Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = harmonic coordinates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20707 KiB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 112
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

90 pages, 673 KiB  
Article
Clifford Distributions Revisited
by Fred Brackx
Axioms 2025, 14(7), 533; https://doi.org/10.3390/axioms14070533 - 14 Jul 2025
Viewed by 56
Abstract
In the framework of harmonic and Clifford analysis, specific distributions in Euclidean space of arbitrary dimension, which are of particular importance for theoretical physics, are once more thoroughly studied. Indeed, actions involving spherical coordinates, such as the radial derivative and multiplication and division [...] Read more.
In the framework of harmonic and Clifford analysis, specific distributions in Euclidean space of arbitrary dimension, which are of particular importance for theoretical physics, are once more thoroughly studied. Indeed, actions involving spherical coordinates, such as the radial derivative and multiplication and division by the radial distance, only make sense when considering so-called signumdistributions, that is, bounded linear functionals on a space of test functions showing a singularity at the origin. Introducing these signumdistributions, the actions of a whole series of scalar and vectorial differential operators on the distributions under consideration, lead to a number of surprising results, as illustrated by some examples in three-dimensional mathematical physics. Full article
(This article belongs to the Special Issue Recent Advances in Complex Analysis and Related Topics)
Show Figures

Graphical abstract

21 pages, 4285 KiB  
Article
Federated Learning for Human Pose Estimation on Non-IID Data via Gradient Coordination
by Peng Ni, Dan Xiang, Dawei Jiang, Jianwei Sun and Jingxiang Cui
Sensors 2025, 25(14), 4372; https://doi.org/10.3390/s25144372 - 12 Jul 2025
Viewed by 204
Abstract
Human pose estimation is an important downstream task in computer vision, with significant applications in action recognition and virtual reality. However, data collected in a decentralized manner often exhibit non-independent and identically distributed (non-IID) characteristics, and traditional federated learning aggregation strategies can lead [...] Read more.
Human pose estimation is an important downstream task in computer vision, with significant applications in action recognition and virtual reality. However, data collected in a decentralized manner often exhibit non-independent and identically distributed (non-IID) characteristics, and traditional federated learning aggregation strategies can lead to gradient conflicts that impair model convergence and accuracy. To address this, we propose the Federated Gradient Harmonization aggregation strategy (FedGH), which coordinates update directions by measuring client gradient discrepancies and integrating gradient-projection correction with a parameter-reconstruction mechanism. Experiments conducted on a self-constructed single-arm robotic dataset and the public Max Planck Institute for Informatics (MPII Human Pose Dataset) dataset demonstrate that FedGH achieves average Percentage of Correct Keypoints (PCK) of 47.14% and 66.31% across all keypoints, representing improvements of 1.82 and 0.36 percentage points over the Federated Adaptive Weighting (FedAW) method. On our self-constructed dataset, FedGH attains a PCK of 86.4% for shoulder detection, surpassing other traditional federated learning methods by 20–30%. Moreover, on the self-constructed dataset, FedGH reaches over 98% accuracy in the keypoint heatmap regression model within the first 10 rounds and remains stable between 98% and 100% thereafter. This method effectively mitigates gradient conflicts in non-IID environments, providing a more robust optimization solution for distributed human pose estimation. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

15 pages, 5752 KiB  
Article
Coordinated Control of Grid-Forming Inverters for Adaptive Harmonic Mitigation and Dynamic Overcurrent Control
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Dai Orihara and Taha Selim Ustun
Electronics 2025, 14(14), 2793; https://doi.org/10.3390/electronics14142793 - 11 Jul 2025
Viewed by 139
Abstract
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt [...] Read more.
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt active filter (SAF) mechanism within the GFM control structure to achieve a real-time suppression of harmonic distortions from the inverter and grid currents. In parallel, a virtual impedance-based dynamic current limiting strategy is incorporated to constrain fault current magnitudes, ensuring the protection of power electronic components and maintaining system stability. The SAF operates in a current-injection mode aligned with harmonic components, derived via instantaneous reference frame transformations and selective harmonic extraction. The virtual impedance control (VIC) dynamically modulates the inverter’s output impedance profile based on grid conditions, enabling adaptive response during fault transients to limit overcurrent stress. A detailed analysis is performed for the coordinated control of the grid-forming inverter. Supported by simulations and analytical methods, the approach ensures system stability while addressing overcurrent limitations and active harmonic filtering under nonlinear load conditions. This establishes a viable solution for the next-generation inverter-dominated power systems where reliability, power quality, and fault resilience are paramount. Full article
Show Figures

