Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,089)

Search Parameters:
Keywords = gains and losses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 13725 KB  
Article
SRTSOD-YOLO: Stronger Real-Time Small Object Detection Algorithm Based on Improved YOLO11 for UAV Imageries
by Zechao Xu, Huaici Zhao, Pengfei Liu, Liyong Wang, Guilong Zhang and Yuan Chai
Remote Sens. 2025, 17(20), 3414; https://doi.org/10.3390/rs17203414 (registering DOI) - 12 Oct 2025
Abstract
To address the challenges of small target detection in UAV aerial images—such as difficulty in feature extraction, complex background interference, high miss rates, and stringent real-time requirements—this paper proposes an innovative model series named SRTSOD-YOLO, based on YOLO11. The backbone network incorporates a [...] Read more.
To address the challenges of small target detection in UAV aerial images—such as difficulty in feature extraction, complex background interference, high miss rates, and stringent real-time requirements—this paper proposes an innovative model series named SRTSOD-YOLO, based on YOLO11. The backbone network incorporates a Multi-scale Feature Complementary Aggregation Module (MFCAM), designed to mitigate the loss of small target information as network depth increases. By integrating channel and spatial attention mechanisms with multi-scale convolutional feature extraction, MFCAM effectively locates small objects in the image. Furthermore, we introduce a novel neck architecture termed Gated Activation Convolutional Fusion Pyramid Network (GAC-FPN). This module enhances multi-scale feature fusion by emphasizing salient features while suppressing irrelevant background information. GAC-FPN employs three key strategies: adding a detection head with a small receptive field while removing the original largest one, leveraging large-scale features more effectively, and incorporating gated activation convolutional modules. To tackle the issue of positive-negative sample imbalance, we replace the conventional binary cross-entropy loss with an adaptive threshold focal loss in the detection head, accelerating network convergence. Additionally, to accommodate diverse application scenarios, we develop multiple versions of SRTSOD-YOLO by adjusting the width and depth of the network modules: a nano version (SRTSOD-YOLO-n), small (SRTSOD-YOLO-s), medium (SRTSOD-YOLO-m), and large (SRTSOD-YOLO-l). Experimental results on the VisDrone2019 and UAVDT datasets demonstrate that SRTSOD-YOLO-n improves the mAP@0.5 by 3.1% and 1.2% compared to YOLO11n, while SRTSOD-YOLO-l achieves gains of 7.9% and 3.3% over YOLO11l, respectively. Compared to other state-of-the-art methods, SRTSOD-YOLO-l attains the highest detection accuracy while maintaining real-time performance, underscoring the superiority of the proposed approach. Full article
Show Figures

Figure 1

19 pages, 6415 KB  
Article
Combustion and Heat-Transfer Characteristics of a Micro Swirl Combustor-Powered Thermoelectric Generator: A Numerical Study
by Kenan Huang, Jiahao Zhang, Guoneng Li, Yiyuan Zhu, Chao Ye and Ke Li
Aerospace 2025, 12(10), 916; https://doi.org/10.3390/aerospace12100916 (registering DOI) - 11 Oct 2025
Abstract
Micro-combustion-powered thermoelectric generators (μ-CPTEGs) combine the high energy density of hydrocarbons with solid-state conversion, offering compact and refuelable power for long-endurance electronics. Such characteristics make μ-CPTEGs particularly promising for aerospace systems, where conventional batteries face serious limitations. Their achievable performance [...] Read more.
Micro-combustion-powered thermoelectric generators (μ-CPTEGs) combine the high energy density of hydrocarbons with solid-state conversion, offering compact and refuelable power for long-endurance electronics. Such characteristics make μ-CPTEGs particularly promising for aerospace systems, where conventional batteries face serious limitations. Their achievable performance hinges on how a swirl-stabilized flame transfers heat into the hot ends of thermoelectric modules. This study uses a conjugate CFD framework coupled with a lumped parameter model to examine how input power and equivalence ratio shape the flame/flow structure, temperature fields, and hot-end heating in a swirl combustor-powered TEG. Three-dimensional numerical simulations were performed for the swirl combustor-powered TEG, varying the input power from 1269 to 1854 W and the equivalence ratio from φ = 0.6 to 1.1. Results indicate that the combustor exit forms a robust “annular jet with central recirculation” structure that organizes a V-shaped region of high modeled heat release responsible for flame stabilization and preheating. At φ = 1.0, increasing Qin from 1269 to 1854 W strengthens the V-shaped hot band and warms the wall-attached recirculation. Heating penetrates deeper into the finned cavity, and the central-plane peak temperature rises from 2281 to 2339 K (≈2.5%). Consistent with these field changes, the lower TEM pair near the outlet heats more strongly than the upper module (517 K to 629 K vs. 451 K to 543 K); the inter-row gap widens from 66 K to 86 K, and the incremental temperature gains taper at the highest power, while the axial organization of the field remains essentially unchanged. At fixed Qin = 1854 W, raising φ from 0.6 to 1.0 compacts and retracts the reaction band toward the exit and weakens axial penetration; the main-zone temperature increases up to φ = 0.9 and then declines for richer mixtures (peak 2482 K at φ = 0.9 to 2289 K at φ = 1.1), cooling the fin section due to reduced transport, thereby identifying φ = 0.9 as the operating point that best balances axial penetration against dilution/convective-cooling losses and maximizes the TEM hot-end temperature at the fixed power. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

