopy, and spot modeling of the α2 CVn-type star AL Col (HD 46462). The primary objective is to determine its fundamental physical parameters and investigate its surface activity [...] Read more.
In this study, we present analysis of TESS photometry, spectral energy distribution (SED), high-resolution spectroscopy, and spot modeling of the α2 CVn-type star AL Col (HD 46462). The primary objective is to determine its fundamental physical parameters and investigate its surface activity characteristics. Using TESS short-cadence (120 s) SAP flux, we identified a rotational frequency of 0.09655 d1 (Prot=10.35733 d). Wavelet analysis reveals that while the amplitudes of the harmonic components vary over time, the strength of the primary rotational frequency remains stable. A SED analysis of multi-band photometric data yields an effective temperature (Teff) of 11,750 K. High-resolution spectroscopic observations covering wavelengthrange 4500–7000 Å provide refined estimates of Teff = 13,814 ± 400 K, logg = 4.09 ± 0.08 dex, and υsini = 16 ± 1 km s−1. Abundance analysis shows solar-like composition of O ii, Mg ii, S ii, and Ca ii, while helium is under-abundant by 0.62 dex. Rare earth elements (REEs) exhibit over-abundances of up to 5.2 dex, classifying the star as an Ap/Bp-type star. AL Col has a radius of R=3.74±0.48R, with its H–R diagram position estimating a mass of M=4.2±0.2M and an age of 0.12±0.01 Gyr, indicating that the star has slightly evolved from the main sequence. The TESS light curves were modeled using a three-evolving-spot configuration, suggesting the presence of differential rotation. This star is a promising candidate for future investigations of magnetic field diagnostics and the vertical stratification of chemical elements in its atmosphere. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

20 pages, 9155 KiB  
Article
Long-Term Stability of Chemical Spots and Reasons for the Period Variations in Ap Star CU Vir
by Ilya Potravnov, Tatiana Ryabchikova, Leonid Kitchatinov and Yuri Pakhomov
Galaxies 2025, 13(4), 90; https://doi.org/10.3390/galaxies13040090 - 12 Aug 2025
Viewed by 297
Abstract
We present the results of Doppler Imaging of the Ap star CU Vir in the silicon lines over the 1985–2011 time span, as well as multi-element imaging in the 2009/2011 epoch. The surface distribution of silicon in CU Vir exhibits stability over the [...] Read more.
We present the results of Doppler Imaging of the Ap star CU Vir in the silicon lines over the 1985–2011 time span, as well as multi-element imaging in the 2009/2011 epoch. The surface distribution of silicon in CU Vir exhibits stability over the approximately 26 years studied: the number, shape, and mutual distribution of the overabundance spots have remained unchanged. The modelling of the light curve based on the surface elemental distribution obtained with DI did not reveal any significant changes in the shape of the light curve that could explain the photometric phase shift observed in CU Vir. Consequently, the phase shifts and changes in the photometric period of CU Vir are caused by the rigid longitudinal drift of the surface-abundance structures. We performed simulations of the Tayler instability of the background magnetic field of CU Vir, and discuss the possibility of explaining the period variations by the drift of surface instability modes. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

15 pages, 6509 KiB  
Article
Abundance Analysis of the Spectroscopic Binary α Equulei
by Anna Romanovskaya and Sergey Zvyagintsev
Galaxies 2025, 13(4), 88; https://doi.org/10.3390/galaxies13040088 - 6 Aug 2025
Viewed by 336
Abstract
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution [...] Read more.
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution (SLD) iterative technique. The atmospheric parameters of each component were refined with the SME (spectroscopy made easy) package and further validated by following methods: SED (spectral energy distribution), the independence of the abundance of individual Fe iii lines on the reduced equivalent width and ionisation potential, and fitting with the hydrogen line profiles. Our accurate abundance analysis uses a hybrid technique for spectrum synthesis. This is based on classical model atmospheres that are calculated under the assumption of local thermodynamic equilibrium (LTE), together with non-LTE (NLTE) line formation. This is used for 15 out of the 25 species from C to Nd that were investigated. The primary giant component (G7-type) exhibits a typical abundance pattern for normal stars, with elements from He to Fe matching solar values and neutron-capture elements showing overabundances up to 0.5 dex. In contrast, the secondary dwarf component displays characteristics of an early stage Am star. The observed abundance differences imply distinct diffusion processes in their atmospheres. Our results support the scenario in which chemical peculiarities in Am stars develop during the main sequence and may decrease as the stars evolve toward the subgiant branch. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

10 pages, 335 KiB  
Article
On the Probability of the Astrometric Resolution of Spectroscopic Binaries into Components
by Dugasa Belay Zeleke, Alexey Yu. Sytov, Seblu Humne Negu, Arseniy M. Sachkov, Solomon Belay Tessema and Oleg Yu. Malkov
Galaxies 2025, 13(4), 87; https://doi.org/10.3390/galaxies13040087 - 5 Aug 2025
Viewed by 301
Abstract
Resolved spectroscopic binaries (RSBs) are an extremely valuable class of objects, being the only (apart from trigonometric) supplier of dynamical stellar parallaxes. This circumstance, as well as the comparative paucity of studied RSBs, makes the problem of identifying binary systems potentially capable of [...] Read more.
Resolved spectroscopic binaries (RSBs) are an extremely valuable class of objects, being the only (apart from trigonometric) supplier of dynamical stellar parallaxes. This circumstance, as well as the comparative paucity of studied RSBs, makes the problem of identifying binary systems potentially capable of being added to the list of known RSBs extremely urgent. In this paper, we propose a methodology for estimating the probability of a spectroscopic binary system to be resolved into components, perform the first step of its application to the SB9 catalogue, and present preliminary results, in particular, a list of the most promising RSB candidates. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

13 pages, 1787 KiB  
Article
A New Activity Cycle of V1413 Aql
by Anna Tatarnikova, Andrey Tatarnikov, Nataliia Maslennikova, Alexander Dodin, Marina Burlak, Natalia Ikonnikova, Alexander Belinski and Georgy Nikishev
Galaxies 2025, 13(4), 86; https://doi.org/10.3390/galaxies13040086 - 4 Aug 2025
Viewed by 320
Abstract
V1413 Aql is an anomalous classical symbiotic star that has remained in an active state almost continuously. After failing to return to quiescence following the 2020 outburst, it underwent a new flare in 2025. We present an analysis of new photometric and spectroscopic [...] Read more.
V1413 Aql is an anomalous classical symbiotic star that has remained in an active state almost continuously. After failing to return to quiescence following the 2020 outburst, it underwent a new flare in 2025. We present an analysis of new photometric and spectroscopic observations, which provide estimates for the binary components at different stages of activity: Lcool=1700L, Rcool=130R; Lhot=800L, Rhot=28R during minimum; Lhot=7000L, Rhot=64R at the 2025 maximum. The significant increase in the luminosity of the hot component during the 2025 outburst deviates from the typical behavior observed in classical symbiotic stars, where outbursts are generally attributed to a redistribution of spectral energy rather than intrinsic changes in luminosity. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

20 pages, 1666 KiB  
Article
Looking for Signs of Unresolved Binarity in the Continuum of LAMOST Stellar Spectra
by Mikhail Prokhorov, Kefeng Tan, Nikolay Samus, Ali Luo, Dana Kovaleva, Jingkun Zhao, Yujuan Liu, Pavel Kaygorodov, Oleg Malkov, Yihan Song, Sergey Sichevskij, Lev Yungelson and Gang Zhao
Galaxies 2025, 13(4), 83; https://doi.org/10.3390/galaxies13040083 - 30 Jul 2025
Viewed by 437
Abstract
We describe an attempt to derive the binarity rate of samples of 166 A-, F-, G-, and K-type stars from LAMOST DR5 and 1000 randomly selected presumably single stars from Gaia DR3 catalogs. To this end, we compared continua of the observed spectra [...] Read more.
We describe an attempt to derive the binarity rate of samples of 166 A-, F-, G-, and K-type stars from LAMOST DR5 and 1000 randomly selected presumably single stars from Gaia DR3 catalogs. To this end, we compared continua of the observed spectra with the continua of synthetic spectra from within 3700 <λ<9097 Å. The latter spectra were reduced to the LAMOST set of wavelengths, while the former ones were smoothed. Next, we searched for every observed star of the nearest synthetic spectrum using a four-parameter representation—Teff, logg, [Fe/H], and a range of interstellar absorption values. However, rms deviations of observed spectra from synthetic ones appeared to be not sufficient to claim that any of the stars is a binary. We conclude that comparison of the intensity of pairs of spectral lines remains the best way to detect binarity. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

11 pages, 498 KiB  
Article
LAMOST Spectroscopy and Gaia Photo-Astrometry for an Interstellar Extinction Study
by Oleg Malkov, Aleksandra Avdeeva and Dana Kovaleva
Galaxies 2024, 12(5), 65; https://doi.org/10.3390/galaxies12050065 - 17 Oct 2024
Viewed by 1031
Abstract
The aim of this work is to establish the present accuracy and convergence of available estimates of galactic extinction. We determine the galactic interstellar extinction in selected high-latitude areas of the sky based on Gaia DR3 astrometry and photometry and spectroscopic data from [...] Read more.
The aim of this work is to establish the present accuracy and convergence of available estimates of galactic extinction. We determine the galactic interstellar extinction in selected high-latitude areas of the sky based on Gaia DR3 astrometry and photometry and spectroscopic data from the LAMOST survey. For this purpose, we choose 42 northern high-latitude sky areas surrounding supernovae that allowed establishing the accelerated expansion of the universe. We compare our results with the estimates accepted in that paper and find that they agree well, within observational errors. Simultaneously, the estimates for galactic extinction by other authors along the same sightlines show systematic differences, which can cause the distance to the extragalactic object to change by ±3–5%. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

Back to TopTop