Figure 1

25 pages, 7875 KiB  
Article
A Comparative Study of Direct Power Control Strategies for STATCOM Using Three-Level and Five-Level Diode-Clamped Inverters
by Diyaa Mustaf Mohammed, Raaed Faleh Hassan, Naseer M. Yasin, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Energies 2025, 18(13), 3582; https://doi.org/10.3390/en18133582 - 7 Jul 2025
Viewed by 305
Abstract
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, [...] Read more.
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, such as Virtual Synchronous Generator (VSG) and Static Compensator (STATCOM) configurations. DPC accomplishes several significant goals by avoiding the inner current control loops and doing away with coordinating transformations. The application of STATCOM based on three- and five-level diode-clamped inverters is covered in this work. The study checks the abilities of DPC during power control adjustments during diverse grid operation scenarios while detailing how multilevel inverters affect system stability and power reliability. Proportional Integral (PI) controllers are used to control active and reactive power levels as part of the control approach. This study shows that combining DPC with Sinusoidal Pulse Width Modulation (SPWM) increases the system’s overall electromagnetic performance and control accuracy. The performance of STATCOM systems in power distribution and transient response under realistic operating conditions is assessed using simulation tools applied to three-level and five-level inverter topologies. In addition to providing improved voltage quality and accurate reactive power control, the five-level inverter structure surpasses other topologies by maintaining a total harmonic distortion (THD) below 5%, according to the main findings. The three-level inverter operates efficiently under typical grid conditions because of its straightforward design, which uses less processing power and computational complexity. Full article
Show Figures

Figure 1

30 pages, 954 KiB  
Article
Research on the Measurement and Enhancement Pathways of the Coupled and Coordinated Development of Digitalization and Greening in the Energy Industry
by Peng Zhang, Jun Liu, Lihong Guo and Xiaofei Wang
Sustainability 2025, 17(13), 6104; https://doi.org/10.3390/su17136104 - 3 Jul 2025
Viewed by 235
Abstract
The convergence of intelligent computational innovations—exemplified by cognitive intelligence—into the real economy is fundamentally transforming traditional industries and driving high-quality development. As a cornerstone of national economic growth, the energy sector faces mounting pressure to meet demands for green, low-carbon, and sustainable development, [...] Read more.
The convergence of intelligent computational innovations—exemplified by cognitive intelligence—into the real economy is fundamentally transforming traditional industries and driving high-quality development. As a cornerstone of national economic growth, the energy sector faces mounting pressure to meet demands for green, low-carbon, and sustainable development, particularly under “dual carbon” targets and tightening regulatory frameworks. This study examines how digital transformation in this sector facilitates or impedes carbon emission reduction and green growth. Focusing on five key energy subsectors, including coal mining and processing, a coupling coordination model assesses the interaction between digitalization and greening. Utilizing panel data spanning from 2014 to 2023, the study systematically evaluates the level of digital–green coordination across the sector. The results indicate notable inter-sectoral variation, alongside a consistent upward trend in the overall coupling coordination, reaching moderate to high levels. These findings offer critical strategic insights for policymakers and energy enterprises seeking to harmonize digital innovation with green transition goals. The empirical evidence underscores the potential of next-generation technologies to expedite intelligent system upgrades, embed green development practices, and enhance enterprise-level carbon reduction and sustainability performance. Full article
(This article belongs to the Special Issue Carbon Neutrality and Green Development)
Show Figures

