Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397)

Search Parameters:
Keywords = fully stressed design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8240 KiB  
Article
Numerical Simulation of Fracture Sequence on Multiple Hydraulic Fracture Propagation in Tight Oil Reservoir
by Yu Tang, Jin Zhang, Heng Zheng, Bowei Shi and Ruiquan Liao
Processes 2025, 13(8), 2409; https://doi.org/10.3390/pr13082409 - 29 Jul 2025
Viewed by 242
Abstract
Horizontal well fracturing is vital for low-permeability tight oil reservoirs, but multi-fracture effectiveness is hampered by stress shadowing and fluid-rock interactions, particuarly in optimizing fracture geometry and conductivity under different sequencing strategies. While previous studies have addressed aspects of pore pressure and stress [...] Read more.
Horizontal well fracturing is vital for low-permeability tight oil reservoirs, but multi-fracture effectiveness is hampered by stress shadowing and fluid-rock interactions, particuarly in optimizing fracture geometry and conductivity under different sequencing strategies. While previous studies have addressed aspects of pore pressure and stress effects, a comprehensive comparison of sequencing strategies using fully coupled models capturing the intricate seepage–stress–damage interactions remains limited. This study employs a novel 2D fully coupled XFEM model to quantitatively evaluate three fracturing approaches: simultaneous, sequential, and alternating. Numerical results demonstrate that sequential and alternating strategies alleviate stress interference, increasing cumulative fracture length by 20.6% and 26.1%, respectively, versus conventional simultaneous fracturing. Based on the research findings, fracture width reductions are 30.44% (simultaneous), 18.78% (sequential), and 7.21% (alternating). As fracture width directly governs conductivity—the critical parameter determining hydrocarbon flow efficiency—the alternating strategy’s superior width preservation (92.79% retention) enables optimal conductivity design. These findings provide critical insights for designing fracture networks with targeted dimensions and conductivity in tight reservoirs and offer a practical basis to optimize fracture sequencing design. Full article
Show Figures

Figure 1

35 pages, 1752 KiB  
Review
Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation
by Mykyta Aikin, Vadim Shalomeev, Volodymyr Kukhar, Andrii Kostryzhev, Ihor Kuziev, Viktoriia Kulynych, Oleksandr Dykha, Volodymyr Dytyniuk, Oleksandr Shapoval, Alvydas Zagorskis, Vadym Burko, Olha Khliestova, Viacheslav Titov and Oleksandr Hrushko
Crystals 2025, 15(8), 671; https://doi.org/10.3390/cryst15080671 - 23 Jul 2025
Viewed by 562
Abstract
Biodegradable magnesium alloys have emerged as promising alternatives to permanent metallic implants due to their unique combination of mechanical compatibility with bone and complete resorption, addressing the persistent issues of stress shielding and secondary removal surgeries. This review critically examines the historical development [...] Read more.
Biodegradable magnesium alloys have emerged as promising alternatives to permanent metallic implants due to their unique combination of mechanical compatibility with bone and complete resorption, addressing the persistent issues of stress shielding and secondary removal surgeries. This review critically examines the historical development of magnesium-based biomaterials, highlighting advances in alloy design, manufacturing processes, and surface engineering that now enable tailored degradation and improved clinical performance. Drawing on recent clinical and preclinical studies, we summarize improvements in corrosion resistance, mechanical properties, and biocompatibility that have supported the clinical translation of magnesium alloys across a variety of orthopedic and emerging medical applications. However, challenges remain, including unpredictable in vivo degradation kinetics, limited long-term safety data, lack of standardized testing protocols, and ongoing regulatory uncertainties. We conclude that while magnesium-based biomaterials have advanced from experimental concepts to clinically validated solutions, further progress in personalized degradation control, real-time monitoring, and harmonized regulatory frameworks is needed to fully realize their transformative clinical potential. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Multiline Laser Interferometry for Non-Contact Dynamic Morphing of Hierarchical Surfaces
by Biagio Audia, Caterina Maria Tone, Pasquale Pagliusi, Alfredo Mazzulla, George Papavieros, Vassilios Constantoudis and Gabriella Cipparrone
Biomimetics 2025, 10(8), 486; https://doi.org/10.3390/biomimetics10080486 - 23 Jul 2025
Viewed by 323
Abstract
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic [...] Read more.
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic laser source, an unconventional choice for holographic encoding, to achieve deterministic multiscale surface structuring through interference light patterning. Azopolymer films are used as photosensitive substrates. By exploring the interaction between optomechanical stress modulations at different spatial periodicities induced within the polymer bulk, we demonstrate the emergence of hierarchical Fourier surfaces composed of multiple deterministic levels. These structures range from sub-micrometer to tens of micrometers scale, exhibiting a high degree of control over their morphology. The experimental findings reveal that the optical encoding scheme significantly influences the resulting topographies. The polarization light patterns lead to more regular and symmetric hierarchical structures compared to those obtained with intensity patterns, underscoring the role of vectorial light properties in controlling surface morphologies. The proposed method is fully scalable, compatible with more complex recording schemes (including multi-beam interference), and it is applicable to a wide range of advanced technological fields. These include optics and photonics (diffractive elements, polarimetric devices), biomimetic surfaces, topographical design, information encoding, and anti-counterfeiting, offering a rapid, reliable, and versatile strategy for high-precision surface structuring at a submicrometric scale. Full article
Show Figures

