Reducing Non-Radiative Recombination Through Interfacial N-Bromosuccinimide Engineering for Multi-Cation Perovskite Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Baker, R.H.; Yum, J.H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, W.; Chen, Y.; Qiu, W.; Wu, Y.; Peng, Q. Over 25% efficiency and stable bromine-free RbCsFAMA-based quadruple cation perovskite solar cells enabled by an aromatic zwitterion. J. Mater. Chem. A 2023, 11, 1170–1179. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhuang, R.; Wu, X.; Tian, C.; Sun, A.; Chen, C.; Guo, Y.; Hua, Y.; Meng, K.; et al. Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 2024, 17, 1153–1162. [Google Scholar] [CrossRef]
- NREL, Best Research Cell Efficiencies Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 26 September 2024).
- Zhang, S.; Chen, R.; Qu, M.; Long, B.; He, N.; Huang, S.; Chen, X.; Li, H.; Xuan, T. Dual Strategy Based on Quantum Dot Doping and Phenylethylamine Iodide Surface Modification for High-Performance and Stable Perovskite Solar Cells. Coatings 2024, 14, 409. [Google Scholar] [CrossRef]
- Dhifaoui, H.; Hemasiri, N.H.; Aloui, W.; Bouazizi, A.; Kazim, S.; Ahmad, S. An approach to quantify the negative capacitance features in a triple-cation based perovskite solar cells. Adv. Mater. Interfaces 2021, 8, 2101002. [Google Scholar] [CrossRef]
- Daem, N.; Mayer, A.; Spronck, G.; Colson, P.; Loicq, J.; Henrist, C.; Cloots, R.; Maho, A.; Lobet, M.; Dewalque, J. Inverse Opal Photonic Nanostructures for Enhanced Light Harvesting in CH3NH3PbI3 Perovskite Solar Cells. ACS Appl. Nano Mater. 2022, 5, 13583–13593. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, X.; Feng, E.; Chang, J.; Li, H.; Long, C.; Gao, Y.; Lu, S.; Yang, J. Multi-Functional Regulation on Buried Interface for Achieving Efficient Triple-Cation Perovskite Solar Cells. Small 2024, 20, 2308836. [Google Scholar] [CrossRef] [PubMed]
- Dhifaoui, H.; Hemasiri, N.H.; Mehdi, H.; Bouazizi, A.; Kazim, S.; Ahmad, S. Impact of Polymeric Hole-Selective Layers on Chemical Inductance in Inverted Perovskite Solar Cells. Energy Technol. 2022, 10, 2200624. [Google Scholar] [CrossRef]
- Torres, J.; Zarazua, I.; Esparza, D.; Rivas, J.M.; Saliba, M.; Mora-Seró, I.; Turren-Cruz, S.H.; Abate, A. Degradation analysis of triple-cation perovskite solar cells by electrochemical impedance spectroscopy. ACS Appl. Energy Mater. 2022, 5, 12545–12552. [Google Scholar] [CrossRef]
- Ji, X.; Che, X.; Dai, W.; Gong, Y.; Zhang, Z.; Zhang, L.; Ma, C.; Yang, T.; Dong, Y.; Yan, B.; et al. Buried Interface Modification Using Diammonium Ligand Enhances Mechanical Durability of Flexible Perovskite Solar Cells. Coatings 2024, 15, 15. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Tang, W.; Qiu, W.; Wu, Y.; Peng, Q. Heterocyclic amino acid molecule as a multifunctional interfacial bridge for improving the efficiency and stability of quadruple cation perovskite solar cells. Nano Energy 2023, 107, 108154. [Google Scholar] [CrossRef]