Figure 1

27 pages, 14158 KiB  
Article
Application of Repetitive Control to Grid-Forming Converters in Centralized AC Microgrids
by Hélio Marcos André Antunes, Ramon Ravani Del Piero and Sidelmo Magalhães Silva
Energies 2025, 18(13), 3427; https://doi.org/10.3390/en18133427 - 30 Jun 2025
Viewed by 194
Abstract
The electrical grid is undergoing increasing integration of decentralized power sources connected to the low-voltage network. In this context, the concept of a microgrid has emerged as a system comprising small-scale energy sources, loads, and storage devices, coordinated to operate as a single [...] Read more.
The electrical grid is undergoing increasing integration of decentralized power sources connected to the low-voltage network. In this context, the concept of a microgrid has emerged as a system comprising small-scale energy sources, loads, and storage devices, coordinated to operate as a single controllable entity capable of functioning in either grid-connected or islanded mode. The microgrid may be organized in a centralized configuration, such as a master-slave scheme, wherein the centralized converter, i.e., the grid-forming converter (GFC), plays a pivotal role in ensuring system stability and control. This paper introduces a plug-in repetitive controller (RC) strategy tuned to even harmonic orders for application in a three-phase GFC, diverging from the conventional approach that focuses on odd harmonics. The proposed control is designed within a synchronous reference frame and is targeted at centralized AC microgrids, particularly during islanded operation. Simulation results are presented to assess the microgrid’s power flow and power quality, thereby evaluating the performance of the GFC. Additionally, the proposed control was implemented on a Texas Instruments TMS320F28335 digital signal processor and validated through hardware-in-the-loop (HIL) simulation using the Typhoon HIL 600 platform, considering multiple scenarios with both linear and nonlinear loads. The main results highlight that the RC improves voltage regulation, mitigates harmonic distortion, and increases power delivery capability, thus validating its effectiveness for GFC operation. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

23 pages, 5920 KiB  
Article
A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area
by Jiayu Zhao, Yichun Chen, Rana Muhammad Adnan Ikram, Haoyu Xu, Soon Keat Tan and Mo Wang
Appl. Sci. 2025, 15(13), 7271; https://doi.org/10.3390/app15137271 - 27 Jun 2025
Viewed by 216
Abstract
Green Stormwater Infrastructure (GSI), as a nature-based solution, has gained widespread recognition for its role in mitigating urban flood risks and enhancing resilience. Equitable spatial distribution of GSI remains a pressing challenge, critical to harmonizing urban hydrological systems and maintaining ecological balance. However, [...] Read more.
Green Stormwater Infrastructure (GSI), as a nature-based solution, has gained widespread recognition for its role in mitigating urban flood risks and enhancing resilience. Equitable spatial distribution of GSI remains a pressing challenge, critical to harmonizing urban hydrological systems and maintaining ecological balance. However, the complexity of matching GSI supply with urban demand has limited comprehensive spatial assessments. This study introduces a quantitative framework to identify priority zones for GSI deployment and to evaluate supply–demand dynamics in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) using a coupled coordination simulation model. Clustering and proximity matrix analysis were applied to map spatial relationships across districts and to reveal underlying mismatches. Findings demonstrate significant spatial heterogeneity: over 90% of districts show imbalanced supply–demand coupling. Four spatial clusters were identified based on levels of GSI disparity. Economically advanced urban areas such as Guangzhou and Shenzhen showed high demand, while peripheral regions like Zhaoqing and Huizhou were characterized by oversupply and misaligned allocation. These results provide a systematic understanding of GSI distribution patterns, highlight priority intervention areas, and offer practical guidance for large-scale, equitable GSI planning. Full article
Show Figures

Figure 1

15 pages, 3568 KiB  
Article
Construction of Chitin-Based Composite Hydrogel via AlCl3/ZnCl2/H2O Ternary Molten Salt System and Its Flexible Sensing Performance
by Yanjun Lv, Hailong Huang, Guozhong Wu and Yuan Qian
Gels 2025, 11(7), 501; https://doi.org/10.3390/gels11070501 - 27 Jun 2025
Viewed by 322
Abstract
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present [...] Read more.
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present a simple yet effective strategy for fabricating a polyelectrolyte–chitin double-network hydrogel (CAA) via the copolymerization of acrylamide (AM) and acrylic acid (AA) with chitin in an AlCl3-ZnCl2-H2O ternary molten salt system. The synergistic interactions of dynamic metal ion coordination bonds and hydrogen bonding impart the CAA hydrogel with outstanding mechanical properties, including a fracture strain of 1765.5% and a toughness of 494.4 kJ/m3, alongside a high ionic conductivity of 1.557 S/m. Moreover, the hydrogel exhibits excellent thermal stability across a wide temperature range (−50 °C to 25 °C). When employed as a wearable sensor, the hydrogel demonstrates a rapid response time (<0.2 s), remarkable durability over 95 cycles with less than 5% resistance drift, and high sensitivity in detecting various human joint motions (e.g., finger, knee, and elbow bending). It presents a scalable strategy for biomass-derived flexible electronics that harmonizes mechanical robustness with electromechanical performance. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

