Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Study and Ethical Statement
2.2. Climatic Variables and Temperature Humidity Index (THI) Calculation
2.3. Animals, Diets, and Experimental Design
2.4. Calculations of Productive Performance
2.5. Carcass Characteristics and Visceral Organ Mass
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linder, H.F.; Berger, L.L.; McCann, J.C. Effect of acidosis in the late-finishing phase on rumen fermentation in feedlot steers. Transl. Anim. Sci. 2024, 8, txae084. [Google Scholar] [CrossRef] [PubMed]
- Meneses, J.A.M.; De Sá, O.A.A.L.; Ramirez-Zamudio, G.D.; Nascimento, K.B.; Gionbelli, T.R.C.; Luz, M.H.; Ladeira, M.M.; Casagrande, D.R.; Gionbelli, M.P. Heat stress promotes adaptive physiological responses and alters mRNA expression of ruminal epithelium markers in Bos taurus indicus cattle fed low- or high-energy diets. J. Therm. Biol. 2023, 114, 103562. [Google Scholar] [CrossRef] [PubMed]
- Slimen, B.I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed]
- DiGiacomo, K.; Chauhan, S.S.; Dunshea, F.R.; Leury, B.J. Strategies to Ameliorate Heat Stress Impacts in Sheep. In Climate Change and Livestock Production: Recent Advances and Future Perspectives; Sejian, V., Chauhan, S.S., Devaraj, C., Malik, P.K., Bhatta, R., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Čukić, A.; Cincović, M.; Đoković, R.; Rakonjac, S.; Petrović, M.; Petrović, M.Ž. Heat stress impact on sheep production. In Proceedings of the Zbornik Radova 26. Međunarodni Kongres Mediteranske Federacije za Zdravlje i Produkciju Preživara—FeMeSPRum, Novi Sad, Srbija, 20–23 June 2024; p. 7. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; López-Soto, M.A.; Rivera-Méndez, C.R.; Castro, B.I.; Ríos, F.G.; Dávila-Ramos, H.; Barreras, A.; Urías-Estrada, J.D.; Zinn, R.A.; Plascencia, A. Effects of combining feed grade urea and a slow-release urea product on performance, dietary energetics and carcass characteristics of feedlot lambs fed finishing diets with different starch to acid detergent fibre ratios. Asian-Australas. J. Anim. Sci. 2016, 29, 1725–1733. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Verdugo-Insúa, M.; Escobedo-Gallegos, L.d.G.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ponce-Barraza, E.; Mendoza-Cortez, D.; Ríos-Rincón, F.G.; Monge-Navarro, F.; Barreras, A.; et al. Influences of a supplemental blend of essential oils plus 25-hydroxy-vit-d3 and zilpaterol hydrochloride (β2 agonist) on growth performance and carcass measures of feedlot lambs finished under conditions of high ambient temperature. Animals 2024, 14, 1391. [Google Scholar] [CrossRef]
- Escobedo-Gallegos, L.d.G.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Calderón-Garay, E.; Ramírez-Santiago, L.; Valdés-García, Y.S.; Barreras, A.; Zinn, R.A.; Plascencia, A. Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate. Animals 2023, 13, 2430. [Google Scholar] [CrossRef]
- Barreras, A.; Castro-Pérez, B.I.; López-Soto, M.A.; Torrentera, N.G.; Montaño, M.F.; Estrada-Angulo, A.; Ríos, F.G.; Dávila-Ramos, H.; Plascencia, A.; Zinn, R.A. Influence of ionophore supplementation on growth performance, dietary energetics and carcass characteristics in finishing cattle during period of heat stress. Asian-Australas. J. Anim. Sci. 2013, 26, 1553–1561. [Google Scholar] [CrossRef]
- Mendoza-Cortéz, D.A.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.; Félix-Bernal, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of a supplemental blend of essential oils plus 25-hydroxy-vitamin-d3 on feedlot cattle performance during the early-growing phase under conditions of high-ambient temperature. Indian J. Anim. Res. 2022, 57, 1–6. [Google Scholar] [CrossRef]
- Pikuta, D. The Use of Products from Leonardite to Improve Soil Quality in Condition of Climate Change. Acta Hort Regiotec. 2024, 27, 15–22. [Google Scholar] [CrossRef]
- Aeschbacher, M.; Graff, C.; Schwarzenbach, R.P.; Sander, M. Antioxidant properties of humic substances. Environ. Sci. Technol. 2012, 46, 4916–4925. [Google Scholar] [CrossRef]