13 pages, 1940 KB  
Article
Reducing Non-Radiative Recombination Through Interfacial N-Bromosuccinimide Engineering for Multi-Cation Perovskite Solar Cells
by Hassen Dhifaoui, Pierre Colson, Gilles Spronck, Wajdi Belkacem, Abdelaziz Bouazizi, Guorui He, Felix Lang, Rudi Cloots and Jennifer Dewalque
Coatings 2025, 15(10), 1195; https://doi.org/10.3390/coatings15101195 (registering DOI) - 11 Oct 2025
Abstract
Minimizing surface defects in perovskite films is crucial for suppressing non-radiative recombination and enhancing device performance. Herein, we propose the use of N-bromosuccinimide (NBS), a small molecule containing Lewis base carbonyl groups (C=O), to improve the quality of RbCsMAFA mixed-cation perovskite films. This [...] Read more.
Minimizing surface defects in perovskite films is crucial for suppressing non-radiative recombination and enhancing device performance. Herein, we propose the use of N-bromosuccinimide (NBS), a small molecule containing Lewis base carbonyl groups (C=O), to improve the quality of RbCsMAFA mixed-cation perovskite films. This surface treatment effectively reduces non-radiative charge-carrier recombination, in particular through the passivation of surface defects related to undercoordinated Pb2+ ions and halide vacancies, and significantly accelerates charge extraction from the perovskite into the Spiro-OMeTAD hole transporter. Consequently, NBS-treated PerSCs achieve a power conversion efficiency (PCE) of 18.24%, representing an 11% relative increase over the control device (16.48%). This enhancement is mainly attributed to a Voc gain of up to 40 mV and modifications in the recombination dynamics. Supporting evidence from impedance spectroscopic analyses further confirms enhanced energy-level alignment and reduced interfacial losses, improved charge transport as well as prolonged charge lifetimes within the devices. This work provides a simple yet effective approach to reduce the non-radiative recombination losses towards more efficient and stable PerSCs. Full article
Show Figures