29 pages, 10540 KiB  
Article
Collision Avoidance and Formation Tracking Control for Heterogeneous UAV/USV Systems with Input Quantization
by Hongyu Wang, Wei Li and Jun Ning
Actuators 2025, 14(7), 309; https://doi.org/10.3390/act14070309 - 23 Jun 2025
Viewed by 178
Abstract
This study addresses the heterogeneous formation control problem for cooperative unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) operating under input quantization constraints. A unified mathematical framework is developed to harmonize the distinct dynamic models of UAVs and USVs in the horizontal [...] Read more.
This study addresses the heterogeneous formation control problem for cooperative unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) operating under input quantization constraints. A unified mathematical framework is developed to harmonize the distinct dynamic models of UAVs and USVs in the horizontal plane. The proposed control architecture adopts a hierarchical design, decomposing the system into kinematic and dynamic subsystems. At the kinematic level, an artificial potential field method is implemented to ensure collision avoidance between vehicles and obstacles. The dynamic subsystem incorporates neural network-based estimation to compensate for system uncertainties and unknown parameters. To address communication constraints, a linear quantization model is introduced for control input processing. Additionally, adaptive control laws are formulated in the vertical plane to achieve precise altitude tracking. The overall system stability is rigorously analyzed using input-to-state stability theory. Finally, numerical simulations demonstrate the effectiveness of the proposed control strategy in achieving coordinated formation control. Full article
(This article belongs to the Special Issue Control System of Autonomous Surface Vehicle)
Show Figures

Figure 1

7 pages, 156 KiB  
Conference Report
Strengthening Vaccine Safety Systems, Research, and Regional Collaboration in Africa: A Call to Action
by Beckie N. Tagbo, Chioma S. Ejekam, Winfred Oppong-Amoako, Tene Marceline Yameogo, Afework Mitiku, Dorothy O. Esangbedo, Nelisiwe Khuzwayo, Gugu Mahlangu, Samia M. Badar, Edinam A. Agbenu, Rhanda M. Adechina and Kwasi A. Nyarko
Vaccines 2025, 13(6), 661; https://doi.org/10.3390/vaccines13060661 - 19 Jun 2025
Viewed by 502
Abstract
The 8th meeting of the African Advisory Committee on Vaccine Safety (AACVS), constituted in 2021, convened by the Vaccine Research and Innovation Unit within the Vaccine Preventable Diseases Program, WHO Regional Office for Africa, was held virtually from 14 to 16 April 2025. [...] Read more.
The 8th meeting of the African Advisory Committee on Vaccine Safety (AACVS), constituted in 2021, convened by the Vaccine Research and Innovation Unit within the Vaccine Preventable Diseases Program, WHO Regional Office for Africa, was held virtually from 14 to 16 April 2025. The meeting brought together independent vaccine experts to provide advice to the Regional Director, WHO, on vaccine safety issues critical to the African region. Discussions focused on critical updates regarding ongoing regional outbreaks, safety data, and associated safety concerns, with emphasis on newly introduced vaccines, including the malaria vaccines (RTS, S and R21), the MenFive pentavalent meningitis vaccine, and the Mpox vaccines—MVA-BN and LC16—alongside the ongoing Mpox response. The Committee conducted a deep dive into comprehensive safety considerations for new vaccine introduction, active surveillance strategies, strengthening the responsiveness of pharmacovigilance systems, and advancing vaccine research and development in Africa. Key observations highlighted significant gaps in safety surveillance systems. These included delays in data collection, access, and signal detection; a lack of harmonized real-time monitoring frameworks; the underutilization of digital technologies; and inadequate manufacturer responsibilities and accountability in post-market safety monitoring. The meeting concluded with a call to action emphasizing the need for sustainable pharmacovigilance funding mechanisms, improved regional coordination, real-time data sharing, standardized early safety study protocols, strengthened manufacturer accountability, and investments in risk communication and community engagement to bolster public trust. Strengthening vaccine safety systems and enhancing regional collaboration were recognized as urgent priorities to support the safe and effective deployment of vaccines and protect public health across Africa. Full article
(This article belongs to the Section Vaccines and Public Health)
24 pages, 153371 KiB  
Article
A Wind Turbines Dataset for South Africa: OpenStreetMap Data, Deep Learning Based Geo-Coordinate Correction and Capacity Analysis
by Maximilian Kleebauer, Stefan Karamanski, Doron Callies and Martin Braun
ISPRS Int. J. Geo-Inf. 2025, 14(6), 232; https://doi.org/10.3390/ijgi14060232 - 12 Jun 2025
Viewed by 651
Abstract
Accurate and detailed spatial data on wind energy infrastructure is essential for renewable energy planning, grid integration, and system analysis. However, publicly available datasets often suffer from limited spatial accuracy, missing attributes, and inconsistent metadata. To address these challenges, this study presents a [...] Read more.
Accurate and detailed spatial data on wind energy infrastructure is essential for renewable energy planning, grid integration, and system analysis. However, publicly available datasets often suffer from limited spatial accuracy, missing attributes, and inconsistent metadata. To address these challenges, this study presents a harmonized and spatially refined dataset of wind turbines in South Africa, combining OpenStreetMap (OSM) data with high-resolution satellite imagery, deep learning-based coordinate correction, and manual curation. The dataset includes 1487 turbines across 42 wind farms, representing over 3.9 GW of installed capacity as of 2025. Of this, more than 3.6 GW is currently operational. The Geo-Coordinates were validated and corrected using a RetinaNet-based object detection model applied to both Google and Bing satellite imagery. Instead of relying solely on spatial precision, the curation process emphasized attribute completeness and consistency. Through systematic verification and cross-referencing with multiple public sources, the final dataset achieves a high level of attribute completeness and internal consistency across all turbines, including turbine type, rated capacity, and commissioning year. The resulting dataset is the most accurate and comprehensive publicly available dataset on wind turbines in South Africa to date. It provides a robust foundation for spatial analysis, energy modeling, and policy assessment related to wind energy development. The dataset is publicly available. Full article
Show Figures

