Telework and Occupational Segregation in Europe
Abstract
1. Introduction
2. Theoretical Background and Literature Review
2.1. Gender Occupational Segregation
2.2. Urban–Rural Divide
2.3. Gender and Rurality
2.4. Telework and Occupational Segregation
2.4.1. Telework and Occupational Segregation by Gender
2.4.2. Telework and Urban–Rural Occupational Segregation
2.5. Summary
3. Methodology
3.1. Data
3.2. Methods
3.2.1. Segregation Indices and Monetary Losses Due to Segregation
3.2.2. Multivariate Analysis
4. Results
4.1. Occupational Structure
4.2. Segregation Measures
4.2.1. Occupational Segregation by Gender
4.2.2. Segregation by Gender and Degree of Urbanization
4.2.3. Segregation by Gender and Telework Status
4.3. Monetary Gains and Losses Due to Segregation
4.4. Multivariate Analysis
5. Discussion and Conclusions
5.1. Segregation in the European Labor Market
5.2. The Potential of Telework to Reduce Occupational Segregation
5.3. Future Research and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Occupation | Proportion of Workforce | Share of Female Workers | Share of Rural Population | Share of Teleworkers |
---|---|---|---|---|
Managers | 0.04% | 0.28 | 0.15 | 0.69 |
Chief Executives, Senior Officials, and Legislators | 0.88% | 0.28 | 0.23 | 0.47 |
Administrative and Commercial Managers | 1.45% | 0.43 | 0.17 | 0.57 |
Production and Specialized Services Managers | 1.77% | 0.29 | 0.25 | 0.43 |
Hospitality, Retail, and Other Services Managers | 1.23% | 0.37 | 0.24 | 0.27 |
Professionals | 0.09% | 0.49 | 0.07 | 0.63 |
Science and Engineering Professionals | 3.67% | 0.3 | 0.16 | 0.51 |
Health Professionals | 3.13% | 0.71 | 0.19 | 0.19 |
Teaching Professionals | 5.52% | 0.73 | 0.2 | 0.42 |
Business and Administration Professionals | 4.66% | 0.53 | 0.15 | 0.59 |
Information and Communications Technology Professionals | 2.50% | 0.19 | 0.12 | 0.77 |
Legal, Social, and Cultural Professionals | 3.09% | 0.61 | 0.14 | 0.5 |
Technicians and Associate Professionals | 0.04% | 0.43 | 0.1 | 0.53 |
Science and Engineering Associate Professionals | 3.54% | 0.19 | 0.28 | 0.2 |
Health Associate Professionals | 3.07% | 0.78 | 0.23 | 0.09 |
Business and Administration Associate Professionals | 6.67% | 0.55 | 0.2 | 0.41 |
Legal, Social, Cultural, and Related Associate Professionals | 1.81% | 0.59 | 0.23 | 0.25 |
Information and Communications Technicians | 1.02% | 0.16 | 0.14 | 0.5 |
Clerical support workers | 0.03% | 0.64 | 0.12 | 0.25 |
General and Keyboard Clerks | 4.17% | 0.78 | 0.21 | 0.25 |
Customer Service Clerks | 1.75% | 0.7 | 0.16 | 0.22 |
Numerical and Material Recording Clerks | 3.01% | 0.48 | 0.23 | 0.21 |
Other Clerical Support Workers | 0.79% | 0.61 | 0.23 | 0.24 |
Service and Sales Workers | 0.03% | 0.58 | 0.03 | 0.08 |
Personal Service Workers | 4.53% | 0.59 | 0.24 | 0.08 |
Sales Workers | 6.75% | 0.66 | 0.24 | 0.07 |
Personal Care Workers | 3.33% | 0.88 | 0.28 | 0.1 |
Protective Services Workers | 1.55% | 0.18 | 0.24 | 0.04 |
Skilled Agricultural, Forestry, and Fishery Workers | 0.00% | 0.19 | 0.27 | 0.18 |
Market-oriented Skilled Agricultural Workers | 2.67% | 0.29 | 0.67 | 0.21 |
Market-Oriented Skilled Forestry, Fishery, and Hunting Workers | 0.15% | 0.07 | 0.59 | 0.15 |
