Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = fulvic and humic acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

23 pages, 2688 KiB  
Article
Effect of Biostimulant Applications on Eco-Physiological Traits, Yield, and Fruit Quality of Two Raspberry Cultivars
by Francesco Giovanelli, Cristian Silvestri and Valerio Cristofori
Horticulturae 2025, 11(8), 906; https://doi.org/10.3390/horticulturae11080906 (registering DOI) - 4 Aug 2025
Viewed by 51
Abstract
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 [...] Read more.
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 (leonardite-humic acids), and BIO3 (plant-based extracts)—on leaf ecophysiology, yield, and fruit quality in two raspberry cultivars, ‘Autumn Bliss’ (AB) and ‘Zeva’ (Z), grown in an open-field context, to assess their effectiveness in raspberry cultivation. Experimental activities involved two Research Years (RYs), namely, year 2023 (RY 1) and 2024 (RY 2). Leaf parameters such as chlorophyll, flavonols, anthocyanins, and the Nitrogen Balance Index (NBI) were predominantly influenced by the interaction between Treatment, Year and Cultivar factors, indicating context-dependent responses rather than direct biostimulant effects. BIO2 showed a tendency to increase yield (g plant−1) and berry number plant−1, particularly in RY 2 (417.50 g plant−1, +33.93% vs. control). Fruit quality responses were cultivar and time-specific: BIO3 improved soluble solid content in AB (12.8 °Brix, RY 2, Intermediate Harvest) and Z (11.43 °Brix, +13.91% vs. BIO2). BIO2 reduced titratable acidity in AB (3.12 g L−1) and increased pH in Z (3.02, RY 2) but also decreased °Brix in Z. These findings highlight the potential of biostimulants to modulate raspberry physiology and productivity but underscore the critical role of cultivar, environmental conditions, and specific biostimulant composition in determining the outcomes, which were found to critically depend on tailored application strategies. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

23 pages, 2268 KiB  
Article
Potential for Drought Stress Alleviation in Lettuce (Lactuca sativa L.) with Humic Substance-Based Biostimulant Applications
by Santiago Atero-Calvo, Francesco Magro, Giacomo Masetti, Eloy Navarro-León, Begoña Blasco and Juan Manuel Ruiz
Plants 2025, 14(15), 2386; https://doi.org/10.3390/plants14152386 - 2 Aug 2025
Viewed by 252
Abstract
In the present study, we evaluated the potential use of a humic substance (HS)-based biostimulant in mitigating drought stress in lettuce (Lactuca sativa L.) by comparing both root and foliar modes of application. To achieve this, lettuce plants were grown in a [...] Read more.
In the present study, we evaluated the potential use of a humic substance (HS)-based biostimulant in mitigating drought stress in lettuce (Lactuca sativa L.) by comparing both root and foliar modes of application. To achieve this, lettuce plants were grown in a growth chamber on a solid substrate composed of vermiculite and perlite (3:1). Plants were exposed to drought conditions (50% of Field Capacity, FC) and 50% FC + HS applied as radicular (‘R’) and foliar (‘F’) at concentrations: R-HS 0.40 and 0.60 mL/L, respectively, and 7.50 and 10.00 mL/L, respectively, along with a control (100% FC). HSs were applied three times at 10-day intervals. Plant growth, nutrient concentration, lipid peroxidation, reactive oxygen species (ROS), and enzymatic and non-enzymatic antioxidants were estimated. Various photosynthetic and chlorophyll fluorescence parameters were also analyzed. The results showed that HS applications alleviated drought stress, increased plant growth, and reduced lipid peroxidation and ROS accumulation. HSs also improved the net photosynthetic rate, carboxylation efficiency, electron transport flux, and water use efficiency. Although foliar HSs showed a greater tendency to enhance shoot growth and photosynthetic capacity, the differences between the application methods were not significant. Hence, in this preliminary work, the HS-based product evaluated in this study demonstrated potential for alleviating drought stress in lettuce plants at the applied doses, regardless of the mode of application. This study highlights HS-based biostimulants as an effective and sustainable tool to improve crop resilience and support sustainable agriculture under climate change. However, further studies under controlled growth chamber conditions are needed to confirm these results before field trials. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Viewed by 292
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

22 pages, 4578 KiB  
Article
Isolation of Humic Substances Using Waste Wood Ash Extracts: Multiparametric Optimization via Box–Behnken Design and Chemical Characterization of Products
by Dominik Nieweś
Molecules 2025, 30(15), 3067; https://doi.org/10.3390/molecules30153067 - 22 Jul 2025
Viewed by 207
Abstract
This study evaluated birch and oak ash extracts as alternative extractants for isolating humic substances (HSs) from peat and lignite. The effects of ultrasound intensity, extraction time, and temperature were optimized using a Box–Behnken design and validated statistically. The highest HSs yields were [...] Read more.