- van Rensburg, C.E. The Antiinflammatory Properties of Humic Substances: A Mini Review. Phytother. Res. 2015, 29, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Hriciková, S.; Kožárová, I.; Hudáková, N.; Reitznerová, A.; Nagy, J.; Marcinčák, S. Humic Substances as a Versatile Intermediary. Life 2023, 13, 858. [Google Scholar] [CrossRef]
- Verrillo, M.; Salzano, M.; Savy, D.; Di Meo, V.; Valentini, M.; Cozzolino, V.; Piccolo, A. Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses. Chem. Biol. Technol. Agric. 2022, 9, 28. [Google Scholar] [CrossRef]
- Islam, K.M.S.; Schuhmacher, A.; Gropp, J.M. Humic Acid Substances in Animal Agriculture. Pak. J. Nutr. 2005, 4, 126–134. [Google Scholar] [CrossRef]
- Aksu, T.; Bozkurt, A. Effect of dietary essential oils and/or humic acids on broiler performance, microbial population of intestinal content and antibody titres in the summer season. Kafkas Univ. Veter. Fakult. Derg. 2019, 15, 185–190. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Hejna, M.; Sotira, S.; Caprarulo, V.; Reggi, S.; Pilu, R.; Miragoli, F.; Callegari, M.L.; Panseri, S.; Rossi, L. Evaluation of leonardite as feed additive on lipid metabolism and growth of weaned piglets. Anim. Feed Sci. Technol. 2020, 266, 114519. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Morsy, A.S.; El-Wakeel, E.A.; Anwer, M.M.; Sallam, S.M. Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J. Anim. Feed Sci. 2008, 27, 105–113. [Google Scholar] [CrossRef]
- Kholif, A.E.; Matloup, O.H.; EL-Bltagy, E.A.; Olafadehan, O.A.; Sallam, S.M.A.; El-Zaiat, H.M. Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livest. Sci. 2021, 253, 104699. [Google Scholar] [CrossRef]
- Sallam, S.M.A.; Ibrahim, M.A.M.; El-Waziry, A.M.; Attia, M.F.A.; Elazab, M.A.; El-Nile, A.E.A.; El-Zaiat, H.M. Feeding Damascus goats humic or fulvic acid alone or in combination: In vitro and in vivo investigations on impacts on feed intake, ruminal fermentation parameters, and apparent nutrients digestibility. Trop. Anim. Health Prod. 2023, 55, 265. [Google Scholar] [CrossRef]
- Hassan, A.A.; Salem, A.Z.M.; Elghandour, M.M.Y.; Abu Hafsa, S.H.; Reddy, P.R.K.; Atia, S.E.S.; Vidu, L. Humic substances isolated from clay soil may improve the ruminal fermentation, milk yield, and fatty acid profile: A novel approach in dairy cows. Anim. Feed Sci. Technol. 2020, 268, 114601. [Google Scholar] [CrossRef]
- Terry, S.A.; de Ribeiro, G.; Gruninger, R.J.; Hunerberger, M.; Ping, S.; Chaves, A.V.; Burlet, J.; Beauchemin, K.A.; McCallister, T.A. Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers. J. Anim. Sci. 2018, 96, 3863–3877. [Google Scholar] [CrossRef] [PubMed]
- Cusack, P.M.V. Effects of a dietary complex of humic and fulvic acids (FeedMAX15™) on the health and production of feedlot cattle destined for the Australian domestic market. Aust. Vet. J. 2008, 86, 46–49. [Google Scholar] [CrossRef]
- McMurphy, C.P.; Duff, G.C.; Harris, M.A.; Sanders, S.R.; Chirase, N.K.; Bailey, C.R.; Ibrahim, R.M. Effect of humic/fulvic acid in beef cattle finishing diets on animal performance, ruminal ammonia and serum urea nitrogen concentration. J. Appl. Anim. Res. 2009, 35, 97–100. [Google Scholar] [CrossRef]
- Galip, N.; Polat, U.; Biricik, H. Effects of supplemental humic acid on ruminal fermentation and blood variables in rams. Ital. J. Anim. Sci. 2010, 9, e74. [Google Scholar] [CrossRef]
- Hahn, G.L. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77 (Suppl. S2), 10–20. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Small Ruminant: Sheep, Goats, Cervids, and New World Camelids; National Academy Science (NRC): Washington, DC, USA, 2007. [Google Scholar]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985. [Google Scholar]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef]
- Official United States Standards for Grades of Carcass Lambs. Yearling Mutton and Mutton Carcasses; United States Department of Agriculture (USDA): Washington, DC, USA, 1992.