Subsistence Farmers, Fishers, Hunters, and Gatherers | 0.01% | 0.2 | 0.89 | 0.29 |
Craft and Related Trades Workers | 0.04% | 0.15 | 0.15 | 0.09 |
Building and Related Trades Workers | 3.78% | 0.02 | 0.34 | 0.07 |
Metal, Machinery, and Related Trades Workers | 3.64% | 0.04 | 0.34 | 0.04 |
Handicraft and Printing Workers | 0.46% | 0.36 | 0.26 | 0.13 |
Electrical and Electronics Trades Workers | 1.54% | 0.04 | 0.28 | 0.09 |
Food Processing, Woodworking, Garment, and Similar | 0.02% | 0.41 | 0.33 | 0.06 |
Plant and Machine Operators and Assemblers | 0.01% | 0.22 | 0.11 | 0.02 |
Stationary Plant and Machine Operators | 2.36% | 0.33 | 0.34 | 0.01 |
Assemblers | 0.83% | 0.37 | 0.34 | 0.01 |
Drivers and Mobile Plant Operators | 4.17% | 0.05 | 0.33 | 0.02 |
Elementary Occupations | 0.02% | 0.4 | 0.17 | 0.06 |
Cleaners and Helpers | 3.23% | 0.84 | 0.22 | 0.02 |
Agricultural, Forestry, and Fishery Laborers | 0.75% | 0.28 | 0.48 | 0.04 |
Labor in Mining, Construction, Manufacturing, Transport | 2.60% | 0.29 | 0.29 | 0.01 |
Food Preparation Assistants | 0.74% | 0.66 | 0.24 | 0.02 |
Street and Related Sales and Services Workers | 0.05% | 0.23 | 0.16 | 0.03 |
Refuse Workers and Other Elementary Workers | 0.95% | 0.24 | 0.27 | 0.03 |
Appendix A.3
Segregation by Gender Φ1 | Segregation by Gender and Urbanization Φ1 | Segregation by Gender and Telework Status Φ1 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | ||||||||||||
Men | Women | City | Suburb Towns | Rural Areas | City | Suburb Towns | Rural Areas | No Telework | Telework | No Telework | Telework | ||||
AT | 0.25 | 0.13 | 0.20 | 0.11 | 0.12 | 0.18 | 0.24 | 0.25 | 0.21 | 0.22 | 0.10 | 0.05 | 0.23 | 0.17 | 0.05 |
BE | 0.23 | 0.13 | 0.20 | 0.10 | 0.11 | 0.17 | 0.23 | 0.22 | 0.20 | 0.24 | 0.08 | 0.02 | 0.16 | 0.19 | 0.05 |
BG | 0.29 | 0.15 | 0.23 | 0.16 | 0.16 | 0.21 | 0.43 | 0.32 | 0.26 | 0.37 | - | - | - | - | - |
CH | 0.21 | 0.12 | 0.17 | 0.10 | 0.11 | 0.14 | 0.29 | 0.20 | 0.19 | 0.21 | 0.12 | 0.03 | 0.21 | 0.34 | 0.04 |
CY | 0.26 | 0.15 | 0.20 | 0.12 | 0.15 | 0.25 | 0.41 | 0.21 | 0.26 | 0.26 | 0.14 | 0.14 | 0.33 | 0.16 | 0.24 |
CZ | 0.29 | 0.14 | 0.25 | 0.13 | 0.15 | 0.15 | 0.25 | 0.31 | 0.27 | 0.28 | 0.13 | 0.09 | 0.30 | 0.21 | 0.11 |
DE | 0.21 | 0.12 | 0.17 | 0.09 | 0.09 | 0.15 | 0.26 | 0.19 | 0.18 | 0.19 | 0.10 | 0.06 | 0.23 | 0.20 | 0.05 |
DK | 0.17 | 0.10 | 0.15 | 0.09 | 0.09 | 0.13 | 0.25 | 0.19 | 0.15 | 0.18 | 0.09 | 0.03 | 0.14 | 0.29 | 0.05 |
EE | 0.29 | 0.19 | 0.22 | 0.13 | 0.18 | 0.25 | 0.29 | 0.24 | 0.28 | 0.24 | 0.10 | 0.15 | 0.22 | 0.19 | 0.06 |
EL | 0.17 | 0.08 | 0.17 | 0.13 | 0.16 | 0.12 | 0.32 | 0.27 | 0.26 | 0.31 | 0.08 | 0.05 | 0.42 | 0.05 | 0.44 |
ES | 0.25 | 0.13 | 0.21 | 0.12 | 0.11 | 0.19 | 0.38 | 0.25 | 0.21 | 0.22 | 0.07 | 0.03 | 0.27 | 0.09 | 0.05 |
FI | 0.24 | 0.16 | 0.19 | 0.12 | 0.17 | 0.20 | 0.36 | 0.19 | 0.26 | 0.24 | 0.11 | 0.08 | 0.17 | 0.40 | 0.04 |
FR | 0.24 | 0.15 | 0.17 | 0.11 | 0.12 | 0.17 | 0.28 | 0.20 | 0.21 | 0.19 | 0.12 | 0.05 | 0.28 | 0.26 | 0.05 |
HR | 0.32 | 0.17 | 0.26 | 0.16 | 0.22 | 0.21 | 0.32 | 0.34 | 0.33 | 0.31 | 0.12 | 0.14 | 0.53 | 0.13 | 0.05 |
HU | 0.31 | 0.15 | 0.24 | 0.15 | 0.18 | 0.18 | 0.36 | 0.33 | 0.26 | 0.30 | 0.11 | 0.13 | 0.41 | 0.12 | 0.10 |
IE | 0.22 | 0.11 | 0.17 | 0.11 | 0.15 | 0.15 | 0.22 | 0.20 | 0.22 | 0.22 | 0.11 | 0.12 | 0.19 | 0.32 | 0.03 |