Figure 1

17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 721
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

22 pages, 1041 KiB  
Review
A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation
by Vitor Marcelo Soares Campos, Angela Theresa Zuffo Yabrude, Renata Delarue Toniolo Lima, Fernanda Wagner and Henrique Nunes Pereira Oliva
BioChem 2025, 5(3), 21; https://doi.org/10.3390/biochem5030021 - 18 Jul 2025
Viewed by 513
Abstract
Background/Objectives: Passiflora (passionflower), traditionally used for anxiety and insomnia, is primarily known for GABAergic modulation. However, evidence suggests broader neuropharmacological actions. This review aimed to systematically explore non-GABAergic mechanisms of Passiflora. Methods: We performed a systematic review following PRISMA Guidelines [...] Read more.
Background/Objectives: Passiflora (passionflower), traditionally used for anxiety and insomnia, is primarily known for GABAergic modulation. However, evidence suggests broader neuropharmacological actions. This review aimed to systematically explore non-GABAergic mechanisms of Passiflora. Methods: We performed a systematic review following PRISMA Guidelines (PROSPERO: CRD420251028681). PubMed/Medline, PsycINFO, Embase, Web of Science, and Scopus were searched for original research on non-GABA neurobiological mechanisms of Passiflora species (P. incarnata, P. edulis, P. caerulea, P. actinia, P. foetida). Studies were screened and assessed for eligibility, and data on design, Passiflora preparation, mechanisms, and main findings were extracted. Results: Thirteen studies revealed diverse non-GABAergic actions. Passiflora modulates opioidergic and nicotinic cholinergic systems (relevant to analgesia), monoaminergic pathways (affecting dopamine, norepinephrine, serotonin), and the glutamatergic system (offering neuroprotection via NMDA receptor inhibition). It also exhibits significant anti-inflammatory and antioxidant effects (reducing cytokines, activating Nrf2) and modulates the HPA axis (reducing stress hormones). Other mechanisms include gut microbiota modulation and metabolic effects. Conclusions: Passiflora’s therapeutic potential extends beyond GABA, involving multiple neurotransmitter systems and neuroprotective, anti-inflammatory, antioxidant, and HPA axis-regulating activities. This multi-target profile likely contributes to its clinical efficacy in conditions like anxiety, pain, and stress, potentially with a favorable side-effect profile. Further research, including mechanistic studies and clinical trials with relevant biomarkers, is needed to fully elucidate its complex pharmacology. Full article
Show Figures

Graphical abstract

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 313
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

21 pages, 4823 KiB  
Article
Thermo-Mechanical Behavior of Polymer-Sealed Dual-Cavern Hydrogen Storage in Heterogeneous Rock Masses
by Chengguo Hu, Xiaozhao Li, Bangguo Jia, Lixin He and Kai Zhang
Energies 2025, 18(14), 3797; https://doi.org/10.3390/en18143797 - 17 Jul 2025
Viewed by 168
Abstract
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of [...] Read more.
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of a dual-cavern hydrogen storage system with polymer-based sealing layers. The model incorporates non-isothermal gas behavior, rock heterogeneity via a Weibull distribution, and fracture networks represented through stochastic geometry. Two operational scenarios, single-cavern and dual-cavern cycling, are simulated to evaluate stress evolution, displacement, and inter-cavity interaction under repeated pressurization. Results reveal that simultaneous operation of adjacent caverns amplifies tensile and compressive stress concentrations, especially in inter-cavity rock bridges (i.e., the intact rock zones separating adjacent caverns) and fracture-dense zones. Polymer sealing layers remain under compressive stress but exhibit increased residual deformation under cyclic loading. Contour analyses further show that fracture orientation and spatial distribution significantly influence stress redistribution and deformation localization. The findings highlight the importance of considering thermo-mechanical coupling and rock fracture mechanics in the design and operation of multicavity UHS systems. This modeling framework provides a robust tool for evaluating storage performance and informing safe deployment in complex geological environments. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