Figure 1

17 pages, 6549 KB  
Article
Horizontal Bone Augmentation with Natural Collagen Porcine Pericardium Membranes: A Prospective Cohort Study
by Pier Paolo Poli, Luca Giboli, Mattia Manfredini, Shahnavaz Khijmatgar, Francisley Ávila Souza and Carlo Maiorana
Medicina 2025, 61(10), 1814; https://doi.org/10.3390/medicina61101814 - 10 Oct 2025
Viewed by 34
Abstract
Background and Objectives: Adequate buccal bone thickness is critical for long-term peri-implant health and stability. When residual alveolar bone volume is insufficient, guided bone regeneration (GBR) is a widely adopted technique. While non-resorbable membranes provide structural support, they carry a higher risk [...] Read more.
Background and Objectives: Adequate buccal bone thickness is critical for long-term peri-implant health and stability. When residual alveolar bone volume is insufficient, guided bone regeneration (GBR) is a widely adopted technique. While non-resorbable membranes provide structural support, they carry a higher risk of complications and require secondary surgery. Resorbable collagen membranes, offer promising biological properties and easier clinical handling, yet clinical data remain limited. This prospective cohort study aimed to evaluate the clinical and radiographic outcomes of horizontal GBR using a native, non–cross-linked resorbable porcine pericardium membrane fixed with titanium pins, in conjunction with simultaneous implant placement. Materials and Methods: Eighteen patients (26 implants) with horizontal alveolar defects (<6 mm) underwent implant placement and GBR with deproteinized bovine bone mineral and a porcine pericardium collagen membrane. Horizontal bone gain and buccal bone thickness were measured at baseline and 6 months post-operatively. Post-operative complications, patient-reported outcomes (PROMs), and peri-implant tissue health were assessed up to 1 year post-loading. Results: Mean bone gain was 2.95 ± 0.95 mm, and all sites achieved a buccal bone thickness ≥ 1.5 mm. No membrane-related complications occurred. PROMs revealed low morbidity. At 1-year follow-up, marginal bone loss averaged 0.54 ± 0.7 mm, mean probing depth was 2.79 ± 0.78 mm, 92% of sites exhibited keratinized mucosa ≥ 2 mm. Conclusions: Native resorbable porcine pericardium membranes, when combined with DBBM and mechanical stabilization, seem to be effective for horizontal bone regeneration. Full article
(This article belongs to the Special Issue New Regenerative Medicine Strategies in Oral Surgery)
Show Figures

Figure 1

14 pages, 841 KB  
Review
Cosmetic Considerations of Semaglutide
by Alaina Baggett, Carissa Saadi, Robert Saadi and Vijay Patel
Cosmetics 2025, 12(5), 221; https://doi.org/10.3390/cosmetics12050221 - 9 Oct 2025
Viewed by 246
Abstract
Semaglutide-induced facial changes, or “Ozempic face” popularized by media, have gained increasing recognition since the widespread and growing use of Ozempic (semaglutide) for weight loss. It refers to facial volume depletion and soft tissue laxity following rapid weight loss associated with this medication. [...] Read more.
Semaglutide-induced facial changes, or “Ozempic face” popularized by media, have gained increasing recognition since the widespread and growing use of Ozempic (semaglutide) for weight loss. It refers to facial volume depletion and soft tissue laxity following rapid weight loss associated with this medication. Semaglutide use can also cause gastrointestinal side effects, volume loss, and decrease skin quality not only in the face but globally. As the use of Ozempic becomes increasingly popular, more patients are presenting to cosmetic clinics for these undesirable esthetic changes. While cosmetic changes following rapid weight loss is not new, such as those following bariatric interventions, the accessibility and ease of GLP-1, Glucose-like protein-1, makes this a growing concern among the community. It is important for clinicians to recognize these potential effects, counsel patients appropriately, and give options for treatment. This emerging esthetic concern highlights the need for further investigation into underlying causes, risk factors, and potential interventions. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