IS | 0.22 | 0.11 | 0.20 | 0.13 | 0.11 | 0.37 | 0.36 | 0.23 | 0.30 | 0.30 | 0.11 | 0.11 | 0.15 | 0.45 | 0.08 |
IT | 0.22 | 0.10 | 0.22 | 0.10 | 0.09 | 0.13 | 0.25 | 0.29 | 0.21 | 0.23 | 0.07 | 0.04 | 0.32 | 0.11 | 0.04 |
LT | 0.30 | 0.18 | 0.21 | 0.14 | 0.17 | 0.36 | 0.33 | 0.26 | 0.28 | 0.25 | 0.08 | 0.10 | 0.25 | 0.11 | 0.06 |
LU | 0.19 | 0.10 | 0.16 | 0.11 | 0.28 | 0.17 | 0.16 | 0.36 | 0.24 | 0.21 | 0.11 | 0.06 | 0.19 | 0.29 | 0.10 |
LV | 0.30 | 0.20 | 0.21 | 0.15 | 0.21 | 0.21 | 0.36 | 0.24 | 0.27 | 0.27 | 0.09 | 0.12 | 0.29 | 0.12 | 0.11 |
MT | 0.10 | 0.03 | 0.10 | 0.05 | 0.03 | 0.05 | 0.27 | 0.11 | 0.09 | 0.27 | - | - | - | - | - |
NL | 0.18 | 0.11 | 0.15 | 0.08 | 0.09 | 0.15 | 0.22 | 0.14 | 0.18 | 0.23 | 0.12 | 0.09 | 0.15 | 0.56 | 0.06 |
NO | 0.21 | 0.12 | 0.18 | 0.11 | 0.15 | 0.13 | 0.31 | 0.21 | 0.20 | 0.26 | 0.09 | 0.10 | 0.09 | 0.49 | 0.05 |
PL | 0.25 | 0.14 | 0.22 | 0.15 | 0.17 | 0.18 | 0.33 | 0.33 | 0.26 | 0.27 | 0.10 | 0.07 | 0.35 | 0.12 | 0.09 |
PT | 0.29 | 0.16 | 0.21 | 0.13 | 0.16 | 0.20 | 0.37 | 0.25 | 0.23 | 0.28 | 0.13 | 0.08 | 0.32 | 0.17 | 0.15 |
RO | 0.31 | 0.15 | 0.30 | 0.18 | 0.27 | 0.18 | 0.33 | 0.50 | 0.34 | 0.36 | 0.06 | 0.07 | 0.65 | 0.06 | 0.10 |
SE | 0.17 | 0.09 | 0.14 | 0.08 | 0.09 | 0.10 | 0.23 | 0.16 | 0.15 | 0.16 | 0.07 | 0.06 | 0.11 | 0.31 | 0.03 |
SI | 0.24 | 0.13 | 0.22 | 0.11 | 0.15 | 0.13 | 0.20 | 0.29 | 0.26 | 0.21 | - | - | - | - | - |
SK | 0.31 | 0.18 | 0.25 | 0.14 | 0.21 | 0.17 | 0.29 | 0.34 | 0.27 | 0.28 | 0.11 | 0.15 | 0.33 | 0.13 | 0.08 |
Appendix A.4
Monetary Losses/Gains Due to Segregation by Gender Γ ** | Monetary Losses/Gains Due to Segregation by Gender and Urbanization Γ ** | Monetary Losses/Gains Due to Segregation by Gender and Teleworking Status Γ ** | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FGT * | Men | Women | FGT * | Men | Women | FGT * | Men | Women | |||||||
City | Town/ Sub. | Rural Area | City | Town/ Sub. | Rural Area | No Telework | Telework | No Telework | Telework | ||||||
AT | 0.70 | 1.33 | −1.49 | 1.63 | 3.93 | 2.70 | −1.75 | 3.91 | −2.23 | −5.14 | 3.85 | 5.15 | 11.57 | −11.53 | −0.91 |
BE | 0.03 | −0.06 | 0.06 | 1.06 | 3.81 | −1.82 | −1.77 | 3.12 | −1.49 | −0.06 | 4.08 | −1.17 | 13.03 | −15.39 | −1.87 |
BG | 1.15 | −2.17 | 2.43 | 5.14 | 8.60 | −6.71 | −17.65 | 11.61 | −3.20 | −13.66 | - | - | - | - | - |
CH | 0.64 | 1.20 | −1.37 | 1.57 | 5.79 | 0.67 | −4.49 | 3.51 | −2.83 | −5.20 | 3.74 | 0.63 | 10.25 | −15.30 | −1.49 |
CY | 1.72 | 3.38 | −3.50 | 3.96 | 11.24 | −8.51 | −11.29 | 1.19 | −10.13 | −13.70 | 7.96 | 12.45 | 24.40 | −17.71 | 9.81 |
CZ | 0.83 | 1.49 | −1.88 | 2.42 | 10.39 | −0.32 | −4.13 | 4.67 | −2.87 | −6.69 | 5.00 | 8.65 | 12.55 | −12.39 | −2.29 |
DE | 0.91 | 1.72 | −1.94 | 1.53 | 5.60 | −0.18 | −1.85 | 2.16 | −3.85 | −5.87 | 5.12 | 9.35 | 12.63 | −14.19 | −2.68 |
DK | 0.60 | 1.13 | −1.26 | 1.10 | 3.72 | 0.72 | −1.25 | 1.59 | −1.59 | −4.41 | 1.80 | 0.47 | 4.69 | −8.44 | −0.93 |
EE | 0.27 | 0.54 | −0.54 | 1.51 | 4.48 | −3.34 | −2.67 | 1.98 | −3.76 | −2.32 | 1.77 | −0.06 | 6.20 | −6.60 | 0.78 |
EL | 0.71 | −1.24 | 1.63 | 2.92 | 5.60 | −1.12 | −10.12 | 6.13 | 3.79 | −8.34 | 2.08 | 1.78 | 9.93 | −4.30 | 5.97 |