23 pages, 396 KiB  
Article
Navigating Hybrid Work: An Optimal Office–Remote Mix and the Manager–Employee Perception Gap in IT
by Milos Loncar, Jovanka Vukmirovic, Aleksandra Vukmirovic, Dragan Vukmirovic and Ratko Lasica
Sustainability 2025, 17(14), 6542; https://doi.org/10.3390/su17146542 - 17 Jul 2025
Viewed by 470
Abstract
The transition to hybrid work has become a defining feature of the post-pandemic IT sector, yet organizations lack empirical benchmarks for balancing flexibility with performance and well-being. This study addresses this gap by identifying an optimal hybrid work structure and exposing systematic perception [...] Read more.
The transition to hybrid work has become a defining feature of the post-pandemic IT sector, yet organizations lack empirical benchmarks for balancing flexibility with performance and well-being. This study addresses this gap by identifying an optimal hybrid work structure and exposing systematic perception gaps between employees and managers. Grounded in Self-Determination Theory and the Job Demands–Resources model, our research analyses survey data from 1003 employees and 252 managers across 46 countries. The findings identify a hybrid “sweet spot” of 6–10 office days per month. Employees in this window report significantly higher perceived efficiency (Odds Ratio (OR) ≈ 2.12) and marginally lower office-related stress. Critically, the study uncovers a significant perception gap: contrary to the initial hypothesis, managers are nearly twice as likely as employees to rate hybrid work as most efficient (OR ≈ 1.95) and consistently evaluate remote-work resources more favourably (OR ≈ 2.64). This “supervisor-optimism bias” suggests a disconnect between policy design and frontline experience. The study concludes that while a light-to-moderate hybrid model offers clear benefits, organizations must actively address this perceptual divide and remedy resource shortages to realize the potential of hybrid work fully. This research provides data-driven guidelines for creating sustainable, high-performance work environments in the IT sector. Full article
Show Figures

Figure 1

14 pages, 1679 KiB  
Article
Integrating 3D Printing with Injection Molding for Improved Manufacturing Efficiency
by Zdenek Chval, Karel Raz and João Pedro Amaro Bennett da Silva
Polymers 2025, 17(14), 1935; https://doi.org/10.3390/polym17141935 - 14 Jul 2025
Viewed by 434
Abstract
This study investigates a hybrid manufacturing approach that combines 3D printing and injection molding to extend the limitations of each individual technique. Injection molding is often limited by high initial tooling costs, long lead times, and restricted geometric flexibility, whereas 3D-printed molds tend [...] Read more.
This study investigates a hybrid manufacturing approach that combines 3D printing and injection molding to extend the limitations of each individual technique. Injection molding is often limited by high initial tooling costs, long lead times, and restricted geometric flexibility, whereas 3D-printed molds tend to suffer from material degradation, extended cooling times, and lower surface quality. By integrating 3D-printed molds into the injection-molding process, this hybrid method enables the production of complex geometries with improved cost-efficiency. The approach is demonstrated using a range of polymeric materials, including ABS, nylon, and polyurethane foam—each selected to enhance the mechanical and thermal performance of the final products. Finite element method (FEM) analysis was conducted to assess thermal distribution, deformation, and stress during manufacturing. Results indicated that both temperature and stress remained within safe operational limits for 3D-printed materials. An economic analysis revealed substantial cost savings compared to fully 3D-printed components, establishing hybrid manufacturing as a viable and scalable alternative. This method offers broad industrial applicability, delivering enhanced mechanical properties, design flexibility, and reduced production costs. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