This study evaluated birch and oak ash extracts as alternative extractants for isolating humic substances (HSs) from peat and lignite. The effects of ultrasound intensity, extraction time, and temperature were optimized using a Box–Behnken design and validated statistically. The highest HSs yields were obtained from peat with oak ash extract (pH 13.18), compared to birch ash extract (pH 12.09). Optimal process parameters varied by variant, falling within 309–391 mW∙cm−2, 116–142 min, and 67–79 °C. HSs extracted under optimal conditions were fractionated into humic acids (HAs) and fulvic acids (FAs), and then analyzed by elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR), and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance Spectroscopy (CP/MAS 13C NMR). The main differences in HSs quality were influenced by raw material and fraction type. However, the use of birch ash extract consistently resulted in a higher proportion of carboxylic structures across all fractions. Overall, wood ash extract, especially from oak, offers a sustainable and effective alternative to conventional extractants, particularly for HSs isolation from lignite. Notably, HSs yield from lignite with oak ash extract (29.13%) was only slightly lower than that achieved with 0.5 M NaOH (31.02%), highlighting its practical potential in environmentally friendly extraction technologies. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

17 pages, 3221 KiB  
Article
Removal of Chemical Oxygen Demand (COD) from Swine Farm Wastewater by Corynebacterium xerosis H1
by Jingyi Zhang, Meng Liu, Heshi Tian, Lingcong Kong, Wenyan Yang, Lianyu Yang and Yunhang Gao
Microorganisms 2025, 13(7), 1621; https://doi.org/10.3390/microorganisms13071621 - 9 Jul 2025
Viewed by 285
Abstract
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate [...] Read more.
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate an effective COD-degrading strain of SW, characterize (at the molecular level) its transformation of SW, and apply it to practical production. A strain of Corynebacterium xerosis H1 was isolated and had a 27.93% ± 0.68% (mean ± SD) degradation rate of COD in SW. This strain precipitated growth in liquids, which has the advantage of not needing to be immobilized, unlike other wastewater-degrading bacteria. Based on analysis by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), this bacterium removed nitrogen-containing compounds in SW, with proteins and lipids decreasing from 41 to 10% and lignins increasing from 51 to 82%. Furthermore, the enhancement of the sequencing batch reactor (SBR) with strain H1 improved COD removal in effluent, with reductions in the fluorescence intensity of aromatic protein I, aromatic protein II, humic-like acids, and fulvic acid regions. In addition, based on 16S rRNA gene sequencing analysis, SBRH1 successfully colonized some H1 bacteria and had a higher abundance of functional microbiota than SBRC. This study confirms that Corynebacterium xerosis H1, as a carrier-free efficient strain, can be directly applied to swine wastewater treatment, reducing carrier costs and the risk of secondary pollution. The discovery of this strain enriches the microbial resource pool for SW COD degradation and provides a new scheme with both economic and environmental friendliness for large-scale treatment. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 7296 KiB  
Article
The Impact of Fulvic Acid on the Growth Physiology, Yield, and Quality of Tomatoes Under Drought Conditions
by Hongxia Song, Weilong Zhu, Ziqing Guo, Tianyue Song, Jiayu Wang, Chongzhen Gao, Hongtao Zhang and Ruixue Shen
Agronomy 2025, 15(7), 1528; https://doi.org/10.3390/agronomy15071528 - 24 Jun 2025
Viewed by 487
Abstract
Increased global drought severity threatens crop yield and quality. Fulvic acid (FA), a humic acid compound, enhances crop stress tolerance. This study investigated FA application on drought-stressed tomato ‘Provence’ during the seedling and fruiting stages. Seedling-stage drought severely inhibited growth, physiology, biochemistry, and [...] Read more.
