The Adsorption Characteristics and Impact Mechanism of Phosphorus by Surface Sediments in Natural Freshwater Lakes
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Sample Collection
2.2. Chemicals
2.3. Phosphorus Adsorption-Release Test Method
2.3.1. Adsorption Kinetics Experiment
2.3.2. Isothermal Adsorption Experiment
2.3.3. Effect of Water Disturbance Intensity on Phosphorus Exchange
2.3.4. Determination of EPC0 and NAP
2.3.5. Effect of HA and FA Concentrations on Phosphorus Release
3. Results and Discussion
3.1. SEM and XRD Characterization
3.2. Kinetics Analysis of the Adsorption Process
3.3. EPC0 and Isotherm Analysis of the Adsorption Process
3.4. Effect of Disturbance Intensity on Phosphorus Migration in Sediments
3.5. Effects of HA and FA Concentrations on Phosphorus Migration in Sediments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abrams, M.M.; Jarrell, W.M. Soil phosphorus as a potential nonpoint source for elevated stream phosphorus levels. J. Environ. Qual. 1995, 24, 132–138. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Fang, H.; Chen, M.; Cui, Z.; Sun, Z.; Reible, D. Phosphorus adsorption by sediment considering mineral composition and environmental factors. Environ. Sci. Pollut. Res. 2021, 28, 17495–17505. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, T.; Wu, Q.; Bu, C.; Yin, X. Sources and Cycling of Phosphorus in the Sediment of Rivers along a Eutrophic Lake in China Indicated by Phosphate Oxygen Isotopes. ACS Earth Space Chem. 2021, 5, 88–94. [Google Scholar] [CrossRef]
- Mahowald, N.; Jickells, T.D.; Baker, A.R.; Artaxo, P.; Benitez-Nelson, C.R.; Bergametti, G.; Bond, T.C.; Chen, Y.; Cohen, D.D.; Herut, B.; et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 2008, 22, GB4026. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Z.; Niu, J.; Liu, R. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. J. Hazard. Mater. 2009, 162, 92–98. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Pang, Y.; Zhao, H.; Zhou, X. The adsorption of phosphate on different trophic lake sediments. Colloid Surf. A 2005, 254, 241–248. [Google Scholar] [CrossRef]
- Que, S.; Luo, H.; Wang, L.; Zhou, W.; Yuan, S. Canonical correlation study on the relationship between shipping development and water environment of the Yangtze River. Sustainability 2020, 12, 3279. [Google Scholar] [CrossRef]
- GB 11893-89; Water Quality—Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method. National Environmental Protection Agency: Beijing, China, 1990.
- Alonso, V.A.; Kaiser, T.; Babist, R.; Fundneider, T.; Lackner, S. A multi-component model for granular activated carbon filters combining biofilm and adsorption kinetics. Water Res. 2021, 197, 117079. [Google Scholar] [CrossRef]
- Hu, M.; Liu, L.; Hou, N.; Li, X.; Zeng, D.; Tan, H. Insight into the adsorption mechanisms of ionizable imidazolinone herbicides in sediments: Kinetics, adsorption model, and influencing factors. Chemosphere 2021, 274, 129655. [Google Scholar] [CrossRef]
- Liu, D.; Zou, Z.; Cai, Y.; Qiu, Y.; Zhou, Y.; He, S. An updated study on CH4 isothermal and isosteric adsorption heat behaviors of variable rank coals. J. Nat. Gas Sci. Eng. 2021, 89, 103899. [Google Scholar] [CrossRef]
- Touihri, M.; Guesmi, F.; Hannachi, C.; Hamrouni, B.; Sellaoui, L.; Badawi, M.; Poch, J.; Fiol, N. Single and simultaneous adsorption of Cr (VI) and Cu (II) on a novel Fe3O4/pine cones gel beads nanocomposite: Experiments, characterization and isotherms modeling. Chem. Eng. J. 2021, 416, 129101. [Google Scholar] [CrossRef]