ES | 0.28 | 0.52 | −0.60 | 1.97 | 4.71 | −2.90 | −7.28 | 2.51 | −3.90 | −6.11 | 3.43 | 3.02 | 13.31 | −8.35 | 3.76 |
FI | 0.61 | 1.19 | −1.24 | 2.46 | 7.17 | −1.29 | −5.53 | 4.01 | −5.05 | −6.44 | 2.52 | −2.45 | 6.71 | −11.94 | −0.85 |
FR | 0.56 | 1.09 | −1.13 | 1.98 | 5.98 | −0.14 | −4.22 | 2.85 | −2.30 | −5.60 | 3.99 | 2.16 | 12.75 | −14.06 | 1.26 |
HR | 0.57 | −1.08 | 1.21 | 3.87 | 11.17 | −2.33 | −10.49 | 10.88 | 0.16 | −8.65 | 4.41 | 6.18 | 18.97 | −9.06 | 2.13 |
HU | 0.52 | −0.98 | 1.11 | 3.72 | 12.16 | −2.65 | −11.95 | 10.75 | −0.76 | −7.68 | 3.53 | 6.65 | 11.47 | −7.05 | 3.04 |
IE | 0.91 | −1.70 | 1.94 | 1.96 | 4.39 | −0.49 | −7.02 | 6.84 | −0.41 | −1.04 | 3.09 | −3.14 | 7.93 | −12.76 | 0.86 |
IS | 0.39 | 0.71 | −0.85 | 1.10 | 3.08 | −6.74 | −0.81 | 0.16 | −3.01 | −2.47 | 2.72 | −1.38 | 5.63 | −18.01 | 1.29 |
IT | 0.14 | −0.25 | 0.34 | 1.82 | 5.54 | −2.00 | −6.96 | 4.79 | −1.42 | −4.79 | 4.11 | 4.28 | 17.12 | −9.75 | 3.54 |
LT | 0.06 | −0.13 | 0.13 | 3.28 | 7.09 | −4.39 | −7.87 | 6.22 | −5.09 | −6.25 | 2.60 | 6.92 | 4.24 | −5.16 | −2.82 |
LU | 0.73 | 1.37 | −1.57 | 2.91 | 15.63 | −3.84 | −1.16 | 11.45 | −6.76 | −3.17 | 2.54 | −0.25 | 8.29 | −11.03 | −0.59 |
LV | 0.42 | −0.85 | 0.82 | 1.93 | 2.03 | −0.08 | −3.98 | 4.84 | 4.88 | −6.08 | 2.87 | 7.74 | 3.10 | −5.85 | −2.02 |
MT | 0.20 | 0.35 | −0.50 | 0.45 | 0.33 | 0.59 | −3.75 | −2.00 | 0.88 | −0.89 | - | - | - | - | - |
NL | 1.11 | 2.10 | −2.35 | 1.26 | 4.02 | 0.29 | −2.98 | −0.18 | −4.53 | −8.14 | 3.46 | −4.64 | 7.87 | −16.17 | −3.14 |
NO | 0.50 | 0.95 | −1.06 | 1.50 | 5.67 | −0.35 | −3.68 | 2.37 | −1.07 | −5.50 | 2.03 | −3.22 | 4.77 | −13.38 | −0.11 |
PL | 1.40 | −2.60 | 3.02 | 4.33 | 8.71 | −2.23 | −13.77 | 12.28 | 3.14 | −8.13 | 3.72 | 5.51 | 9.52 | −8.19 | 6.12 |
PT | 0.12 | −0.24 | 0.24 | 3.67 | 8.86 | −3.69 | −13.79 | 6.95 | −2.49 | −10.69 | 6.11 | −1.62 | 17.90 | −15.87 | 11.19 |
RO | 2.47 | −4.32 | 5.76 | 6.42 | 12.93 | −6.31 | −16.89 | 20.34 | 2.36 | −11.41 | 1.58 | 2.16 | 10.40 | −2.84 | 4.90 |
SE | 0.01 | −0.01 | 0.02 | 0.93 | 2.99 | −1.03 | −2.87 | 1.88 | −0.69 | −1.84 | 1.33 | −2.47 | 3.00 | −8.26 | 0.36 |
SI | 1.33 | −2.46 | 2.90 | 2.06 | 6.33 | −1.48 | −6.71 | 9.49 | 3.68 | −0.49 | - | - | - | - | - |
SK | 0.80 | 1.52 | −1.70 | 2.43 | 12.91 | 1.76 | −3.53 | 6.65 | −2.28 | −5.74 | 4.74 | 12.47 | 11.72 | −10.10 | −0.06 |
References
- Abel, J. R., Gabe, T. M., & Stolarick, K. (2014). Skills across the urban–rural hierarchy. Growth and Change, 45(4), 499–517. [Google Scholar] [CrossRef]
- Alonso-Villar, O., & Del Río, C. (2010). Local versus overall segregation measures. Mathematical Social Sciences, 60(1), 30–38. [Google Scholar] [CrossRef]
- Alonso-Villar, O., & Del Río, C. (2017). Local segregation and well-being. Review of Income and Wealth, 63(2), 269–287. [Google Scholar] [CrossRef]
- Arntz, M., Ben Yahmed, S., & Berlingieri, F. (2020). Working from home and COVID-19: The chances and risks for gender gaps. Intereconomics, 55(6), 381–386. [Google Scholar] [CrossRef] [PubMed]
- Bettio, F., & Verashchagina, A. (2009). Gender segregation in the labour market: Root causes, implications and policy responses in the EU. Publications Office of European commission. Available online: https://data.europa.eu/doi/10.2767/1063 (accessed on 21 May 2025).