- Luaces, M.L.; Calvo, C.; Fernández, B.; Fernández, A.; Viana, J.L.; Sánchez, L. Predicting equation for tisular composition in carcass of Gallega breed lambs. Arch. Zoot. 2019, 57, 3–14. [Google Scholar]
- Statistical Analytical System Institute Inc. SAS Proprietary Software Release 9.3; SAS Institute Inc. (SAS): Cary, NC, USA, 2004. [Google Scholar]
- Navarrete, J.D.; Montano, M.F.; Raymundo, C.; Salinas-Chavira, J.; Torrentera, N.; Zinn, R.A. Effect of energy density and virginiamycin supplementation in diets on growth performance and digestive function of finishing steers. Asian-Australas. J. Anim. Sci. 2017, 10, 1396–1404. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Castro-Pérez, B.I.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Ponce-Barraza, E.; Valdés-García, Y.; Barreras, A.; Carrillo-Muro, O.; Plascencia, A. Effects of feeding different levels of chromium-methionine in hairy lambs finished with high-energy diets under high ambient heat load: Growth performance, dietary energetics, and carcass traits. Large Anim. Rev. 2025, 31, 91–98. [Google Scholar]
- Du, D.; Jiang, W.; Feng, L.; Zhang, Y.; Chen, P.; Wang, C.; Hu, Z. Effect of Saccharomyces cerevisiae culture mitigates heat stress-related dame in dairy cows by multi-omics. Front. Microbiol. 2022, 13, 935004. [Google Scholar] [CrossRef]
- Chirase, N.K.; Greene, L.W.; McCollum, F.T.; Auvermann, B.W.; Cole, N.A. Effect of bovipro TM on performance and serum metabolites concentrations of beef steers. Proc. West. Sec. Am. Soc. Anim. Sci. 2000, 51, 415–418. [Google Scholar]
- McMurphy, C.P.; Duff, G.C.; Sanders, S.R.; Cuneo, S.P.; Chirase, N.K. Effects of supplementing humates on rumen fermentation in Holstein steers. S. Afr. J. Anim. Sci. 2011, 41, 135–140. [Google Scholar] [CrossRef]
- Trckova, M.; Lorencova, A.; Babak, V.; Neca, J.; Ciganek, M. The effect of leonardite and lignite on the health of weaned piglets. Res. Vet. Sci. 2018, 119, 134–142. [Google Scholar] [CrossRef]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The Impact of Heat Load on Cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef]
- National Research Council. Predicting Feed Intake of Producing Animals; National Academy Science (NRC): Washington, DC, USA, 1987. [Google Scholar]
- Arteaga-Wences, Y.; Estrada-Angulo, A.; Gerardo Ríos-Rincón, F.G.; Castro-Pérez, B.I.; Mendoza-Cortéz, D.A.; Manriquez-Núñez, O.M.; Barreras, A.; Corona-Gochi, L.; Zinn, R.A.; Perea-Domínguez, X.P.; et al. The effects of feeding a standardized mixture of essential oils vs monensin on growth performance, dietary energy and carcass characteristics of lambs fed a high-energy finishing diet. Small Rum. Res. 2021, 205, 106557. [Google Scholar] [CrossRef]
- Macías-Cruz, J.; López-Baca, M.A.; Vicente, R.; Mejía, A.; Álvarez, F.D.; Correa-Calderón, A. Effects of seasonal ambient heat stress (spring vs. summer) on physiological and metabolic variables in hair sheep located in an arid region. Int. J. Biometeorol. 2016, 60, 1279–1286. [Google Scholar] [CrossRef]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic Selection for Thermotolerance in Ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ponce-Barraza, E.; Barreras, A.; Corona, L.; Zinn, R.A.; et al. Blend of essential oils supplemented alone or combined with exogenous amylase compared with virginiamycin supplementation on finishing lambs. Animals 2021, 11, 2390. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Hales, K.E.; Smith, Z.K. Evaluating differences between formulated dietary net energy values and net energy values determined from growth performance in finishing beef steers. J. Anim. Sci. 2023, 101, skad230. [Google Scholar] [CrossRef]