21 pages, 2551 KiB  
Article
SOD1 Deficiency Reveals Indirect Redox Stress Mechanisms Underlying Vanillin Toxicity in Saccharomyces cerevisiae Yeast
by Sabina Bednarska, Magdalena Kwolek-Mirek, Roman Maslanka, Dominika Graboś, Gabriela Świniuch and Renata Zadrag-Tecza
Antioxidants 2025, 14(7), 842; https://doi.org/10.3390/antiox14070842 - 9 Jul 2025
Viewed by 310
Abstract
Vanillin is a compound of great utility, and its production is, among others, based on using microorganisms such as Saccharomyces cerevisiae yeast. The effect of vanillin on cells is not fully understood. It has been demonstrated that vanillin induces oxidative stress; however, evidence [...] Read more.
Vanillin is a compound of great utility, and its production is, among others, based on using microorganisms such as Saccharomyces cerevisiae yeast. The effect of vanillin on cells is not fully understood. It has been demonstrated that vanillin induces oxidative stress; however, evidence also suggests its beneficial effects, including antioxidant and anti-inflammatory properties. For this reason, the present study was designed to elucidate the mechanism of vanillin’s action and to ascertain the extent to which its toxic effect is attributable to oxidative stress. The studies were conducted using wild-type and Δsod1 mutant strains. SOD1 deficiency results in cell hypersensitivity to oxidative factors, thus making the mutant strain a valuable model for investigating various aspects of oxidative stress. Based on an evaluation of cell vitality, Yap1p activation, ROS content, and glutathione and NADP(H) content, it can be concluded that oxidative stress is a secondary effect of metabolic and redox perturbations in cells rather than a direct consequence of vanillin reactivity. Furthermore, alterations observed in the redox couples GSH/GSSG and NADPH/NADP+ are one of the reasons for oxidative stress and suggest that vanillin may induce the utilization of NADPH for cellular needs other than antioxidant effects. Full article
Show Figures

Figure 1

25 pages, 33747 KiB  
Article
System Design and Experimental Study of a Four-Roll Bending Machine
by Dongxu Guo, Qun Sun, Ying Zhao, Shangsheng Jiang and Yigang Jing
Appl. Sci. 2025, 15(13), 7383; https://doi.org/10.3390/app15137383 - 30 Jun 2025
Viewed by 277
Abstract
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, [...] Read more.
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, forming stability, and machining accuracy. The mechanical system underwent static simulation optimization using SolidWorks Simulation, ensuring maximum stress in the guiding mechanism was controlled below 7.118×103 N/m². ABAQUS-based roll-bending dynamic simulations validated the geometric adaptability and process feasibility of the proposed mechanical configuration. A master-slave dual-core control architecture was implemented in the control system, enabling synchronized error ≤ 0.05 mm, dynamic response time ≤ 10 ms, and positioning accuracy of ±0.01 mm through collaborative control of the master controller and servo drives. Experimental validation demonstrated that the machine achieves bending errors within 1%, with an average forming error of 0.798% across various radii profiles. The arc integrity significantly outperforms conventional equipment, while residual straight edge length was reduced by 86.67%. By adopting fully servo-electric cylinder actuation and integrating a C#-developed human–machine interface with real-time feedback control, this research effectively enhances roll-bending precision, minimizes residual straight edges, and exhibits broad industrial applicability. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