21 pages, 3114 KB  
Article
Event-Driven Shoreline Dynamics of the Nile, Indus, and Yellow River Deltas: A 50-Year Analysis of Trends and Responses
by Muhammad Risha and Paul Liu
Earth 2025, 6(4), 120; https://doi.org/10.3390/earth6040120 - 9 Oct 2025
Viewed by 274
Abstract
The Nile, Indus, and Yellow River deltas are historically significant and have experienced extensive shoreline changes over the past 50 years, yet the roles of human interventions and natural events remain unclear. In this study, the Net Shoreline Movement and End Point Rate [...] Read more.
The Nile, Indus, and Yellow River deltas are historically significant and have experienced extensive shoreline changes over the past 50 years, yet the roles of human interventions and natural events remain unclear. In this study, the Net Shoreline Movement and End Point Rate (EPR) were calculated to quantify the erosion and accretion of the shoreline, respectively. Subsequently, linear trend analysis was employed to identify potential directional shifts in shoreline behavior. These measures are combined with segment-scale cumulative area and the EPR trend to reveal where erosion or accretion intensifies, weakens, or reverses through time. Results show distinct, system-specific trajectories, the Nile lost ~27 km2 from 1972 to1997 as a result of the dam construction and sediment reduction, and lost only ~3 km2 more from 1997 to 2022, with local stabilization. The Indus switched from intermittent gains before 1990s to sustained loss after that, totaling ~300 km2 of cumulative land loss mainly due to upstream dam constructions and storm events. The Yellow River gained ~500 km2 from 1973 to 1996 then lost ~200 km2 after main-channel relocation and reduced sediment supply despite active-mouth management. These outcomes indicate that deltas are very vulnerable to system wide human activities and natural events. Combined, satellite-derived metrics can help prioritize locations, guide feasible interventions, establish annual monitoring and trigger action. A major caveat of this study is that yearly shoreline rates and 5–10-yearaverages can mask short-lived or very local shifts. Targeted field surveys and finer-scale modeling (hydrodynamics, subsidence monitoring, bathymetry) are therefore needed to refine the design and inform better policy choices. Full article
Show Figures

Figure 1

20 pages, 2493 KB  
Article
“It’s Not Healthy to Be Too Large”—A Qualitative Study Using Participatory Methods to Explore Children’s and Adolescents’ Perspectives on Obesity Treatment and Body Image
by Tove Langlo Drilen, Trine Tetlie Eik-Nes, Rønnaug Astri Ødegård and Ellen Margrete Iveland Ersfjord
Children 2025, 12(10), 1353; https://doi.org/10.3390/children12101353 - 9 Oct 2025
Viewed by 214
Abstract
Background/Objectives: Qualitative child-centered research on pediatric obesity treatment and body image remains limited. This study aimed to explore children’s and adolescents’ experiences with hospital-based obesity treatment and how these experiences relate to body image. Methods: A full-day workshop including three main participatory tasks [...] Read more.
Background/Objectives: Qualitative child-centered research on pediatric obesity treatment and body image remains limited. This study aimed to explore children’s and adolescents’ experiences with hospital-based obesity treatment and how these experiences relate to body image. Methods: A full-day workshop including three main participatory tasks was conducted in two groups of children (9–13 years) and adolescents (14–18 years), focusing on their experiences with obesity treatment and body image. Data were audiotaped, transcribed verbatim, and analyzed using reflexive thematic analysis. Results: Four main themes emerged, reflecting different aspects of participants’ experiences. The first theme, Talk with me and not my parents, encompassed participants’ desire for greater agency, as children described lacking information and feeling excluded from consultations. The second theme, Experiences of communication with healthcare professionals (HCPs) about obesity, concerned participants’ perceptions of trust, support, and non-judgmental communication, with some adolescents expressing a need for additional psychological support. The third theme, Internalization of lifestyle advice, indicated that healthy diet was viewed as the primary focus of obesity treatment, while physical activity received less attention. The final theme, Perceptions of the body, conveyed mixed experiences with weighing and most participants perceived weight loss as success in treatment and weight gain as failure. The participants shared experiences of weight-based bullying, perceived stigma, and challenges with maintaining a positive body image in a society with stereotypical thin and muscular body ideals. Conclusions: Body image was influenced by HCPs’ emphasis on health and body size, and by their own internalized perceptions, influenced by societal ideals and experiences of stigma. Full article
(This article belongs to the Special Issue Childhood Obesity: Prevention, Intervention and Treatment)
Show Figures