- Hoffman, A.R.; Armstrong, D.E.; Lathrop, R.C.; Penn, M.R. Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquat. Geochem. 2009, 15, 371–389. [Google Scholar] [CrossRef]
- Gusakova, A.I. Mineral composition of the modern bottom sediments of the White Sea. Oceanology 2013, 53, 223–232. [Google Scholar] [CrossRef]
- Kim, S.-R.; Chun, J.-H.; Um, I.-K.; Cukur, D. Distribution and characteristics of sandy sediments along the Northeastern continental shelf of Korea in the East Sea. J. Coast. Res. 2020, 95, 532–536. [Google Scholar] [CrossRef]
- Tang, X.; Wu, M.; Dai, X.; Chai, P. Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions. Ecol. Eng. 2014, 64, 276–284. [Google Scholar] [CrossRef]
- Martins, G.; Peixoto, L.; Brito, A.G.; Nogueira, R. Phosphorus–iron interaction in sediments: Can an electrode minimize phosphorus release from sediments? Rev. Environ. Sci. Bio-Technol. 2014, 13, 265–275. [Google Scholar] [CrossRef]
- Zhang, L.; Du, Y.; Du, C.; Xu, M.; Loáiciga, H.A. The adsorption/desorption of phosphorus in freshwater sediments from buffer zones: The effects of sediment concentration and pH. Environ. Monit. Assess. 2016, 188, 13. [Google Scholar] [CrossRef]
- Yu, L. New insights into pseudo-second-order kinetic equation for adsorption. Colloid Surf. A 2008, 320, 275–278. [Google Scholar]
- Xiao, Y.; Yuan, S.; Tang, H. Distribution of phosphorus in bed sediment at confluences responding to hydrodynamics. Proc. Inst. Civ. Eng. 2019, 172, 149–162. [Google Scholar] [CrossRef]
- Pan, G.; Krom, M.D.; Herut, B. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean seawater. Environ. Sci. Technol. 2002, 36, 3519–3524. [Google Scholar] [CrossRef]
- Lucci, G.M.; McDowell, R.W.; Condron, L.M. Evaluation of base solutions to determine equilibrium phosphours concentrations [EPC0] in stream sediments. Int. Agrophys. 2010, 24, 157–163. [Google Scholar]
- Li, W.; Pan, G.; Zhang, M.; Zhao, D.; Yang, Y.; Chen, H.; He, G. EXAFS studies on adsorption irreversibility of Zn (II) on TiO2: Temperature dependence. J. Colloid Interfaces Sci. 2008, 319, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.P.; Wang, M.; Peng, X.M.; Qiu, F.X.; Zhang, T.; Dai, H.L.; Liu, Z.M.; Cao, Z. High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide. Colloid Surf. A 2018, 555, 314–323. [Google Scholar] [CrossRef]
- Sun, C.J.; Sun, L.Z.; Sun, X.X. Graphical evaluation of the favorability of adsorption processes by using conditional Langmuir constant. Ind. Eng. Chem. Res. 2013, 52, 14251–14260. [Google Scholar] [CrossRef]
- Khan, A.A.; Singh, R.P. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloid Surf. A 1987, 24, 33–42. [Google Scholar] [CrossRef]
- Qin, P.; Lu, S.; Guo, X.; Liu, X.; Bi, B.; Xue, W.; Wu, D. Effect of natural zeolite capping on phosphorus release from sediments. Desalin. Water Treat. 2019, 165, 97–102. [Google Scholar] [CrossRef]
- Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea. Cont. Shelf Res. 2009, 29, 807–818. [Google Scholar] [CrossRef]
- Palomo, L.; Clavero, V.; Izquierdo, J.J.; Avilés, A.; Becerra, J.; Niell, F.X. Influence of macrophytes on sediment phosphorus accumulation in a eutrophic estuary (Palmones River, Southern Spain). Aquat. Bot. 2004, 80, 103–113. [Google Scholar] [CrossRef]
- Fu, Z.; Hong, Z.; Wei, J.; Liao, Y.; You, S.; Wang, Y.; Lv, J.; Feng, H.; Kolenčík, M.; Chang, X.; et al. Phosphorus fractionation and adsorption characteristics in drinking water reservoir inlet river sediments under human disturbance. J. Soil Sediments 2022, 22, 2530–2547. [Google Scholar] [CrossRef]
- Barlow, K.; Nash, D.; Grayson, R. Investigating phosphorus interactions with bed sediments in a fluvial environment using a recirculating flume and intact soil cores. Water Res. 2004, 38, 3420–3430. [Google Scholar] [CrossRef]
- Zhu, J.; He, Y.; Wang, J.; Qiao, Z.; Wang, Y.; Li, Z.; Huang, M. Impact of aeration disturbances on endogenous phosphorus fractions and their algae growth potential from malodorous river sediment. Environ. Sci. Pollut. Res. 2017, 24, 8062–8070. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Morton, D.W.; Johnson, B.B.; Angove, M.J. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Sep. Purif. Technol. 2020, 247, 116949. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite. Colloid Surf. A 2003, 226, 25–34. [Google Scholar] [CrossRef]
Model | Parameter | L1 | L2 | L3 |
---|---|---|---|---|
PFO | qe (mg/kg) | 368.78 | 334.91 | 365.77 |
K1 | 1.7450 × 10−2 | 7.4800 × 10−3 | 2.5700 × 10−3 | |
R2 | 0.9688 | 0.9877 | 0.9121 | |
PSO | qe (mg/kg) | 402.65 | 386.17 | 491.67 |
K2 | 5.9225 × 10−5 | 2.2510 × 10−5 | 4.3349 × 10−6 | |
R2 | 0.9847 | 0.9596 | 0.9442 | |
Elovich | α | 36.44 | 7.90 | 3.38 |
β | 1.5590 × 10−2 | 1.3120 × 10−1 | 1.2060 × 10−2 | |
R2 | 0.9057 | 0.9121 | 0.8731 |
Sample | EPC0 (mg/L) | NAP (mg/kg) | R2 |
---|---|---|---|
L1 | 1.08 | 176.8 | 0.9399 |
L2 | 0.62 | 282.8 | 0.9917 |
L3 | 3.82 | 411.9 | 0.9901 |
Sample | Parameter | T = 288 K | T = 298 K | T = 308 K |
---|---|---|---|---|
L1 | qmax | 446.10 | 280.66 | 194.03 |
b | 5.96 | 3.72 | 3.90 | |
RL | 0.16~0.63 | 0.23~0.73 | 0.22~0.72 | |
R2 | 0.9769 | 0.9477 | 0.8949 | |
L2 | qmax | 699.63 | ||
b | 1.45 | |||
RL | 0.43~0.87 | |||
R2 | 0.9696 | |||
L3 | qmax | 263.97 | ||
b | 0.28 | |||
RL | 0.80~0.97 | |||
R2 | 0.8978 |
Sample | Parameter | T = 288 K | T = 298 K | T = 308 K |
---|---|---|---|---|
KF | 444.54 | 244.87 | 168.81 | |
L1 | n | 2.43 | 2.16 | 2.25 |
R2 | 0.9821 | 0.8761 | 0.7947 | |
KF | 451.91 | 143.65 | ||
L2 | n | 1.52 | 0.86 | |
R2 | 0.9466 | 0.8098 | ||
KF | 540.53 | |||
L3 | n | 6.16 | ||
R2 | 0.8902 |
T(K) | Sediments | LnKa | ΔG (KJ/mol) | ΔS (KJ/mol) | ΔH (KJ/mol) |
---|---|---|---|---|---|
288 | L1 | 6.57 | −15.62 | −93.78 | −42.63 |
L2 | 6.49 | −15.39 | −188.64 | −69.72 | |
L3 | 6.47 | −16.17 | −356.56 | −118.86 | |
298 | L1 | 5.83 | −14.68 | −93.78 | −42.63 |
L2 | 5.03 | −13.51 | −188.64 | −69.72 | |
L3 | 5.66 | −12.61 | −356.56 | −118.86 | |
308 | L1 | 5.42 | −13.75 | −93.78 | −42.63 |
L2 | 4.61 | −11.62 | −188.64 | −69.72 | |
L3 | 3.32 | −9.04 | −356.56 | −118.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Yang, Y.; Liu, X.; Xie, F. The Adsorption Characteristics and Impact Mechanism of Phosphorus by Surface Sediments in Natural Freshwater Lakes. Water 2025, 17, 1775. https://doi.org/10.3390/w17121775
Zhang Q, Yang Y, Liu X, Xie F. The Adsorption Characteristics and Impact Mechanism of Phosphorus by Surface Sediments in Natural Freshwater Lakes. Water. 2025; 17(12):1775. https://doi.org/10.3390/w17121775
Chicago/Turabian StyleZhang, Qiang, Yang Yang, Xu Liu, and Fazhi Xie. 2025. "The Adsorption Characteristics and Impact Mechanism of Phosphorus by Surface Sediments in Natural Freshwater Lakes" Water 17, no. 12: 1775. https://doi.org/10.3390/w17121775
APA StyleZhang, Q., Yang, Y., Liu, X., & Xie, F. (2025). The Adsorption Characteristics and Impact Mechanism of Phosphorus by Surface Sediments in Natural Freshwater Lakes. Water, 17(12), 1775. https://doi.org/10.3390/w17121775