Increased global drought severity threatens crop yield and quality. Fulvic acid (FA), a humic acid compound, enhances crop stress tolerance. This study investigated FA application on drought-stressed tomato ‘Provence’ during the seedling and fruiting stages. Seedling-stage drought severely inhibited growth, physiology, biochemistry, and photosynthesis, reducing seedling quality. Subsequent fruiting-stage drought further significantly decreased photosynthetic efficiency and assimilate synthesis, drastically lowering fruit yield and quality. FA application mitigated drought damage, with 400 mg·L−1 being optimal. At this concentration, under seedling drought, Seedling strength index (Si), Photosynthetic efficiency (Pn), and Instantaneous water use efficiency (IWUE) increased significantly by 76.54%, 67.46%, and 36.97%, respectively, with no adverse morphological effects by flowering. Post-drought FA spraying later significantly enhanced leaf photosynthetic enzyme activity and WUE (by 89.16%, 98.48%, 42.20%, and 40%), boosting Pn, promoting assimilate accumulation and transport to fruits. This resulted in significantly improved fruit yield and comprehensive quality. In conclusion, spraying 400 mg·L−1 FA significantly enhances tomato drought tolerance and water use efficiency in arid/semi-arid regions, offering an effective strategy for saving irrigation water and improving crop productivity in water-scarce areas. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

14 pages, 1239 KiB  
Article
The Adsorption Characteristics and Impact Mechanism of Phosphorus by Surface Sediments in Natural Freshwater Lakes
by Qiang Zhang, Yang Yang, Xu Liu and Fazhi Xie
Water 2025, 17(12), 1775; https://doi.org/10.3390/w17121775 - 13 Jun 2025
Viewed by 392
Abstract
A lake is a sink, source, and converter of phosphorus, and its ability to intercept phosphorus in water bodies is receiving increasing attention. In this study, the Nanyi Lake sediment in the middle and lower reaches of the Yangtze River basin was taken [...] Read more.
A lake is a sink, source, and converter of phosphorus, and its ability to intercept phosphorus in water bodies is receiving increasing attention. In this study, the Nanyi Lake sediment in the middle and lower reaches of the Yangtze River basin was taken as the research object, and the phosphorus adsorption capacity and influencing factors of the sediment in the basin were investigated through a control variable experiment. The adsorption capacities of sediments at the sample points are L1 > L3 > L2, with maximum values of 372.41 mg/kg, 332.53 mg/kg, and 346.27 mg/kg, respectively. Equilibrium adsorption is reached at approximately 5 h for L1 and L2, and 10 h for L3. The interaction between sediment and phosphorus involves physical adsorption and mono-layer adsorption. The increase in temperature does not promote phosphorus migration from overlying water to sediments, but instead triggers phosphorus release from sediments, indicating an exothermic process for phosphorus adsorption on sediments. When the phosphorus concentration in overlying water is below and above 1 mg/L, increasing disturbance intensity results in enhanced phosphorus adsorption and release in sediments, respectively. The presence of humus in the overlying water, especially humic acid compared with fulvic acid, causes stronger adsorption of phosphorus on sediments. Overall, this study contributes to our understanding of phosphorus adsorption characteristics and mechanisms in Nanyi Lake sediments, providing valuable insights for managing and conserving this freshwater ecosystem. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 275 KiB  
Article
Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits
by Alfredo Estrada-Angulo, Jesús A. Quezada-Rubio, Elizama Ponce-Barraza, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Jorge L. Ramos-Méndez, Yesica J. Arteaga-Wences, Lucía de G. Escobedo-Gallegos, Luis Corona and Alejandro Plascencia
Ruminants 2025, 5(2), 20; https://doi.org/10.3390/ruminants5020020 - 29 May 2025
Viewed by 898
Abstract
Leonardite (LEO), a microbial derived product rich in humic and fulvic acids, has been tested, due to its beneficial properties for health and well-being, as a feed additive, mainly in non-ruminant species. Although there are some reports of LEO supplementation in ruminants fed [...] Read more.