Figure 1

17 pages, 1659 KB  
Review
Beyond the Cup: Coffee Extracts as Modulators of Periodontal Inflammation and Bone Remodeling
by Janvi Mody, Deamah Aleisa, Harshal Modh, Purnima Sainani, Serge Dibart and Weiyuan Ma
Curr. Issues Mol. Biol. 2025, 47(10), 827; https://doi.org/10.3390/cimb47100827 - 8 Oct 2025
Viewed by 201
Abstract
Alveolar bone loss is a defining feature of periodontitis and a principal cause of tooth loss worldwide. Driven by a dysregulated host immune response to chronic bacterial infection, periodontitis initiates a cascade of inflammatory events that lead to an imbalance in bone remodeling, [...] Read more.
Alveolar bone loss is a defining feature of periodontitis and a principal cause of tooth loss worldwide. Driven by a dysregulated host immune response to chronic bacterial infection, periodontitis initiates a cascade of inflammatory events that lead to an imbalance in bone remodeling, favoring osteoclastic activity. While conventional periodontal therapies aim to control infection and inflammation, they often fall short in preserving bone integrity. As a result, interest has grown in adjunctive strategies targeting molecular pathways involved in bone metabolism. Among potential candidates, coffee, a globally consumed beverage often perceived as detrimental to health, has gained attention for its complex array of bioactive compounds, including caffeine, chlorogenic acids, and polyphenols. These compounds have demonstrated anti-inflammatory, antioxidant, and osteo-modulatory effects in various biological contexts. Despite coffee’s reputation as a potential health risk, its complex composition presents a paradox, necessitating an investigation into how its bioactive constituents may mitigate periodontal tissue destruction. The novelty of this short review lies in its integration of in vitro, animal, and epidemiologic evidence to delineate the dose- and context-dependent effects of coffee polyphenols, particularly chlorogenic and ferulic acids, on periodontal inflammation and alveolar bone remodeling, with special emphasis on osteoclast-related mechanisms that have not been synthesized previously. Caffeine can influence osteoblast and osteoclast activity in a dose-dependent manner, while chlorogenic acids (CGA) and polyphenols exert radical-scavenging and cytokine-suppressing activity that may reduce inflammatory bone loss. However, their efficacy is influenced by coffee species, cultivation, roasting, and extraction methods. This review evaluates current evidence and proposes directions for optimizing coffee-based formulations to support alveolar bone preservation in periodontitis. Full article
Show Figures

Figure 1

24 pages, 3909 KB  
Article
Investigations on Repeated Overheating by Hot Air of Aromatic Epoxy-Based Carbon Fiber-Reinforced Plastics with and Without Thermoplastic Toughening
by Sebastian Eibl and Lara Greiner
J. Compos. Sci. 2025, 9(10), 551; https://doi.org/10.3390/jcs9100551 - 8 Oct 2025
Viewed by 160
Abstract
This work provides a comparison of two commercial carbon fiber reinforced plastic (CFRP) materials: HexPly® M18 1/G939 and RTM6/G939. Differences due to the additional thermoplastic in one CFRP are investigated for the two otherwise nearly identical, aromatic epoxy-based composites with respect to [...] Read more.
This work provides a comparison of two commercial carbon fiber reinforced plastic (CFRP) materials: HexPly® M18 1/G939 and RTM6/G939. Differences due to the additional thermoplastic in one CFRP are investigated for the two otherwise nearly identical, aromatic epoxy-based composites with respect to thermal degradation. The scenario chosen for testing is based on real incidents of repeated overheating by hot gases between roughly 200 and 320 °C, leading to moderate thermal damage. A special test setup is designed to continuously and alternately load CFRP with hot air in a rapid change. Post-mortem analysis is performed by mass loss, ultrasonic, and mechanical testing. Polymer degradation is analyzed by infrared spectroscopy. Even if the temperature-resistant thermoplastic polyetherimide (PEI) in the M18-1 matrix is enriched between the plies and a compensation of thermal strain during rapid temperature changes is expected, only a weak improvement is observed for residual strength in the presence of PEI, for continuous as well as alternating thermal loading. Thermally induced delaminations are even more pronounced in M18-1/G939. Deep insight is gained into degradation after repeated overheating of CFRP within the chosen scenario. Multivariate data analyses based on infrared spectroscopy allow for the determination of thermal history and residual strength, valuable for failure analysis. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