- Blau, F. D., Brummund, P., & Liu, A. Y.-H. (2013). Trends in occupational segregation by gender 1970–2009: Adjusting for the impact of changes in the occupational coding system. Demography, 50(2), 471–492. [Google Scholar] [CrossRef] [PubMed]
- Blau, F. D., & Kahn, L. M. (2017). The gender wage gap: Extent, trends, and explanations. Journal of Economic Literature, 55(3), 789–865. [Google Scholar] [CrossRef]
- Bond-Smith, S., & McCann, P. (2022). The work-from-home revolution and the performance of cities. Working Paper No. 026. The Productivity Institute. [Google Scholar]
- Braesemann, F., Lehdonvirta, V., & Kässi, O. (2022a). ICTs and the urban-rural divide: Can online labour platforms bridge the gap? Information, Communication & Society, 25(1), 34–54. [Google Scholar] [CrossRef]
- Braesemann, F., Stephany, F., Teutloff, O., Kässi, O., Graham, M., & Lehdonvirta, V. (2022b). The global polarisation of remote work. PLoS ONE, 17(10), e0274630. [Google Scholar] [CrossRef]
- Brixy, U., Brunow, S., & Ochsen, C. (2022). The urban-rural wage gap in Germany. IAB-Discussion Paper 04/2022. Institut für Arbeitsmarkt- und Berufsforschung (IAB). [Google Scholar] [CrossRef]
- Charles, M., & Grusky, D. (2004). Occupational ghettos. Stanford University Press. Available online: https://www.sup.org/books/sociology/occupational-ghettos (accessed on 21 May 2025).
- Charlesworth, T. E. S., & Banaji, M. (2019). Gender in science, technology, engineering, and mathematics: Issues, causes, solutions. The Journal of Neuroscience, 39, 7228–7243. [Google Scholar] [CrossRef]
- Chung, H., & Seo, H. (2024). Flexibility stigma across Europe: How national contexts can shift the extent to which flexible workers are stigmatised. Social Indicators Research, 174, 945–965. [Google Scholar] [CrossRef]
- Chung, H., & Van Der Horst, M. (2018). Women’s employment patterns after childbirth and the perceived access to and use of flexitime and teleworking. Human Relations, 71(1), 47–72. [Google Scholar] [CrossRef] [PubMed]
- Del Río, C., & Alonso-Villar, O. (2010). Gender segregation in the Spanish labor market: An alternative approach. Social Indicators Research, 98(2), 337–362. [Google Scholar] [CrossRef]
- Del Río, C., & Alonso-Villar, O. (2015). The evolution of occupational segregation in the United States, 1940–2010: Gains and losses of gender–race/ethnicity groups. Demography, 52(3), 967–988. [Google Scholar] [CrossRef] [PubMed]
- Del Río, C., & Alonso-Villar, O. (2018). Segregation and social welfare: A methodological proposal with an application to the U.S. Social Indicators Research, 137(1), 257–280. [Google Scholar] [CrossRef]
- Del Río, C., & Alonso-Villar, O. (2022). On measuring segregation in a multigroup context: Standardized versus unstandardized indices. Social Indicators Research, 163(2), 633–659. [Google Scholar] [CrossRef]
- Eurofound. (2024). The changing structure of employment in the EU: Annual review 2023. Eurofound research paper. Publications Office of the European Union. [Google Scholar]
- Eurofound & European Commission Joint Research Centre. (2021). European jobs monitor 2021: Gender gaps and the employment structure. Publications Office. Available online: https://data.europa.eu/doi/10.2806/16416 (accessed on 21 May 2025).