Figure 1

21 pages, 422 KiB  
Article
Profiling Land Use Planning: Legislative Structures in Five European Nations
by Dimitrios Koumoulidis, Ioannis Varvaris, Diofantos Hadjimitsis, Marzia Gabriele, Raffaella Brumana, Ioannis Gitas, Nikos Georgopoulos, Azadeh Abdollahnejad, Eleni Gkounti, Dimitris Stavrakoudis, Donatella Caniani, Andriy Dorosh, Roman Derkulskyi, Oksana Sakal, Shamil Ibatullin, Yevhenii Khan, Oleksandr Melnyk, Anne Fromage Mariette, Marc Tondriaux, Andrzej Perkowski, Adam Sieczka, Mariusz Maciejczak, Chryssa Kopra, Georgia Kostaki and Paraskevi Chantziadd Show full author list remove Hide full author list
Land 2025, 14(6), 1261; https://doi.org/10.3390/land14061261 - 12 Jun 2025
Viewed by 1433
Abstract
Land use transformation, the longest-standing human-driven environmental alteration, is a pressing and complex issue that significantly impacts European landscapes and contributes to global environmental change. The urgency to act is reinforced by the European Environment Agency (EEA), which identifies industrial, commercial, and residential [...] Read more.
Land use transformation, the longest-standing human-driven environmental alteration, is a pressing and complex issue that significantly impacts European landscapes and contributes to global environmental change. The urgency to act is reinforced by the European Environment Agency (EEA), which identifies industrial, commercial, and residential development—particularly near major urban centers—as key contributors to land take. As the EU sets a vision for achieving zero net land take by 2050, assessing the readiness and coherence of national legislation becomes critical. This comprehensive study employs a comparative legal analysis across five European countries—Italy, Greece, Poland, France, and Ukraine—examining their laws, strategies, and commitments related to land degradation neutrality. Using a review of national legislation and policy documents, the research identifies systemic patterns, barriers, and opportunities within current legal frameworks. The present study aims to provide valuable insights for policymakers, planners, and academic institutions, fostering a comprehensive understanding of existing gaps, implementation, and inconsistencies in national land use legislation. Among the results, it has become evident that a typical “pathway” between the examined states in terms of the legislative framework on land use–land take is probably a utopia for the time being. The legislations in force, in several cases, are labyrinthine and multifaceted, highlighting the urgent and immediate need for simplification and standardization. The need for this action is further underscored by the fact that, in most cases, land use frameworks are characterized by complementary legislation and ongoing amendments. Ultimately, the research underscores the critical need for harmonized governance and transparent, enforceable policies, particularly in regions where deregulated land use planning persists. The diversity in legislative layers and the decentralized role of the authorities further compounds the complexity, reinforcing the importance of cross-country dialogue and EU-wide coordination in advancing sustainable land use development. Full article
Show Figures