22 pages, 5772 KB  
Article
CF-DETR: A Lightweight Real-Time Model for Chicken Face Detection in High-Density Poultry Farming
by Bin Gao, Wanchao Zhang, Deqi Hao, Kaisi Yang and Changxi Chen
Animals 2025, 15(19), 2919; https://doi.org/10.3390/ani15192919 - 8 Oct 2025
Viewed by 211
Abstract
Reliable individual detection under dense and cluttered conditions is a prerequisite for automated monitoring in modern poultry systems. We propose CF-DETR, an end-to-end detector that builds on RT-DETR and is tailored to chicken face detection in production-like environments. CF-DETR advances three technical directions: [...] Read more.
Reliable individual detection under dense and cluttered conditions is a prerequisite for automated monitoring in modern poultry systems. We propose CF-DETR, an end-to-end detector that builds on RT-DETR and is tailored to chicken face detection in production-like environments. CF-DETR advances three technical directions: Dynamic Inception Depthwise Convolution (DIDC) expands directional and multi-scale receptive fields while remaining lightweight, Polar Embedded Multi-Scale Encoder (PEMD) restores global context and fuses multi-scale information to compensate for lost high-frequency details, and a Matchability Aware Loss (MAL) aligns predicted confidence with localization quality to accelerate convergence and improve discrimination. On a comprehensive broiler dataset, CF-DETR achieves a mean average precision at IoU 0.50 of 96.9% and a mean average precision (IoU 0.50–0.95) of 62.8%. Compared to the RT-DETR baseline, CF-DETR reduces trainable parameters by 33.2% and lowers FLOPs by 23.0% while achieving 81.4 frames per second. Ablation studies confirm that each module contributes to performance gains and that the combined design materially enhances robustness to occlusion and background clutter. Owing to its lightweight design, CF-DETR is well-suited for deployment in real-time smart farming monitoring systems. These results indicate that CF-DETR delivers an improved trade-off between detection performance and computational cost for real-time visual monitoring in intensive poultry production. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

31 pages, 2153 KB  
Article
Telework and Occupational Segregation in Europe
by Anja Siegert, Rafael Granell and Francisco G. Morillas-Jurado
Economies 2025, 13(10), 292; https://doi.org/10.3390/economies13100292 - 8 Oct 2025
Viewed by 189
Abstract
Occupational segregation between men and women and between rural and urban areas is a persistent driver of labor market inequality in Europe. Women and rural workers are often overrepresented in lower-paid and lower-status occupations, reflecting structural barriers to occupational mobility. This paper investigates [...] Read more.
Occupational segregation between men and women and between rural and urban areas is a persistent driver of labor market inequality in Europe. Women and rural workers are often overrepresented in lower-paid and lower-status occupations, reflecting structural barriers to occupational mobility. This paper investigates how occupational segregation varies across gender, space, and telework status and examines the potential of telework to reduce these inequalities. Using microdata from the 2023 European Labor Force Survey, we calculate segregation indices to measure occupational segregation and monetary gains, as well as losses due to segregation. We further analyze the relationship of segregation and telework. We find the highest segregation and economic disadvantages due to segregation for rural men. Female teleworkers are less clustered in feminized roles compared to non-teleworking women, suggesting that remote work can broaden occupational opportunities. Telework shows reduced segregation when primarily working remotely, but not in hybrid settings. Our findings contribute to a better understanding of spatial and gendered labor market disparities. We further identify the potential of telework to promote a more equitable occupational integration across gender and space. Full article
(This article belongs to the Special Issue Macroeconomics of the Labour Market)
Show Figures