- Tan, S.; Yavuz, I.; Weber, M.H.; Huang, T.; Chen, C.H.; Wang, R.; Wang, H.C.; Ko, J.H.; Nuryyeva, S.; Xue, J.; et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 2020, 4, 2426–2442. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, S.M.; Ding, B.; Kanda, H.; Shibayama, N.; Syzgantseva, M.A.; Tirani, F.F.; Schouwink, P.; Yun, H.J.; Son, B.; et al. Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells. Nat. Commun. 2024, 15, 5632. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 2018, 119, 3418–3451. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, L.; Meng, K.; Long, R.; Chen, G.; Gao, P. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 2023, 52, 163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mcgettrick, J.; Ji, K.; Bi, J.; Webb, T.; Liu, X.; Liu, D.; Ren, A.; Xiang, Y.; Li, B.; et al. Fast and balanced charge transport enabled by solution-processed metal oxide layers for efficient and stable inverted perovskite solar cells. Energy Environ. Mater. 2024, 7, e12595. [Google Scholar] [CrossRef]
- Obrero-Perez, J.M.; Contreras-Bernal, L.; Nuñez-Galvez, F.; Castillo-Seoane, J.; Valadez-Villalobos, K.; Aparicio, F.J.; Anta, J.A.; Borras, A.; Sanchez-Valencia, J.R.; Barranco, A. Ultrathin plasma polymer passivation of perovskite solar cells for improved stability and reproducibility. Adv. Energy Mater. 2022, 12, 2200812. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, C.; Wang, X.; Du, X.; Liu, D.; Sun, X.; Li, Z.; Hao, L.; Gao, C.; Li, Y.; et al. A multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 2023, 62, e202213478. [Google Scholar] [CrossRef]
- Lian, S.; Liu, M.; Zhu, H.; Wu, Y.; Dolgormaa, A.; Zhang, Y.; Zhan, H.; Liu, J.; Wang, L.; Qin, C. Multifunctional BODIPY-Structured n-Type Conjugated Polymer for Simultaneous Interface Energetic Modification and Defect Passivation to Boost Efficiency and Stability of Inverted Perovskite Solar Cells. J. Phys. Chem. Lett. 2025, 16, 4835. [Google Scholar] [CrossRef]
- Salado, M.; Jodlowski, A.D.; Roldan-Carmona, C.; de Miguel, G.; Kazim, S.; Nazeeruddin, M.K.; Ahmad, S. Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability. Nano Energy 2018, 50, 220. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Zhang, C.; Liu, Y.; Sun, Q.; Cui, Y.; Liu, S.F.; Hao, Y. Interface modification of a perovskite/hole transport layer with tetraphenyldibenzoperiflanthene for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 2020, 12, 45073–45082. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Men, J.; Zhang, B.; Xie, X.; Huang, Z.; Ma, Z.; Zhai, Z.; Wang, Y.; Zeng, Y.; Wu, J.; et al. Grain Boundary Defect Passivation and Iodine Migration Inhibition for Efficient and Stable Perovskite Solar Cells. Electrochim. Acta 2024, 507, 145129. [Google Scholar] [CrossRef]
- Cheng, H.; Zang, X.; Wang, S.; Cai, B. Pyridine-Functionalized Organic Molecules in Perovskite Solar Cells: Toward Defects Passivation and Charge Transfer. Sol. RRL 2025, 9, 2400736. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Y.; Eickemeyer, F.T.; Pan, L.; Ren, D.; Ruiz-Preciado, M.A.; Carlsen, B.; Yang, B.; Dong, X.; Wang, Z.; et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 2020, 32, 1907757. [Google Scholar] [CrossRef]
- Hemasiri, N.H.; Kazim, S.; Ahmad, S. Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy 2020, 77, 105292. [Google Scholar] [CrossRef]