Leonardite (LEO), a microbial derived product rich in humic and fulvic acids, has been tested, due to its beneficial properties for health and well-being, as a feed additive, mainly in non-ruminant species. Although there are some reports of LEO supplementation in ruminants fed with high-to medium-forage based diets, there is no information available of the potential effects of LEO in ruminants fed, under sub-tropical climate conditions, with high-energy diets during long-term fattening. For this reason, the objective of the present experiment was to evaluate the effects of LEO levels inclusion in diets for feedlot lambs finished over a long-term period. For this reason, 48 Pelibuey × Katahdin lambs (initial weight = 20.09 ± 3.55 kg) were fed with a high-energy diet (88:12 concentrate to forage ratio) supplemented with LEO (with a minimum of 75% total humic acids) for 130 days as follows: (1) diet without LEO, (2) diet supplemented with 0.20% LEO, (3) diet supplemented with 0.40% LEO, and (4) diet supplemented with 0.60% LEO. For each treatment, Leonardite was incorporated with the mineral premix. Lambs were blocked by weight and housed in 24 pens (2 lambs/pen). Treatment effects were contrasted by orthogonal polynomials. The average climatic conditions that occurred during the experimental period were 31.6 ± 2.4 °C ambient temperature and 42.2 ± 8.1% relative humidity (RH). Those values of ambient temperature and RH represent a temperature humidity index (THI) of 79.07; thus, lambs were finished under high heat load conditions. The inclusion of LEO in diet did not affect dry matter intake (p ≥ 0.25) and average daily gain (p ≥ 0.21); therefore, feed to gain ratio was not affected (p ≥ 0.18). The observed to expected dietary net energy averaged 0.96 and was not affected by LEO inclusion (p ≥ 0.26). The lower efficiency (−4%) of dietary energy utilization is an expected response given the climatic conditions of high ambient heat load presented during fattening. Lambs that were slaughtered at an average weight of 49.15 ± 6.00 kg did not show differences on the variables measured for carcass traits (p ≥ 0.16), shoulder tissue composition (p ≥ 0.59), nor in visceral mass (p ≥ 0.46) by inclusion of LEO. Under the climatic conditions in which this experiment was carried out, LEO supplementation up to 0.60% in diet (equivalent to 0.45% of humic substances) did not did not help to alleviate the extra-energy expenditure used to dissipate the excessive heat and did not change the gained tissue composition of the lambs that were fed with high-energy diets during long-term period under sub-tropical climate conditions. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Sheep and Goats)
16 pages, 5740 KiB  
Article
Nitrate Nitrogen Quantification via Ultraviolet Absorbance: A Case Study in Agricultural and Horticultural Regions in Central China
by Yiheng Zang, Jing Chen, Muhammad Awais, Mukhtar Iderawumi Abdulraheem, Moshood Abiodun Yusuff, Kuan Geng, Yongqi Chen, Yani Xiong, Linze Li, Yanyan Zhang, Vijaya Raghavan, Jiandong Hu, Junfeng Wu and Guoqing Zhao
Agriculture 2025, 15(11), 1131; https://doi.org/10.3390/agriculture15111131 - 23 May 2025
Viewed by 629
Abstract
Soil nitrate nitrogen (NO3-N) is a key indicator of agricultural non-point source pollution. The ultraviolet (UV) dual-wavelength method is widely used for NO3-N detection, but interference from complex soil organic matter affects its accuracy. This study investigated [...] Read more.
Soil nitrate nitrogen (NO3-N) is a key indicator of agricultural non-point source pollution. The ultraviolet (UV) dual-wavelength method is widely used for NO3-N detection, but interference from complex soil organic matter affects its accuracy. This study investigated how organic matter influences NO3-N detection by optimizing UV dual-wavelength combinations. Density functional theory (DFT) calculations showed slight spectral broadening of fulvic and humic acids in the presence of NO3-N under UV spectrum. Standard solutions and soil samples were used to compare the detection performance of different wavelength pairs. The findings indicated that the dual-wavelength combination of 235 nm/275 nm is optimal rather than 220 nm/275 nm for measuring soil samples at NO3-N concentrations exceeding 5 mg·L−1. The 235/275 nm method gave an average calibration coefficient of 1.57. Compared to the national standard and flow analysis methods, the average relative errors were 19.7% and 22.3% (p < 0.001), respectively, indicating its suitability for practical soil applications. These results demonstrate the method’s potential for rapid and accurate NO3-N detection in real soil samples, supporting its application in environmental monitoring and agricultural management. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

20 pages, 4093 KiB  
Article
Unraveling the Immobilization Mechanisms of Biochar and Humic Acid on Heavy Metals: DOM Insights from EEMs-PARAFAC and 2D-COS Analysis
by Qiuyao Shang, Zhixian Li, Jianwu Wang, Li Zou, Zhenan Xing, Jiaqi Ni, Xiling Liu, Guoliang Chen, Zhang Chen and Zhichao Jiang
Appl. Sci. 2025, 15(11), 5803; https://doi.org/10.3390/app15115803 - 22 May 2025
Cited by 1 | Viewed by 385
Abstract
The structural complexity and variability of dissolved organic matter (DOM) significantly affect its binding capacity with heavy metals (HMs). This study evaluated the remediation efficacy of biochar (BC) and humic acid (HA) on Mn- and Cu-contaminated soils using four maize pot treatments: 3% [...] Read more.
The structural complexity and variability of dissolved organic matter (DOM) significantly affect its binding capacity with heavy metals (HMs). This study evaluated the remediation efficacy of biochar (BC) and humic acid (HA) on Mn- and Cu-contaminated soils using four maize pot treatments: 3% BC (YB3), 6% BC (YB6), 3% BC + 1% HA (YB3H), and 6% BC + 1% HA (YB6H). The results showed that compared to the control (Y), Results showed Mn and Cu concentrations in rhizosphere soil decreased by 11.08–17.76%, while DOM content increased by 44.2–103.83%. BC enhanced DOM aromaticity and humification, further intensified by HA, leading to a more complex and stable DOM structure. PARAFAC identified four DOM components in BC (BC-DOM): C1 (fulvic-like), C2/C3 (humic-like), and C4 (protein-like), and in BC + HA (BC + H-DOM), an enhanced structural complexity with additional aromatic C–H groups was observed. 2D-COS analysis revealed that in BC-DOM, polysaccharides primarily interacted with Mn and Cu, followed by carboxylic acids and phenolic hydroxyl groups, but in BC + H-DOM, aromatic C–H groups preferentially bound Cu before polysaccharides, showing weaker affinity for Mn. These results elucidate the DOM-mediated immobilization mechanisms of BC and HA for HMs, offering insights for soil remediation and carbon sequestration strategies. Full article
Show Figures

Figure 1

17 pages, 8350 KiB  
Article
Differential Molecular Interactions of Imidacloprid with Dissolved Organic Matter in Citrus Soils with Diverse Planting Ages
by Junquan Chen, Yawen Zhang, Yanqi Guo, Kai Jiang, Duo Li and Taihui Zheng
Agriculture 2025, 15(9), 997; https://doi.org/10.3390/agriculture15090997 - 4 May 2025
Viewed by 671
Abstract
The interactions between dissolved organic matter (DOM) and agrochemicals (e.g., neonicotinoid insecticides, NIs) govern the distribution, migration, and potential environmental risks of agrochemicals. However, the long-term effects of agricultural management on the DOM components and structure, as well as their further influences on [...] Read more.
The interactions between dissolved organic matter (DOM) and agrochemicals (e.g., neonicotinoid insecticides, NIs) govern the distribution, migration, and potential environmental risks of agrochemicals. However, the long-term effects of agricultural management on the DOM components and structure, as well as their further influences on the interactions between DOM and agrochemicals, remain unclear. Here, spectroscopic techniques, including Fourier transform infrared spectroscopy, two-dimensional correlation spectroscopy, and three-dimensional excitation–emission matrix fluorescence spectroscopy were employed to delve into the interaction mechanism between the DOM from citrus orchards with distinct cultivation ages (10, 30, and 50 years) and imidacloprid, which is a type of pesticide widely used in agricultural production. The findings revealed that the composition and structure of soil DOM significantly change with increasing cultivation age, characterized by an increase in humic substances and the emergence of new organic components, indicating complex biodegradation and chemical transformation processes of soil organic matter. Imidacloprid primarily interacts with fulvic acid-like fractions of DOM, and its binding affinity decreases with increasing cultivation age. Additionally, the interactions of protein-like fractions with imidacloprid occur after humic-like fractions, suggesting differential binding behaviors among DOM fractions. These results demonstrate that cultivation age significantly influences the composition and structural characteristics of soil DOM in citrus orchards, subsequently affecting its sorption capacity to imidacloprid. This study enhances the understanding of imidacloprid’s environmental behavior and provides theoretical support for the environmental risk management of neonicotinoid pesticides. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 305 KiB  
Article
Determination of the Effect of Organic Matter Addition to Mineral Soil on Nickel Detoxification in Radish, Its Yield, Nitrogen Metabolism and Chloroplast Pigments
by Kamil Misiak, Maciej Bosiacki and Magda Formela-Luboińska
Agronomy 2025, 15(5), 1018; https://doi.org/10.3390/agronomy15051018 - 24 Apr 2025
Viewed by 599
Abstract
Understanding soil properties that govern physicochemical and biological processes is essential for achieving high crop quality and yield. Organic matter is an important element of soil fertility and fertility in vegetable cultivation. In the process of decomposition of organic matter in the soil, [...] Read more.
Understanding soil properties that govern physicochemical and biological processes is essential for achieving high crop quality and yield. Organic matter is an important element of soil fertility and fertility in vegetable cultivation. In the process of decomposition of organic matter in the soil, humus of various quality is formed. The quality of humus depends on the content of individual acids (fulvic, humic and hymatomalanic acids) in it, which can affect the binding–chelation of heavy metals, limiting their availability to plants. The conducted studies determined the effect of adding organic matter (high peat, brown coal and wheat straw) to mineral soil on nickel detoxification in radish, its yield, nitrogen management and chloroplast pigments. The studies were conducted for three years in a greenhouse in a container system. The tested substrates were contaminated with nickel in the amount of 50, 75 and 100 mg dm−3. It was found that introducing organic matter into mineral soil can affect the reduction as well as the increase in nickel content in edible parts of radish. The type of organic material introduced into mineral soil as a source of organic matter has a significant impact on nickel content in radish. It was shown that nitrate reductase activity (NR) depends to a large extent on the substrate in which the plants are grown as well as on the applied dose of nickel. A similar relationship was demonstrated in the case of changes in the level of chloroplast pigments (chlorophyll a, chlorophyll b and carotenoids). Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
14 pages, 4068 KiB  
Article
Study on the Use of Soda Saline–Alkali Soil as a Rice-Seedling-Raising Soil After Short-Term Improvement
by Yingbin Nie, Lu Jiang, Xiran Liu, Lei Feng and Zhihong Li
Appl. Sci. 2025, 15(9), 4638; https://doi.org/10.3390/app15094638 - 22 Apr 2025
Cited by 1 | Viewed by 517
Abstract
In western Jilin Province, China, the presence of soda saline–alkali soil poses a significant threat to the raising of rice seedlings due to its harsh soil properties. The scarcity of suitable seedling-raising soil resources has become increasingly pronounced. A short-term soil-improvement experiment was [...] Read more.
In western Jilin Province, China, the presence of soda saline–alkali soil poses a significant threat to the raising of rice seedlings due to its harsh soil properties. The scarcity of suitable seedling-raising soil resources has become increasingly pronounced. A short-term soil-improvement experiment was conducted using the original saline–alkali soil sourced from the rice-growing region of Jilin Province, followed by the rice-seedling-raising test in the improved soil to identify an effective soil-improvement strategy. Four distinct treatments were established: no amendment (JCK); gypsum and straw (JCW); gypsum, straw, and sulfuric acid (JCWH); and gypsum, straw, and chemical fertilizer (JCWF). The effects of these amendment treatments on the soil physicochemical properties (pH, electrical conductivity, exchangeable sodium, total alkalinity) were evaluated, as well as the effects on soil organic carbon (SOC) and its components including humic acid carbon (HAC), and fulvic acid carbon (FAC). The results indicated that, compared to the control group, all amendment treatments effectively reduced the average soil pH by 0.53 to 0.79 units and decreased exchangeable sodium by 56.7% to 74.8%. Furthermore, the average SOC, HAC, and FAC increased by 48.3%, 89.4%, and 56.0%, respectively. Among the treatments, JCWH proved to be the most effective. After two years of improvement, the rice seedlings in the JCWH-treated soil exhibited the highest dry weight and plant height, surpassing those grown in the farmer’s seedling-raising soil. The scheme of utilizing soda saline–alkali soil for rice-seedling raising, following a short-term improvement treatment with corn straw, gypsum, and sulfuric acid (JCWH), provides technical support and an effective solution to the soil scarcity issue faced by seedling farmers in saline–alkali regions. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

30 pages, 17629 KiB  
Article
Aerobic Composting of Auricularia auricula (L.) Residues: Investigating Nutrient Dynamics and Microbial Interactions with Different Substrate Compositions
by Qian Liu, Yuxin Tian, Pengbing Wu, Junyan Zheng, Yuhe Xing, Ying Qu, Xingchi Guo and Xu Zhang
Diversity 2025, 17(4), 279; https://doi.org/10.3390/d17040279 - 16 Apr 2025
Viewed by 474
Abstract
Auricularia auricula (L.) is a widely cultivated edible mushroom, and the resource utilization of its residues offers significant opportunities for sustainable waste management and nutrient recovery. This study investigated the effects of substrate composition on nutrient dynamics and microbial diversity during the aerobic [...] Read more.
Auricularia auricula (L.) is a widely cultivated edible mushroom, and the resource utilization of its residues offers significant opportunities for sustainable waste management and nutrient recovery. This study investigated the effects of substrate composition on nutrient dynamics and microbial diversity during the aerobic composting of Auricularia auricula (L.) residues. Two treatments were established: composting of Auricularia auricula (L.) residues alone (CR) and composting supplemented with green grass (CRG) over a 49-day period. The results showed that both treatments achieved compost maturity, characterized by a slightly alkaline pH, a germination index (GI) above 80%, and an electrical conductivity below 4 mS/cm. Both composts were odorless, insect-free, and dark brown. Compared to CR, the CRG treatment exhibited higher total organic carbon (TOC) degradation, cumulative total phosphorus (TP) and potassium (TK) levels, as well as enhanced urease, cellulase, and β-glucosidase activities. In contrast, CR retained higher total nitrogen (TN), humic carbon (HEC), fulvic acid carbon (FAC), humic acid carbon (HAC), and a greater humic-to-fulvic acid (HA/FA) ratio. Microbial community analysis revealed diverse bacterial and fungal taxa, with certain species positively correlated with nutrient cycling. Notably, specific substrate compositions promoted beneficial microbial proliferation, essential for efficient composting and nutrient mineralization. These findings not only provide a scientific basis for optimizing composting strategies of mushroom residues but also offer a practical pathway to convert agricultural waste into high-quality organic fertilizers. By enhancing soil fertility, reducing reliance on synthetic fertilizers, and promoting circular bioeconomy practices, this study contributes directly to sustainable agricultural development. CR and CRG treatments, respectively, support either nutrient retention or release, allowing tailored application based on crop demand and soil condition. This study underscores the potential of Auricularia auricula (L.) residues in composting systems, contributing to waste reduction and soil fertility enhancement through tailored substrate management, and offers practical insights into optimizing composting strategies for Auricularia farming by-products. Full article
Show Figures

Graphical abstract

Back to TopTop