Figure 1

11 pages, 2231 KB  
Case Report
Continuous Glucose Monitoring Improves Weight Loss and Hypoglycemic Symptoms in a Non-Diabetic Bariatric Patient 14 Years After RYGB: A Case Report
by Carolina Pape-Köhler, Christine Stier, Stylianos Kopanos and Joachim Feldkamp
Reports 2025, 8(4), 200; https://doi.org/10.3390/reports8040200 - 8 Oct 2025
Viewed by 182
Abstract
Background and Clinical Significance: Roux-en-Y gastric bypass (RYGB) significantly alters glucose metabolism, yet managing glucose variability in patients undergoing bariatric surgery remains challenging. Continuous Glucose Monitoring (CGM) offers real-time insights into glucose fluctuations and may support long-term metabolic management in this population. [...] Read more.
Background and Clinical Significance: Roux-en-Y gastric bypass (RYGB) significantly alters glucose metabolism, yet managing glucose variability in patients undergoing bariatric surgery remains challenging. Continuous Glucose Monitoring (CGM) offers real-time insights into glucose fluctuations and may support long-term metabolic management in this population. This case highlights the utility of CGM in identifying postprandial glycemic variability and guiding dietary adjustments. Case Presentation: A 45-year-old female, 14 years post-RYGB, presented with symptoms including postprandial fatigue, nocturnal cravings, and unexplained weight gain, despite adherence to nutritional guidelines. Her BMI had decreased from 52 kg/m2 (pre-surgery) to 29 kg/m2. She was provided with a CGM device (FreeStyle Libre 3) by the clinical team and instructed to monitor glucose without modifying her routine initially. Data revealed significant glycemic variability, with peaks up to 220 mg/dL and hypoglycemic dips to 45 mg/dL. Based on this, she adjusted her diet by reducing non-complex carbohydrates and increasing vegetables, proteins, and complex carbohydrates. Within two weeks, her symptoms improved, including better sleep and energy levels, accompanied by a 3 kg weight loss following dietary adjustments informed by CGM feedback. Conclusions: This case suggests how CGM can empower patients having undergone bariatric surgery to manage glucose fluctuations through informed self-management. The patient’s ability to identify and address glucose variability without formal intervention highlights CGM’s potential as a supportive tool in long-term care. While further studies are needed, this case suggests CGM may benefit similar patients experiencing postprandial symptoms or weight regain after bariatric surgery. Full article
Show Figures

Figure 1

21 pages, 1424 KB  
Article
Improving Combined Cycle Performance with Pressure Gain Combustion in the Gas Turbine
by Antonio Giuffrida and Paolo Chiesa
Processes 2025, 13(10), 3181; https://doi.org/10.3390/pr13103181 - 7 Oct 2025
Viewed by 261
Abstract
Pressure Gain Combustion (PGC) is an interesting emerging concept to enhance the performance of gas turbines currently based on the Brayton–Joule cycle. Focusing on a F-class gas turbine for land-based power generation, the current work investigates PGC potential in both simple and combined [...] Read more.
Pressure Gain Combustion (PGC) is an interesting emerging concept to enhance the performance of gas turbines currently based on the Brayton–Joule cycle. Focusing on a F-class gas turbine for land-based power generation, the current work investigates PGC potential in both simple and combined cycle operations by means of an in-house simulation software. The PGC cycle lay-out specifically includes a booster compressor for delivering cooling air to the blades at the first stage of the gas turbine expander. The effects of different amounts of air from the same booster to the PGC system for cooling requirements are also analyzed. Considering reasonable PGC values based on literature data, the efficiency of the gas turbine simple cycle rises by 2.85–3.40 percentage points in the case of no combustor cooling, or 1.85–2.25 percentage points for the most extensive cooling at the combustor, compared to the reference case. The combined cycle efficiency increases too, despite the almost equal power generation at the bottoming steam cycle. Ultimately, a revised parametric analysis with reduced efficiency at the first stage of the gas turbine expander is carried out as well to account for the losses induced by the PGC on the fluid dynamics of the expansion. In this new scenario, the risk of nullifying the advantages related to PGC is real, because of specific combinations of lower expansion efficiency at the gas turbine expander and extensive cooling at the combustor. Thus, better turbine design and effective thermal management at the combustor are fundamental to achieve the highest efficiency. Full article
(This article belongs to the Special Issue Fluid Dynamics and Thermodynamic Studies in Gas Turbine)
Show Figures