- Daem, N.; Dewalque, J.; Kim, D.K.; Spronck, G.; Attwood, M.; Wade, J.; Henrist, C.; Colson, P.; Heutz, S.; Cloots, R.; et al. Improved Photovoltaic Performances of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cells Incorporating Tetracene as Co-Hole Transport Layer. Sol. RRL 2023, 7, 2300391. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Shang, W.; Xu, T.; Wang, M.; Shi, Y.; Cai, R.; Bian, J. Rational selection of the lewis base molecules targeted for lead-based defects of perovskite solar cells: The synergetic co-passivation of carbonyl and carboxyl groups. J. Phys. Chem. Lett. 2023, 14, 653. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Y.; Chen, S.; Zuo, C.; Li, Y.; Chang, Y.J.; Li, J.; Wei, M. Synchronous effect of coordination and hydrogen bonds boosting the photovoltaic performance of perovskite solar cells. Electrochim. Acta 2024, 492, 144335. [Google Scholar] [CrossRef]
- Manjunath, S.B.; Soe, K.T.; Supasai, T.; Rujisamphan, N.; Devadiga, D.; Nagaraja, A.T. Nonbonding electron pairs in cyano and carbonyl groups act as defect passivation in hybrid perovskite solar cells. ACS Appl. Energy Mater. 2024, 7, 10294. [Google Scholar] [CrossRef]
- Fang, Z.; Gillatt, R.Z.; Slawin, A.M.; Cordes, D.B.; Carpenter-Warren, C.L.; O’Hagan, D. Unexpected α,α′-difluoroethers from Ag(i)F and N-bromosuccinimide reactions of dibenzo[a,e]cyclooctatetraene. Chem. Commun. 2019, 55, 14295–14298. [Google Scholar] [CrossRef]
- Pan, S.; Yang, X.; Cai, B.; Yang, K.; Ge, M.; Zhang, T.; Cui, H.; Sunab, L.; Ji, W. N-Bromosuccinimide as a p-type dopant for a Spiro-OMeTAD hole transport material to enhance the performance of perovskite solar cells. Sustain. Energy Fuels 2021, 5, 2294–2300. [Google Scholar] [CrossRef]
- Ding, Y.; Ding, B.; Kanda, H.; Usiobo, O.J.; Gallet, T.; Yang, Z.; Liu, Y.; Huang, H.; Sheng, J.; Liu, C.; et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat. Nanotechnol. 2022, 17, 598–605. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Ferdani, D.; Pering, S.; Baker, P.J.; Cameron, P.J. Influence of bromide content on iodide migration in inverted MAPb (I1−xBrx) 3 perovskite solar cells. J. Mater. Chem. A 2019, 7, 22604–22614. [Google Scholar] [CrossRef]
- Gupta, R.K.; Garai, R.; Hossain, M.; Choudhury, A.; Iyer, P.K. Dual-Passivation Strategy for Improved Ambient Stability of Perovskite Solar Cells. ACS Sustain. Chem. Eng. 2021, 9, 7993–8001. [Google Scholar]
- Liu, Y.; Xiang, W.; Mou, S.; Zhang, H.; Liu, S. Synergetic surface defect passivation towards efficient and stable inorganic perovskite solar cells. Chem. Eng. J. 2022, 447, 137515. [Google Scholar] [CrossRef]
- Kurahashi, N.; Runkel, M.; Kreusel, C.; Schiffer, M.; Maschwitz, T.; Kraus, T.; Brinkmann, K.O.; Heiderhoff, R.; Buchmüller, M.; Schumacher, S.O.; et al. Distributed Feedback Lasing in Thermally Imprinted Phase-Stabilized CsPbI3 Thin Films. Adv. Funct. Mater. 2024, 34, 2405976. [Google Scholar] [CrossRef]
- Wang, S.; Cao, F.; Wu, Y.; Zhang, X.; Zou, J.; Lan, Z.; Sun, W.; Wu, J.; Gao, P. Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells. Mater. Today Phys. 2021, 21, 100543. [Google Scholar] [CrossRef]
- Abate, S.Y.; Jha, S.; Shaik, A.K.; Ma, G.; Emodogo, J.; Pradhan, N.; Gu, X.; Patton, D.; Hammer, N.I.; Dai, Q. Fabrication of 1D/3D heterostructure perovskite layers by tetrabutylammonium tetrafluoroborate for high-performance devices. Org. Electron. 2024, 125, 106984. [Google Scholar] [CrossRef]
- Lee, J.W.; Tan, S.; Seok, S.I.; Yang, Y.; Park, N.G. Rethinking the A cation in halide perovskites. Science 2022, 375, eabj1186. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X.C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy. 2017, 2, 17102. [Google Scholar] [CrossRef]
- Singh, H.; Fei, R.; Rakita, Y.; Kulbak, M.; Cahen, D.; Rappe, A.M.; Frenkel, A.I. Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites. Phys. Rev. B 2020, 101, 054302. [Google Scholar] [CrossRef]
- Gao, X.X.; Ding, B.; Zhang, Y.; Zhang, S.; Turnell-Ritson, R.C.; Kanda, H.; Abuhelaiqa, M.; Shibayama, N.; Luo, W.; Li, M.; et al. Halide exchange in the passivation of perovskite solar cells with functionalized ionic liquids. Cell Rep. Phys. Sci. 2022, 3, 100848. [Google Scholar] [CrossRef]
- Courtier, N.E.; Cave, J.M.; Foster, J.M.; Walker, A.B.; Richardson, G. How transport layer properties affect perovskite solar cell performance: Insights from a coupled charge transport/ion migration model. Energy Environ. Sci. 2019, 12, 396–409. [Google Scholar] [CrossRef]
- Brug, G.J.; Van Der Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Ulfa, M.; Zhu, T.; Goubard, F.; Pauporté, T. Molecular versus polymeric hole transporting materials for perovskite solar cell application. J. Mater. Chem. A 2018, 6, 13350–13358. [Google Scholar] [CrossRef]
- Jacobs, D.A.; Shen, H.; Pfeffer, F.; Peng, J.; White, T.P.; Beck, F.J.; Catchpole, K.R. The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. J. Appl. Phys. 2018, 124, 225702. [Google Scholar] [CrossRef]
- Srivastava, V.; Alexander, A.; Anitha, B.; Namboothiry, M.A. Impedance spectroscopy study of defect/ion mediated electric field and its effect on the photovoltaic performance of perovskite solar cells based on different active layers. Sol. Energy Mater. Sol. Cells 2022, 237, 111548. [Google Scholar] [CrossRef]
- Kumar, Y.; Regalado-Perez, E.; Jerónimo-Rendón, J.J.; Mathew, X. Effect of Cs+ and K+ incorporation on the charge carrier lifetime, device performance and stability in perovskite solar cells. Sol. Energy Mater. Sol. Cells 2022, 236, 111512. [Google Scholar] [CrossRef]
- Tang, J.; Liu, L.; Yu, Z.; Du, J.; Cai, X.; Zhang, M.; Zhao, M.; Bai, L.; Gai, Z.; Cui, S.; et al. Interfacial Modification by Low-Temperature Anchoring of Surface Uncoordinated Pb for Efficient FAPbI3 Perovskite Solar Cells. Adv. Sustain. Syst. 2022, 6, 2100510. [Google Scholar] [CrossRef]
- Gelderman, K.; Lee, L.; Donne, S.W. Flat-band potential of a semiconductor: Using the Mott–Schottky equation. J. Chem. Educ. 2007, 84, 685. [Google Scholar] [CrossRef]
- Almora, O.; Aranda, C.; Mas-Marzá, E.; Garcia-Belmonte, G. On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 2016, 109, 173903. [Google Scholar] [CrossRef]
- Fischer, M.; Tvingstedt, K.; Baumann, A.; Dyakonov, V. Doping profile in planar hybrid perovskite solar cells identifying mobile ions. ACS Appl. Energy Mater. 2018, 1, 5129–5134. [Google Scholar] [CrossRef]
- Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 2021, 121, 14430–14484. [Google Scholar] [CrossRef]
- Ghahremanirad, E.; Almora, O.; Suresh, S.; Drew, A.A.; Chowdhury, T.H.; Uhl, A.R. Beyond protocols: Understanding the electrical behavior of perovskite solar cells by impedance spectroscopy. Adv. Energy Mater. 2023, 13, 2204370. [Google Scholar] [CrossRef]
- Ravishankar, S.; Liu, Z.; Rau, U.; Kirchartz, T. Multilayer capacitances: How selective contacts affect capacitance measurements of perovskite solar cells. PRX Energy 2022, 1, 013003. [Google Scholar] [CrossRef]
- Elbohy, H.; Suzuki, H.; Nishikawa, T.; Kyaw, A.K.K.; Hayashi, Y. Phenolphthalein: A Potent Small-Molecule Additive for High-Performance and Ambient-Air-Stable FAPbI3 Perovskite Solar Cells. ACS Appl. Energy Mater. 2024, 7, 2925–2937. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ma, Y.; Liu, R.; Li, L.; Zhang, N.; Xing, Z.; Mao, X.; Xi, X.; Wang, P.; et al. Introduction of N-hydroxy succinimide to improve overall efficiency and stability of perovskite solar cells. Appl. Surf. Sci. 2025, 163916. [Google Scholar] [CrossRef]
- Kozlov, S.S.; Alexeeva, O.V.; Nikolskaia, A.B.; Petrova, V.I.; Karyagina, O.K.; Iordanskii, A.L.; Larina, L.L.; Shevaleevskiy, O.I. Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives. Polymers 2025, 17, 653. [Google Scholar] [CrossRef]
PerSC | Voc (V) | Jsc (mAcm−2) | FF (%) | PCE (%) |
---|---|---|---|---|
w/o NBS | 1.004 | 23.67 | 69.30 | 16.48 |
with NBS (0.5 mg) | 1.021 | 23.57 | 70.66 | 16.99 |
with NBS (1.0 mg) | 1.032 | 24.16 | 70.77 | 17.79 |
with NBS (2.0 mg) | 1.041 | 24.29 | 71.31 | 18.24 |
with NBS (3.0 mg) | 1.041 | 23.96 | 71.22 | 18.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhifaoui, H.; Colson, P.; Spronck, G.; Belkacem, W.; Bouazizi, A.; He, G.; Lang, F.; Cloots, R.; Dewalque, J. Reducing Non-Radiative Recombination Through Interfacial N-Bromosuccinimide Engineering for Multi-Cation Perovskite Solar Cells. Coatings 2025, 15, 1195. https://doi.org/10.3390/coatings15101195
Dhifaoui H, Colson P, Spronck G, Belkacem W, Bouazizi A, He G, Lang F, Cloots R, Dewalque J. Reducing Non-Radiative Recombination Through Interfacial N-Bromosuccinimide Engineering for Multi-Cation Perovskite Solar Cells. Coatings. 2025; 15(10):1195. https://doi.org/10.3390/coatings15101195
Chicago/Turabian StyleDhifaoui, Hassen, Pierre Colson, Gilles Spronck, Wajdi Belkacem, Abdelaziz Bouazizi, Guorui He, Felix Lang, Rudi Cloots, and Jennifer Dewalque. 2025. "Reducing Non-Radiative Recombination Through Interfacial N-Bromosuccinimide Engineering for Multi-Cation Perovskite Solar Cells" Coatings 15, no. 10: 1195. https://doi.org/10.3390/coatings15101195
APA StyleDhifaoui, H., Colson, P., Spronck, G., Belkacem, W., Bouazizi, A., He, G., Lang, F., Cloots, R., & Dewalque, J. (2025). Reducing Non-Radiative Recombination Through Interfacial N-Bromosuccinimide Engineering for Multi-Cation Perovskite Solar Cells. Coatings, 15(10), 1195. https://doi.org/10.3390/coatings15101195