- Eurofound & European Commission Joint Research Centre. (2024). Regional employment change and the geography of telework in Europe. Publications Office of the European Union. [Google Scholar] [CrossRef]
- Eurostat. (2022). Mean hourly earnings by sex, economic activity and occupation [Dataset]. Eurostat. [Google Scholar] [CrossRef]
- Eurostat. (2024). Population by educational attainment level, sex and age (%)—Main indicators [Dataset]. Eurostat. [Google Scholar] [CrossRef]
- Frost, D. (2024). Remote working and relocation: Evidence from the 2023 national remote working survey. Policy Briefing No. 12. Western Development Commission. [Google Scholar]
- Goldin, C. (2014). A grand gender convergence: Its last chapter. American Economic Review, 104(4), 1091–1119. [Google Scholar] [CrossRef]
- Hamjediers, M. (2021). Can regional gender ideologies account for variation of gender pay gaps? The case of Germany. Social Sciences, 10(9), 347. [Google Scholar] [CrossRef]
- Hostettler Macias, L., Ravalet, E., & Rérat, P. (2022). Potential rebound effects of teleworking on residential and daily mobility. Geography Compass, 16(9), e12657. [Google Scholar] [CrossRef]
- International Labour Organization. (2024). International standard classification of occupations (ISCO). ILOSTAT. Available online: https://ilostat.ilo.org/methods/concepts-and-definitions/classification-occupation/ (accessed on 26 April 2025).
- Kanellopoulos, D. N. (2011). How can teleworking be pro-poor? Journal of Enterprise Information Management, 24(1), 8–29. [Google Scholar] [CrossRef]
- López-Igual, P., & Rodríguez-Modroño, P. (2020). Who is teleworking and where from? Exploring the main determinants of telework in Europe. Sustainability, 12(21), 8797. [Google Scholar] [CrossRef]
- Mascherini, M., Hyland, M., Hingre, G., Anzillotti, M., Molinuevo, D., Peruffo, E., & Ivaškaitė-Tamošiūnė, V. (2023). Bridging the rural-urban divide: Addressing inequalities and empowering communities. Publications Office. [Google Scholar] [CrossRef]
- Matz, C. J., Stieb, D. M., & Brion, O. (2015). Urban-rural differences in daily time-activity patterns, occupational activity and housing characteristics. Environmental Health, 14(1), 88. [Google Scholar] [CrossRef]
- Meurs, D., & Pora, P. (2020). Gender equality on the labour market in France: A slow convergence hampered by motherhood. Economie et Statistique/Economics and Statistics, 510–512, 109–130. [Google Scholar] [CrossRef]
- Mora, R., & Ruiz-Castillo, J. (2011). Entropy-Based Segregation Indices. Sociological Methodology, 41(1), 159–194. [Google Scholar] [CrossRef]
- Nordin, M., Hammarlund, C., & Bergh, A. (2025). A study of job polarization in Sweden from an urban-rural perspective. Journal for Labour Market Research, 59(1), 10. [Google Scholar] [CrossRef]
- Olfert, M. R., & Moebis, D. M. (2006). The spatial economy of gender-based occupational segregation. Review of Regional Studies, 36(1), 44–62. [Google Scholar] [CrossRef]
- Ory, D. T., & Mokhtarian, P. L. (2006). Which came first, the telecommuting or the residential relocation? An empirical analysis of causality. Urban Geography, 27(7), 590–609. [Google Scholar] [CrossRef]
- Özgüzel, C., Luca, D., & Wei, Z. (2023). The new geography of remote jobs? Evidence from Europe (Vol. 57). OECD Regional Development Papers. OECD. [Google Scholar] [CrossRef]
- Pabilonia, S. W., & Vernon, V. (2022). Telework, wages, and time use in the United States. Review of Economics of the Household, 20(3), 687–734. [Google Scholar] [CrossRef]
- Scott, A., Gilbert, A., & Gelan, A. (2007). The urban-rural divide: Myth or reality? (Vol. 2) Macaulay Institute. [Google Scholar]
- Sostero, M., Milasi, S., Hurley, J., Fernández-Macías, E., & Bisello, M. (2020). Teleworkability and the COVID-19 crisis: A new digital divide? JRC Working Papers on Labour, Education and Technology. European Commission. [Google Scholar]
- Theil, H., & Finizza, A. J. (1971). A note on the measurement of racial integration of schools by means of informational concepts†. The Journal of Mathematical Sociology, 1(2), 187–193. [Google Scholar] [CrossRef]
- Torre, M. (2019). Women in blue: Structural and individual determinants of sex segregation in blue-collar occupations. Gender & Society, 33(3), 410–438. [Google Scholar] [CrossRef]
- Vitola, A., & Baltina, I. (2013). An evaluation of the demand for telework and smart work centres in rural areas: A case study from Latvia. European Countryside, 5(3), 251–264. [Google Scholar] [CrossRef]
- Welch, N., Ahrens, J.-P., & Block, J. (2025). Regional labor market integration of women and the share of women in management: Are family firms different? Review of Regional Research, 45(1), 153–183. [Google Scholar] [CrossRef]
- Wong, P.-H., Kourtit, K., & Nijkamp, P. (2025). The teleworking paradox: The geography of residential mobility of workers in pandemic times. The Annals of Regional Science, 74(1), 39. [Google Scholar] [CrossRef]
- Zwysen, W. (2023). Remote work as a new dimension of polarisation: Individual and contextual determinants of the relationship between working from home and job quality. In The future of remote work. Center for Open Science. Available online: https://osf.io/xdzhf (accessed on 5 July 2025).
Occupation | Proportion | Mean Hourly Salary | Share of Female Workers | Rurality | Share of Teleworkers |
---|---|---|---|---|---|
Managers | 0.05 | 28.62 | 0.35 | 0.22 | 0.44 |
Professionals | 0.23 | 21.36 | 0.54 | 0.16 | 0.49 |
Technicians and associate professionals | 0.16 | 17.76 | 0.50 | 0.22 | 0.29 |
Clerical support workers | 0.10 | 14.20 | 0.66 | 0.21 | 0.23 |
Craft and related trades workers | 0.11 | 12.84 | 0.11 | 0.32 | 0.06 |
Skilled agricultural, forestry, and fishery | 0.03 | 12.6 | 0.28 | 0.67 | 0.21 |
Plant and machine operators | 0.07 | 11.45 | 0.18 | 0.34 | 0.02 |
Service and sales workers | 0.16 | 11.16 | 0.64 | 0.25 | 0.08 |
Elementary occupations | 0.08 | 9.65 | 0.53 | 0.27 | 0.02 |
Male No Telework | Male Telework | Female No Telework | Female Telework | |
---|---|---|---|---|
Total | 21.0% | 23.6% | 32.9% | 22.6% |
Managers | 28.5% | 32.5% | 18.1% | 21.0% |
Professionals | 18.1% | 36.9% | 19.2% | 25.8% |
Technicians and associate professionals | 25.8% | 18.6% | 34.3% | 21.2% |
Clerical support workers | 17.1% | 6.3% | 56.4% | 20.2% |
Population Share (%) | Local Segregation Indices | Overall Segregation Index | ||||||
---|---|---|---|---|---|---|---|---|
M | Contribution to Overall (%) | |||||||
Male | 0.53 | 0.13 | 0.12 | 0.12 | 0.11 | 0.15 | 0.22 | 0.42 |
Female | 0.47 | 0.28 | 0.23 | 0.18 | 0.15 | 0.58 |
Population Share (%) | Local Segregation Indices | Overall Segregation Index | |||||||
---|---|---|---|---|---|---|---|---|---|
M | Contribution to Overall (%) | ||||||||
Male | Cities | 0.21 | 0.11 | 0.11 | 0.10 | 0.10 | 0.19 | 0.11 | 0.12 |
Towns/suburbs | 0.19 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | |||
Rural areas | 0.14 | 0.31 | 0.30 | 0.29 | 0.33 | 0.21 | |||
Female | Cities | 0.19 | 0.37 | 0.29 | 0.23 | 0.18 | 0.24 | ||
Towns/suburbs | 0.16 | 0.30 | 0.25 | 0.20 | 0.17 | 0.18 | |||
Rural areas | 0.11 | 0.28 | 0.23 | 0.20 | 0.17 | 0.12 |
Population Share (%) | Local Segregation Indices | Overall Segregation Index | |||||||
---|---|---|---|---|---|---|---|---|---|
M | Contribution to Overall (%) | ||||||||
Male | No telework | 0.21 | 0.03 | 0.03 | 0.03 | 0.03 | 0.12 | 0.09 | 0.05 |
Telework | 0.24 | 0.27 | 0.25 | 0.24 | 0.25 | 0.46 | |||
Female | No telework | 0.33 | 0.21 | 0.18 | 0.16 | 0.15 | 0.43 | ||
Telework | 0.23 | 0.03 | 0.03 | 0.03 | 0.03 | 0.06 |
Segregation by Gender | Segregation by Urbanization and Gender | Segregation by Telework Status and Gender | ||||
---|---|---|---|---|---|---|
Γ × 100 (*) | Γ × 100 (*) | Γ × 100 (*) | ||||
Gender | City | Suburbs | Rural Areas | No Telework | Telework | |
Men | −0.62 | 5.06 | −2.42 | −6.98 | 2.65 | 10.17 |
Women | 0.71 | 5.06 | −1.1 | −4.22 | −9.66 | 0.97 |
(by Gender) | (by Gender and Urbanization) | FGT (by Gender) | FGT (by Gender and Urbanization) | |||||
---|---|---|---|---|---|---|---|---|
Rurality | 0.053 | *** | 0.026 | * | 0.004 | 0.007 | ||
Share of hybrid telework | 0.006 | −0.068 | 0.000 | 0.052 | * | |||