- Pfau, A.P.; Shepherd, E.A.; Martin, M.G.; Ascolese, S.; Mason, K.M.; Egert-McLean, A.M.; Voy, B.H.; Myer, P.R. Beta-adrenergic agonists, dietary protein, and rumen bacterial community interactions in beef cattle: A review. Vet. Sci. 2023, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y.; Yoo, J.; Kim, H.; Cho, J.; Kim, I. Effects of supplemental humic substances on growth performance, blood characteristics and meat quality in finishing pigs. Livest. Sci. 2008, 117, 270–274. [Google Scholar] [CrossRef]
- Korsakov, K.; Simakova, I.; Vasilyev, A.; Lifanova, S.; Gulyaeva, L. The effect of humic acids on the natural resistance of the body of broiler chickens and the quality of their meat. Agron. Res. 2019, 17, 1356–1366. [Google Scholar] [CrossRef]
- Ataollahi, F.; Piltz, J.W.; Casburn, G.R.; Holman, B.W.B. The quality and nutritional value of beef from Angus steers fed different levels of humate (K Humate S100R). Vet. Anim. Sci. 2024, 24, 100355. [Google Scholar] [CrossRef]
- Mokotedi, N.P.; Leew, K.J.; Marume, U.; Hugo, A. Meat quality of weaner steers adapted to a diet containing potassium humate in the feedlot. S. Afr. J. Anim. Sci. 2018, 48, 19–28. [Google Scholar] [CrossRef]
- Rivera-Villegas, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ríos-Rincón, F.G.; Rodríguez-Cordero, D.; Barreras, A.; Plascencia, A.; González-Vizcarra, V.M.; Sosa-Gordillo, J.F.; et al. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth per-formance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australas. J. Anim. Sci. 2019, 32, 209–216. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef]
Leonardite Inclusion, % of Diet DM | ||||
---|---|---|---|---|
Item | 0.00 | 0.20 | 0.40 | 0.60 |
Ingredient composition (%) | ||||
Sudangrass hay 1 | 12.00 | 12.00 | 12.00 | 12.00 |
Cracked corn 2 | 60.00 | 59.80 | 59.60 | 59.40 |
Soybean meal | 14.00 | 14.00 | 14.00 | 14.00 |
Leonardite 3 | 0.00 | 0.20 | 0.40 | 0.60 |
Molasses cane | 8.00 | 8.00 | 8.00 | 8.00 |
Yellow grease 4 | 3.50 | 3.50 | 3.50 | 3.50 |
Mineral-protein premix 5 | 2.50 | 2.50 | 2.50 | 2.50 |
Chemical composition (%DM basis) 6 | ||||
Crude protein | 14.67 | 14.64 | 14.62 | 14.61 |
Neutral detergent fiber | 16.45 | 16.47 | 16.43 | 16.43 |
Calcium 7 | 0.71 | 0.73 | 0.73 | 0.73 |
Phosphorus 7 | 0.34 | 0.34 | 0.34 | 0.33 |
Net energy (Mcal/kg) 7 | ||||
Maintenance | 2.12 | 2.11 | 2.11 | 2.10 |
Gain | 1.45 | 1.44 | 1.44 | 1.44 |
Leonardite Level (%) of Diet DM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0.0 | 0.20 | 0.40 | 0.60 | SEM | Linear | Quadratic | Cubic |
Days on test | 130 | 130 | 130 | 130 | ||||
Number of lambs | 12 | 12 | 12 | 12 | ||||
Pen replicates | 6 | 6 | 6 | 6 | ||||
Live weight, kg 1 | ||||||||
Initial | 20.27 | 20.13 | 19.99 | 19.97 | 0.125 | 0.15 | 0.61 | 0.84 |
Final | 50.70 | 47.63 | 48.36 | 49.92 | 1.769 | 0.84 | 0.21 | 0.71 |
Average daily gain, kg | 0.234 | 0.212 | 0.218 | 0.231 | 0.013 | 0.95 | 0.21 | 0.70 |
Dry matter intake, kg/d | 1.084 | 0.987 | 1.023 | 1.064 | 0.058 | 0.92 | 0.25 | 0.63 |
Gain to feed, kg/kg | 0.216 | 0.214 | 0.213 | 0.217 | 0.002 | 0.84 | 0.18 | 0.41 |
Observed dietary NE, Mcal/kg | ||||||||
Maintenance | 2.04 | 2.03 | 2.01 | 2.03 | 0.019 | 0.63 | 0.26 | 0.40 |
Gain | 1.38 | 1.37 | 1.35 | 1.37 | 0.012 | 0.63 | 0.26 | 0.40 |
Observed to expected dietary NE ratio | ||||||||
Maintenance | 0.96 | 0.96 | 0.95 | 0.97 | 0.007 | 0.63 | 0.26 | 0.40 |
Gain | 0.95 | 0.95 | 0.93 | 0.96 | 0.008 | 0.63 | 0.26 | 0.40 |
Leonardite (%) of Diet DM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0.0 | 0.20 | 0.40 | 0.60 | SEM | Linear | Quadratic | Cubic |
Number of lambs | 12 | 12 | 12 | 12 | ||||
Pen replicates | 6 | 6 | 6 | 6 | ||||
Hot carcass weight, kg | 29.80 | 27.97 | 28.09 | 29.24 | 1.001 | 0.73 | 0.16 | 0.83 |
Dressing percentage | 58.75 | 58.75 | 58.14 | 58.59 | 0.472 | 0.60 | 0.65 | 0.44 |
Cold carcass weight, kg | 29.52 | 27.73 | 27.84 | 28.99 | 0.991 | 0.74 | 0.16 | 0.85 |
Longissimus m. area, cm2 | 16.54 | 16.28 | 16.12 | 16.23 | 1.003 | 0.81 | 0.86 | 0.97 |
Fat thickness, mm | 3.35 | 3.26 | 3.32 | 3.22 | 0.120 | 0.56 | 0.98 | 0.58 |
Kidney-pelvic fat, % | 4.26 | 4.28 | 4.22 | 4.19 | 0.262 | 0.81 | 0.95 | 0.93 |
Shoulder composition,% | ||||||||
Lean | 63.21 | 63.62 | 63.20 | 63.37 | 0.581 | 0.98 | 0.84 | 0.59 |
Fat | 18.38 | 18.26 | 18.23 | 18.46 | 0.502 | 0.93 | 0.74 | 0.93 |
Lean to fat ratio | 3.45 | 3.49 | 3.50 | 3.43 | 0.118 | 0.94 | 0.67 | 0.89 |
Leonardite Level (%) of Diet DM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0.0 | 0.20 | 0.40 | 0.60 | SEM | Linear | Quadratic | Cubic |
Number of lambs | 12 | 12 | 12 | 12 | ||||
Pen replicates | 6 | 6 | 6 | 6 | ||||
Organs, g/kg EBW | ||||||||
Stomach complex | 23.76 | 24.32 | 24.18 | 23.75 | 0.562 | 0.95 | 0.40 | 0.87 |
Intestines | 40.48 | 39.82 | 39.52 | 39.68 | 0.816 | 0.46 | 0.62 | 0.97 |
Hearth + lungs | 19.82 | 20.19 | 20.09 | 19.75 | 0.644 | 0.91 | 0.59 | 0.95 |
Liver + spleen | 17.53 | 17.23 | 17.03 | 17.15 | 0.650 | 0.62 | 0.73 | 0.86 |
Kidney | 2.62 | 2.54 | 2.47 | 2.55 | 0.098 | 0.52 | 0.44 | 0.73 |
Omental fat | 37.66 | 37.83 | 38.01 | 37.80 | 0.803 | 0.87 | 0.81 | 0.92 |
Mesenteric fat | 19.24 | 19.29 | 18.81 | 18.86 | 1.604 | 0.82 | 0.99 | 0.89 |
Visceral fat | 56.90 | 57.12 | 56.82 | 56.65 | 1.833 | 0.90 | 0.92 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Angulo, A.; Quezada-Rubio, J.A.; Ponce-Barraza, E.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.J.; Escobedo-Gallegos, L.d.G.; Corona, L.; Plascencia, A. Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits. Ruminants 2025, 5, 20. https://doi.org/10.3390/ruminants5020020
Estrada-Angulo A, Quezada-Rubio JA, Ponce-Barraza E, Castro-Pérez BI, Urías-Estrada JD, Ramos-Méndez JL, Arteaga-Wences YJ, Escobedo-Gallegos LdG, Corona L, Plascencia A. Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits. Ruminants. 2025; 5(2):20. https://doi.org/10.3390/ruminants5020020
Chicago/Turabian StyleEstrada-Angulo, Alfredo, Jesús A. Quezada-Rubio, Elizama Ponce-Barraza, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Jorge L. Ramos-Méndez, Yesica J. Arteaga-Wences, Lucía de G. Escobedo-Gallegos, Luis Corona, and Alejandro Plascencia. 2025. "Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits" Ruminants 5, no. 2: 20. https://doi.org/10.3390/ruminants5020020
APA StyleEstrada-Angulo, A., Quezada-Rubio, J. A., Ponce-Barraza, E., Castro-Pérez, B. I., Urías-Estrada, J. D., Ramos-Méndez, J. L., Arteaga-Wences, Y. J., Escobedo-Gallegos, L. d. G., Corona, L., & Plascencia, A. (2025). Leonardite (Humic and Fulvic Acid Complex) Long-Term Supplementation in Lambs Finished Under Subtropical Climate Conditions: Growth Performance, Dietary Energetics, and Carcass Traits. Ruminants, 5(2), 20. https://doi.org/10.3390/ruminants5020020