Figure 1

23 pages, 12506 KiB  
Article
Robust Wide-Speed-Range Control of IPMSM with Multi-Axis Coordinated Extended State Observer for Dynamic Performance Enhancement
by Wentao Zhang, Yanchen Zhai, Pengcheng Zhu and Yiwei Liu
Energies 2025, 18(11), 2938; https://doi.org/10.3390/en18112938 - 3 Jun 2025
Viewed by 427
Abstract
Wide-speed regulation control strategies for Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely applied in industrial fields. However, traditional algorithms are prone to being affected by motor parameter mismatches, sensor sampling errors, and other disturbances under complex operating conditions, leading to insufficient robustness. [...] Read more.
Wide-speed regulation control strategies for Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely applied in industrial fields. However, traditional algorithms are prone to being affected by motor parameter mismatches, sensor sampling errors, and other disturbances under complex operating conditions, leading to insufficient robustness. In order to enhance dynamic performance while simultaneously ensuring robustness, we analyzed the limitations of traditional control strategies and, based on this, proposed an improved control framework. A Multi-Axis Coordinated Extended State Observer(MCESO)-based robust control framework was developed for full-speed domain operation, which enhances disturbance rejection capability against parameter uncertainties and abrupt load changes through hierarchical disturbance estimation. Subsequently, the effectiveness and stability of the proposed method were verified through theoretical analysis and simulation studies. Compared with traditional control strategies, this method can effectively observe and compensate for a series of complex issues such as nonlinear disturbances during operation without requiring additional hardware support. Finally, extensive experimental tests were carried out on a 500 W IPMSM dual-motor drive platform. The experimental results demonstrated that, even under harsh operating conditions, the proposed scheme can effectively suppress torque ripple and significantly reduce current harmonics. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 8276 KiB  
Article
Torque Ripple Suppression Strategy Based on Online Identification of Flux Linkage Harmonics
by Xin Gu, Bingzhi Zhang, Zhiqiang Wang, Xuefeng Jin, Guozheng Zhang and Zhichen Lin
Electronics 2025, 14(11), 2174; https://doi.org/10.3390/electronics14112174 - 27 May 2025
Viewed by 349
Abstract
Permanent magnet flux harmonics in Permanent Magnet Synchronous Motors (PMSMs) can cause torque ripple. Traditional torque ripple suppression methods based on analytical models are highly dependent on the accuracy of motor parameters, while existing flux harmonic identification techniques often suffer from limited precision, [...] Read more.
Permanent magnet flux harmonics in Permanent Magnet Synchronous Motors (PMSMs) can cause torque ripple. Traditional torque ripple suppression methods based on analytical models are highly dependent on the accuracy of motor parameters, while existing flux harmonic identification techniques often suffer from limited precision, compromising the effectiveness of ripple suppression. This paper proposes an online flux harmonic identification method that considers the dead-time effect of inverters. A dead-time compensation algorithm is introduced to effectively mitigate current harmonics induced by inverter dead-time. The current harmonic signals are extracted using a multi-synchronous rotating coordinate system. A harmonic controller is employed to suppress current harmonics, and its output voltage is used to identify the permanent magnet flux harmonics, from which a flux harmonic lookup table is constructed. Based on the identified flux harmonics, the torque ripple suppression strategy using analytical methods is further optimized. Experimental results validate the effectiveness of the proposed method in improving flux harmonic identification accuracy and reducing torque ripple. Full article
Show Figures

Figure 1

Back to TopTop