Share of mainly teleworking | −0.426 | *** | −0.304 | *** | −0.017 | −0.036 | ||
Gender gap working hours | 0.003 | * | 0.004 | ** | 0.001 | ** | 0.001 | ** |
Female employment rate | 0.377 | ** | −0.139 | −0.044 | −0.030 | |||
Employment rate | −0.214 | * | 0.194 | * | −0.092 | *** | −0.038 | |
Information sector | 0.005 | 0.250 | 0.041 | 0.023 | ||||
Primary sector | −0.833 | *** | −0.005 | 0.094 | *** | 0.277 | *** | |
Part-time rate | −0.108 | −0.109 | −0.005 | −0.034 | ||||
Permanent contract | −0.145 | ** | −0.079 | 0.043 | *** | −0.004 | ||
Gender gap in education | 0.062 | 0.040 | 0.017 | 0.017 | ||||
Tertiary education rate | −0.395 | *** | −0.185 | *** | 0.003 | 0.004 | ||
Child rate | −0.288 | ** | −0.102 | 0.016 | 0.046 | |||
Mean age | 0.001 | 0.003 | ** | 0.000 | 0.000 | |||
Migration rate | −0.083 | 0.038 | 0.007 | −0.019 | ||||
Country | ||||||||
BE | 0.054 | ** | 0.031 | 0.001 | 0.002 | |||
BG | −0.005 | 0.002 | 0.008 | 0.027 | *** | |||
CY | 0.008 | −0.046 | 0.013 | 0.025 | ** | |||
CZ | −0.011 | −0.018 | 0.008 | 0.003 | ||||
DE | −0.047 | ** | −0.044 | ** | 0.007 | 0.009 | ||
DK | −0.103 | *** | −0.066 | ** | 0.008 | −0.005 | ||
EE | 0.060 | 0.032 | 0.000 | 0.006 | ||||
EL | −0.069 | * | 0.000 | −0.001 | −0.009 | |||
ES | 0.027 | 0.021 | 0.000 | 0.003 | ||||
FI | 0.057 | * | 0.072 | ** | 0.010 | * | 0.007 | |
FR | −0.010 | 0.030 | 0.001 | −0.004 | ||||
HR | 0.030 | −0.026 | 0.001 | 0.000 | ||||
HU | −0.003 | −0.028 | 0.003 | 0.004 | ||||
IT | −0.091 | *** | −0.076 | *** | 0.002 | 0.001 | ||
LT | 0.053 | 0.025 | 0.001 | 0.012 | ||||
LU | 0.008 | −0.007 | −0.003 | 0.013 | ||||
LV | 0.060 | 0.022 | 0.001 | 0.010 | ||||
MT | −0.149 | *** | −0.084 | ** | 0.000 | −0.008 | ||
NL | −0.056 | −0.028 | 0.016 | * | −0.005 | |||
NO | −0.023 | 0.023 | 0.004 | −0.004 | ||||
PL | −0.019 | −0.015 | 0.018 | ** | 0.019 | ** | ||
PT | −0.009 | −0.033 | 0.012 | * | 0.009 | |||
RO | 0.008 | 0.001 | 0.014 | * | 0.032 | *** | ||
SE | −0.064 | * | −0.018 | 0.004 | −0.001 | |||
SI | −0.029 | −0.037 | 0.012 | 0.002 | ||||
Constant | 0.680 | *** | −0.011 | 0.056 | ** | 0.039 | ||
R2 | 0.815 | 0.501 | 0.735 | 0.721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siegert, A.; Granell, R.; Morillas-Jurado, F.G. Telework and Occupational Segregation in Europe. Economies 2025, 13, 292. https://doi.org/10.3390/economies13100292
Siegert A, Granell R, Morillas-Jurado FG. Telework and Occupational Segregation in Europe. Economies. 2025; 13(10):292. https://doi.org/10.3390/economies13100292
Chicago/Turabian StyleSiegert, Anja, Rafael Granell, and Francisco G. Morillas-Jurado. 2025. "Telework and Occupational Segregation in Europe" Economies 13, no. 10: 292. https://doi.org/10.3390/economies13100292
APA StyleSiegert, A., Granell, R., & Morillas-Jurado, F. G. (2025). Telework and Occupational Segregation in Europe. Economies, 13(10), 292. https://doi.org/10.3390/economies13100292