26 pages, 6992 KiB  
Article
Simulation Study of Refracturing of Shale Oil Horizontal Wells Under the Effect of Multi-Field Reconfiguration
by Hongbo Liang, Penghu Bao, Gang Hui, Zeyuan Ma, Xuemei Yan, Xiaohu Bai, Jiawei Ren, Zhiyang Pi, Ye Li, Chenqi Ge, Yujie Zhang, Xing Yang, Yujie Zhang, Yunli Lu, Dan Wu and Fei Gu
Processes 2025, 13(6), 1915; https://doi.org/10.3390/pr13061915 - 17 Jun 2025
Viewed by 404
Abstract
The mechanisms underlying formation energy depletion after initial fracturing and post-refracturing production decline in shale oil horizontal wells remain poorly understood. This study proposes a novel numerical simulation framework for refracturing processes based on a three-dimensional fully coupled hydromechanical model. By dynamically reconfiguring [...] Read more.
The mechanisms underlying formation energy depletion after initial fracturing and post-refracturing production decline in shale oil horizontal wells remain poorly understood. This study proposes a novel numerical simulation framework for refracturing processes based on a three-dimensional fully coupled hydromechanical model. By dynamically reconfiguring the in situ stress field through integration of production data from initial fracturing stages, our approach enables precise control over fracture propagation trajectories and intensities, thereby enhancing reservoir stimulation volume (RSV) and residual oil recovery. The implementation of fully coupled hydromechanical simulation reveals two critical findings: (1) the 70 m fracture half-length generated during initial fracturing fails to access residual oil-rich zones due to insufficient fracture network complexity; (2) a 3–5° stress reorientation combined with reservoir repressurization before refracturing significantly improves fracture network interconnectivity. Field validation demonstrates that refracturing extends fracture half-lengths to 97–154 m (38–120% increase) and amplifies RSV by 125% compared to initial operations. The developed seepage–stress coupling methodology establishes a theoretical foundation for optimizing repeated fracturing designs in unconventional reservoirs, providing critical insights into residual oil mobilization through engineered stress field manipulation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 9633 KiB  
Article
Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss
by Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani and Donato Abruzzese
Buildings 2025, 15(12), 2058; https://doi.org/10.3390/buildings15122058 - 15 Jun 2025
Viewed by 357
Abstract
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing [...] Read more.
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 2167 KiB  
Review
Coffee and Its Major Polyphenols in the Prevention and Management of Type 2 Diabetes: A Comprehensive Review
by HwiCheol Kim, Sang Ryong Kim and Un Ju Jung
Int. J. Mol. Sci. 2025, 26(12), 5544; https://doi.org/10.3390/ijms26125544 - 10 Jun 2025
Viewed by 2665
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose metabolism and affects a substantial portion of the global population. Over the past few decades, numerous studies have investigated lifestyle factors, including diet and physical activity, [...] Read more.
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose metabolism and affects a substantial portion of the global population. Over the past few decades, numerous studies have investigated lifestyle factors, including diet and physical activity, as preventive measures or adjunctive treatments for T2DM. Among the dietary factors, coffee consumption has garnered attention because of its potential to mitigate the risk and progression of T2DM. This review examines the current evidence on the relationship between coffee consumption and T2DM, with particular focus on the major polyphenols found in coffee, such as chlorogenic acid and related hydroxycinnamic acids (caffeic acid, ferulic acid, p-coumaric acid, and sinapic acid). These bioactive compounds are thought to exert anti-diabetic effects through several mechanisms, including improvements in glucose homeostasis, insulin sensitivity, inflammation, and oxidative stress. This review aimed to clarify the scientific rationale behind the potential therapeutic effects of coffee on T2DM and proposed directions for future studies. However, significant knowledge gaps remain, including limited clinical evidence, unclear optimal dosages, low bioavailability, and an incomplete understanding of molecular mechanisms. Addressing these gaps through well-designed clinical trials and advanced molecular studies is essential to fully establish the therapeutic potential of coffee and its polyphenols in T2DM. Full article
(This article belongs to the Collection Latest Review Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 2651 KiB  
Article
Creep Behavior and Quantitative Prediction of Marine Soft Clay Based on a Nonlinear Elasto-Plastic–Viscous Element Assembly Model
by Yajun Liu, Ning Fang, Yang Zheng, Ke Wu, Rong Chen, Haijun Lu and Vu Quoc Vuong
J. Mar. Sci. Eng. 2025, 13(6), 1142; https://doi.org/10.3390/jmse13061142 - 8 Jun 2025
Viewed by 431
Abstract
Marine soft clay is characterized by a high water content and low strength, exhibiting pronounced creep deformation under long-term loading that threatens the serviceability and durability of coastal infrastructure. Accordingly, this study develops a creep constitutive model that combines elastic, plastic, and viscous [...] Read more.
Marine soft clay is characterized by a high water content and low strength, exhibiting pronounced creep deformation under long-term loading that threatens the serviceability and durability of coastal infrastructure. Accordingly, this study develops a creep constitutive model that combines elastic, plastic, and viscous effects and quantitatively evaluates time-dependent deformation under varying water contents and stress levels to provide reliable prediction tools for tunnel, excavation, and pile-foundation design. Cyclic creep tests were carried out on reconstituted marine soft clay with water contents of 40–60% and stress ratios of 0.4–1.2 using a pneumatic, fully digital, closed-loop triaxial apparatus. A “nonlinear spring–Bingham slider–dual viscous dashpot in parallel with a standard Kelvin dashpot” element assembly was proposed, and the complete stress–strain relationship was derived. Experimental data were fitted with Python to generate a creep-strain polynomial and verify the model accuracy. The predicted–measured creep difference remained within 10%, and the surface-fit coefficient of determination reached R2 = 0.97, enabling rapid estimation of deformation for the given stress and time conditions. The findings offer an effective method for the precise long-term settlement prediction of marine soft clay and significantly enhance the reliability of the deformation assessments in coastal civil-engineering projects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop