Inactivation Effect and Influencing Factors of Cold Atmospheric Plasma Treatment with Bacteria on Food Contact Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Food Contact Materials
2.2. Bacterial Suspension Preparation and Inoculation on the Material Surface
2.3. CAP Treatment with Bacteria on the Material Surface
2.4. Incubation and Enumeration of Surviving Bacteria
2.5. Bacterial Inactivation Kinetic Models and Statistical Analysis
3. Results
3.1. Inactivation Effect of CAP Treatment on Bacteria
3.2. Kinetics Model Analysis
3.3. Surface Characteristics of FCMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groh, K.J.; Muncke, J. In Vitro Toxicity testing of food contact materials: State-of-the-art and future challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1123–1150. [Google Scholar] [CrossRef]
- Corcoran, M.; Morris, D.; De Lappe, N.; O’Connor, J.; Lalor, P.; Dockery, P.; Cormican, M. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl. Environ. Microbiol. 2014, 80, 1507–1514. [Google Scholar] [CrossRef]
- Otto, C.; Zahn, S.; Rost, F.; Zahn, P.; Jaros, D.; Rohm, H. Physical methods for cleaning and disinfection of surfaces. Food Eng. Rev. 2011, 3, 171–188. [Google Scholar] [CrossRef]
- Gilca, A.F.; Teodosiu, C.; Fiore, S.; Musteret, C.P. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere 2020, 259, 127476. [Google Scholar] [CrossRef]
- Prasad, A.; Du, L.H.; Zubair, M.; Subedi, S.; Ullah, A.; Roopesh, M.S. Applications of Light-Emitting Diodes (LEDs) in food processing and water treatment. Food Eng. Rev. 2020, 12, 268–289. [Google Scholar] [CrossRef]
- Xiang, Q.S.; Dong, S.S.; Fan, L.M.; Ma, Y.F.; Bai, Y.H. Bactericidal kinetics of ultraviolet C light-emitting diodes against bacteria on food contact materials and factors influencing it. Food Sci. 2022, 43, 17–25. [Google Scholar]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold plasma: A novel non-thermal technology for food processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Ekezie, F.G.C.; Sun, D.W.; Cheng, J.H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017, 69, 46–58. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Ezhilarasi, P.N.; Rajauria, G. Application of cold plasma on food matrices: A review on current and future prospects. J. Food Process. Preserv. 2021, 45, e15070. [Google Scholar] [CrossRef]
- Kim, S.H.; Roy, P.K.; Park, S.Y. Synergistic Effects of combined flavourzyme and floating electrode-dielectric barrier discharge plasma on reduction of Escherichia coli biofilms in squid (Todarodes pacificus). Microorganisms 2024, 12, 1188. [Google Scholar] [CrossRef]
- Dharini, M.; Jaspin, S.; Mahendran, R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chem. 2023, 405, 134746. [Google Scholar] [CrossRef]
- Nwabor, O.F.; Onyeaka, H.; Miri, T.; Obileke, K.; Anumudu, C.; Hart, A. A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Eng. Rev. 2022, 14, 535–554. [Google Scholar] [CrossRef]
- Gounadaki, A.S.; Skandamis, P.N.; Drosinos, E.H.; Nychas, G.J.E. Microbial ecology of food contact surfaces and products of small-scale facilities producing traditional sausages. Food Microbiol. 2008, 25, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.M.; Zhuang, H.; Wang, J.M.; Yan, W.J.; Zhao, J.Y.; Zhang, J.H. Inactivation kinetics of Salmonella typhimurium and Staphylococcus aureus in different media by dielectric barrier discharge non-thermal plasma. Appl. Sci. 2018, 8, 2087. [Google Scholar] [CrossRef]
- Samioti, V.; Kriti, E.; Spanou, A.; Tsironi, T.; Panagou, E.Z. Inactivation kinetics of pathogenic and nonpathogenic bacteria upon in vitro treatment with cold atmospheric pressure plasma (CAPP). Int. J. Food Sci. 2024, 2024, 7464133. [Google Scholar] [CrossRef]
- Goree, J.; Liu, B.; Drake, D.; Stoffels, E. Killing of S-mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans. Plasma Sci. 2006, 34, 1317–1324. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.M.; Murphy, A.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. J. Appl. Microbiol. 2016, 6, 38610. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.M.; Ojha, S.; Burgess, C.M.; Sun, D.W.; Tiwari, B.K. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. Sci. Rep. 2020, 129, 1248–1260. [Google Scholar] [CrossRef]
- Guo, L.; Yang, L.; Qi, Y.; Niyazi, G.; Huang, L.; Gou, L.; Wang, Z.; Zhang, L.; Liu, D.; Wang, X.; et al. Cold atmospheric-pressure plasma caused protein damage in methicillin-resistant Staphylococcus aureus cells in biofilms. Microorganisms 2021, 9, 1072. [Google Scholar] [CrossRef]
- Rotondo, P.R.; Aceto, D.; Ambrico, M.; Stellacci, A.M.; Faretra, F.; Angelini, R.M.D.; Ambrico, P.F. Physicochemical properties of plasma-activated water and associated antimicrobial activity against fungi and bacteria. Sci. Rep. 2025, 15, 5536. [Google Scholar] [CrossRef]
- Joh, H.M.; Kim, S.J.; Chung, T.H.; Leem, S.H. Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions. AIP Adv. 2013, 3, 092128. [Google Scholar] [CrossRef]
- Engelhardt, M.; Kartaschew, K.; Bibinov, N.; Havenith, M.; Awakowicz, P. Silicon surface modifications produced by non-equilibrium He, Ne and Kr plasma jets. J. Phys. D Appl. Phys. 2017, 50, 015206. [Google Scholar] [CrossRef]
- Javanmard, S.; Pouryoussefi, S.G. Comparison of characteristics of atmospheric pressure plasma jets using argon and helium working gases. Curr. Appl. Phys. 2023, 46, 61–69. [Google Scholar] [CrossRef]
- Van Doremaele, E.R.W.; Kondeti, V.S.S.K.; Bruggeman, P.J. Effect of plasma on gas flow and air concentration in the effluent of a pulsed cold atmospheric pressure helium plasma jet. Plasma Sources Sci. Technol. 2018, 27, 095006. [Google Scholar] [CrossRef]
- Xu, G.; Geng, Y.; Li, X.; Shi, X.; Zhang, G. Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of targets. Plasma Sci. Technol. 2021, 23, 095401. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Xie, T.; Chen, Z.; Xu, G. Effects of cold atmospheric plasma-treated medium on HaCaT and HUVEC cells in vitro. Plasma Process. Polym. 2024, 21, e2400132. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Cui, Y.; Xu, G.; Lu, J.; He, Z.; Xu, Y.; Li, R.; Gao, L.; Wang, H.; et al. Plasma-activated liquid mediated sensitization of cisplatin in chemoresistant ovarian cancer by disrupting DNA damage response. J. Phys. D Appl. Phys. 2025, 58, 135207. [Google Scholar]
- Liu, Y.; Fu, T.; Liu, C.; Chen, G.; Wang, J. Bactericidal efficacy and kinetics of cold plasma against Staphylococcus aureus and Pseudomonas aeruginosa. Mod. Food Sci. Technol. 2021, 37, 127–135. [Google Scholar]
- Geeraerd, A.; Herremans, C.; Van Impe, J.F. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 2000, 59, 185–209. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Wang, M.; Yang, C.; Yang, Z.; Liu, X. Insights into the stability of fluorinated super-hydrophobic coating in different corrosive solutions. Prog. Org. Coat. 2021, 151, 106043. [Google Scholar] [CrossRef]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Roy, P.K.; Jeon, E.B.; Park, S.Y. The efficacy of floating electrode-dielectric barrier discharge plasma against Staphylococcus aureus and Salmonella Typhimurium on fried fish paste. Appl. Sci. 2024, 14, 1875. [Google Scholar] [CrossRef]
- Barkhade, T.; Nigam, K.; Ravi, G.; Rawat, S.; Nema, S.K. Investigating the effects of microwave plasma on bacterial cell structures, viability, and membrane integrity. Sci. Rep. 2025, 15, 18052. [Google Scholar] [CrossRef]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Gazeli, K.; Svarnas, P.; Held, B.; Marlin, L.; Clément, F. Possibility of controlling the chemical pattern of He and Ar “guided streamers” by means of N2 or O2 additives. J. Appl. Phys. 2015, 117, 093302. [Google Scholar] [CrossRef]
- Gaunt, L.F.; Beggs, C.B.; Georghiou, G.E. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: A review. IEEE Trans. Plasma Sci. 2006, 34, 1257–1269. [Google Scholar] [CrossRef]
- Das, S.; Gajula, V.P.; Mohapatra, S.; Singh, G.; Kar, S. Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sci. Rev. 2022, 4, 100037. [Google Scholar] [CrossRef]
- Dasan, B.; Onal-Ulusoy, B.; Pawlat, J.; Diatczyk, J.; Sen, Y.; Mutlu, M. A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioprocess Technol. 2017, 10, 650–661. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, Y.; Hu, S.; Lan, Y.; Xi, W.; Han, W.; Wu, D.; Yang, F.; Cheng, C. Inactivation of Staphylococcus aureus in water by dielectric barrier discharge plasma jet: The role of inorganic ions, organic matter, and turbidity. J. Water Process Eng. 2023, 56, 104449. [Google Scholar] [CrossRef]
- Schnabel, U.; Niquet, R.; Krohmann, U.; Winter, J.; Schlüter, O.; Weltmann, K.D.; Ehlbeck, J. Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Process Polym. 2012, 9, 569–575. [Google Scholar] [CrossRef]
- Han, J.Y.; Song, W.J.; Eom, S.; Kim, S.B.; Kang, D.H. Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. J. Phys. D Appl. Phys. 2020, 53, 204003. [Google Scholar] [CrossRef]
- Arima, Y.; Iwata, H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007, 28, 3074–3082. [Google Scholar] [CrossRef]
- Yang, K.; Shi, J.; Wang, L.; Chen, Y.; Liang, C.; Yang, L.; Wang, L. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review. J. Mater. Sci. Technol. 2022, 99, 82–100. [Google Scholar] [CrossRef]
- Kim, D.K.; Kang, D.H. Effect of surface characteristics on the bactericidal efficacy of UVC LEDs. Food Control 2019, 108, 106869. [Google Scholar] [CrossRef]







| Bacteria | FCMs | Log-Linear Model | Weibull Model | Log-Linear + Shoulder + Tail Model | |||
|---|---|---|---|---|---|---|---|
| D | b | n1 | Nres (log10 CFU/mL) | kmax | ts | ||
| Salmonella typhimurium | kraft paper | 3.378 ± 0.322 a | 0.076 ± 0.008 a | 1.968 ± 0.067 a | 9.02 ± 2.38 a | 0.744 ± 0.138 a | 6.767 ± 2.216 a |
| 304 stainless steel | 2.924 ± 0.315 b | 0.114 ± 0.011 b | 1.784 ± 0.064 b | 2.749 ± 0.73 b | 1.183 ± 0.128 b | 4.405 ± 0.584 b | |
| glass | 2.342 ± 0.376 c | 0.154 ± 0.007 b | 1.729 ± 0.031 b | 0.308 ± 0.45 c | 1.286 ± 0.063 c | 5.321 ± 0.242 c | |
| Staphylococcus aureus | kraft paper | 5.618 ± 0.243 a* | 0.034 ± 0.009 a* | 2.138 ± 0.169 a* | 4.687 ± 0.042 a* | 0.549 ± 0.118 a * | 3.77 ± 0.064 a * |
| 304 stainless steel | 4.032 ± 0.304 b* | 0.045 ± 0.009 a* | 2.013 ± 0.155 a* | 4.159 ± 0.132 b* | 0.578 ± 0.026 b * | 3.744 ± 0.154 a* | |
| glass | 2.967 ± 0.489 c* | 0.06 ± 0.014 b* | 2.411 ± 0.132 b* | 3.64 ± 0.47 c* | 0.603 ± 0.071 c* | 8.35 ± 2.704 b* | |
| Bacteria | FCMs | Log-Linear Model | Weibull Model | Log-Linear + Shoulder + Tail Model | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | Af | Bf | RMSE | R2 | Af | Bf | RMSE | R2 | Af | Bf | RMSE | ||
| Salmonella typhimurium | kraft paper | 0.883 | 1.665 | 1.22 | 0.266 | 0.928 | 1.052 | 0.989 | 0.03 | 0.999 | 1.038 | 1.01 | 0.023 |
| 304 stainless steel | 0.908 | 1.643 | 1.233 | 0.266 | 0.931 | 1.07 | 1.004 | 0.036 | 0.997 | 1.065 | 1.007 | 0.036 | |
| glass | 0.919 | 1.767 | 1.261 | 0.306 | 0.950 | 1.043 | 0.986 | 0.022 | 0.999 | 1.019 | 0.996 | 0.01 | |
| Staphylococcus aureus | kraft paper | 0.84 | 1.452 | 1.163 | 0.198 | 0.921 | 1.038 | 1.303 | 0.181 | 0.999 | 1.021 | 1.006 | 0.01 |
| 304 stainless steel | 0.864 | 1.622 | 1.214 | 0.248 | 0.963 | 1.108 | 1.02 | 0.057 | 0.997 | 1.019 | 1 | 0.026 | |
| glass | 0.822 | 2.107 | 1.304 | 0.396 | 0.945 | 1.114 | 0.952 | 0.058 | 0.999 | 1.029 | 0.991 | 0.016 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Wang, C.; Xie, T.; Chen, Z.; Xu, G. Inactivation Effect and Influencing Factors of Cold Atmospheric Plasma Treatment with Bacteria on Food Contact Materials. Plasma 2025, 8, 46. https://doi.org/10.3390/plasma8040046
Chen M, Wang C, Xie T, Chen Z, Xu G. Inactivation Effect and Influencing Factors of Cold Atmospheric Plasma Treatment with Bacteria on Food Contact Materials. Plasma. 2025; 8(4):46. https://doi.org/10.3390/plasma8040046
Chicago/Turabian StyleChen, Mingyan, Chenhong Wang, Tian Xie, Zheng Chen, and Guimin Xu. 2025. "Inactivation Effect and Influencing Factors of Cold Atmospheric Plasma Treatment with Bacteria on Food Contact Materials" Plasma 8, no. 4: 46. https://doi.org/10.3390/plasma8040046
APA StyleChen, M., Wang, C., Xie, T., Chen, Z., & Xu, G. (2025). Inactivation Effect and Influencing Factors of Cold Atmospheric Plasma Treatment with Bacteria on Food Contact Materials. Plasma, 8(4), 46. https://doi.org/10.3390/plasma8040046