Figure 1

23 pages, 6928 KB  
Article
Sustainable Floating PV–Storage Hybrid System for Coastal Energy Resilience
by Yong-Dong Chang, Gwo-Ruey Yu, Ching-Chih Chang and Jun-Hao Chen
Electronics 2025, 14(19), 3949; https://doi.org/10.3390/electronics14193949 - 7 Oct 2025
Viewed by 259
Abstract
Floating photovoltaic (FPV) systems are promising for coastal aquaculture where reliable electricity is essential for pumping, oxygenation, sensing, and control. A sustainable FPV–storage hybrid tailored to monsoon-prone sites is developed, with emphasis on energy efficiency and structural resilience. The prototype combines dual-axis solar [...] Read more.
Floating photovoltaic (FPV) systems are promising for coastal aquaculture where reliable electricity is essential for pumping, oxygenation, sensing, and control. A sustainable FPV–storage hybrid tailored to monsoon-prone sites is developed, with emphasis on energy efficiency and structural resilience. The prototype combines dual-axis solar tracking with a spray-cooling and cleaning subsystem and an active wind-protection strategy that automatically flattens the array when wind speed exceeds 8.0 m/s. Temperature, wind speed, and irradiance sensors are coordinated by an Arduino-based supervisor to optimize tracking, thermal management, and tilt control. A 10 W floating module and a fixed-tilt reference were fabricated and tested outdoors in Penghu, Taiwan. The FPV achieved a 25.17% energy gain on a sunny day and a 40.29% gain under overcast and windy conditions, while module temperature remained below 45 °C through on-demand spraying, reducing thermal losses. In addition, a hybrid energy storage system (HESS), integrating a 12 V/10 Ah lithium-ion battery and a 12 V/24 Ah lead-acid battery, was validated using a priority charging strategy. During testing, the lithium-ion unit was first charged to stabilize the control circuits, after which excess solar energy was redirected to the lead-acid battery for long-term storage. This hierarchical design ensured both immediate power stability and extended endurance under cloudy or low-irradiance conditions. The results demonstrate a practical, low-cost, and modular pathway to couple FPV with hybrid storage for coastal energy resilience, improving yield and maintaining safe operation during adverse weather, and enabling scalable deployment across cage-aquaculture facilities. Full article
Show Figures

Figure 1

19 pages, 360 KB  
Article
Optimal Planning and Dynamic Operation of Thyristor-Switched Capacitors in Distribution Networks Using the Atan-Sinc Optimization Algorithm with IPOPT Refinement
by Oscar Danilo Montoya, Luis Fernando Grisales-Noreña and Rubén Iván Bolaños
Sci 2025, 7(4), 143; https://doi.org/10.3390/sci7040143 - 7 Oct 2025
Viewed by 176
Abstract
This paper proposes an innovative hybrid optimization framework for the optimal installation and operation of thyristor-switched capacitors (TSCs) within medium-voltage distribution networks, targeting both energy losses reduction and cost efficiency. The core of the approach combines the exploratory capabilities of the atan-sinc optimization [...] Read more.
This paper proposes an innovative hybrid optimization framework for the optimal installation and operation of thyristor-switched capacitors (TSCs) within medium-voltage distribution networks, targeting both energy losses reduction and cost efficiency. The core of the approach combines the exploratory capabilities of the atan-sinc optimization algorithm (ASOA), a recent metaheuristic inspired by mathematical functions, with the local refinement power of the IPOPT solver within a master–slave architecture. This integrated method addresses the inherent complexity of a multi-objective, mixed-integer nonlinear programming problem that seeks to balance conflicting goals: minimizing annual system losses and investment costs. Extensive testing on IEEE 33- and 69-bus systems under fixed and dynamic reactive power injection scenarios demonstrates that our framework consistently delivers superior solutions when compared to traditional and state-of-the-art algorithms. Notably, the variable operation case yields energy savings of up to 12%, translating into annual monetary gains exceeding USD 1000 in comparison with the fixed support scenario.The solutions produce well-distributed Pareto fronts that illustrate valuable trade-offs, allowing system planners to make informed decisions. The findings confirm that the proposed strategy constitutes a scalable, and robust tool for reactive power planning, supporting the deployment of smarter and more resilient distribution systems. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

Back to TopTop