Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation
Abstract
1. Introduction
2. Historical Context and Challenges of Biodegradable Magnesium Alloys in Medical Implants
2.1. Clinical Need for Biodegradable Implants
2.2. Magnesium’s Biological Foundation
2.3. Historical Development: From Early Pioneers to Modern Success
2.4. Early Clinical Failures and Critical Lessons
2.5. Modern Commercial Achievements
2.6. Key Takeaways: Foundation for Modern Development
3. Persistent and Emerging Challenges
3.1. Material-Related Challenges
3.2. Mechanical Limitations and Structural Integrity
3.3. Safety and Biocompatibility Concerns
3.4. Manufacturing and Processing Challenges
3.4.1. Production and Reproducibility Limitations
3.4.2. Customization and Complex Geometry Constraints
3.5. Clinical Translation and Regulatory Challenges
3.5.1. Inconsistent Experimental and Clinical Outcomes
3.5.2. Insufficient Long-Term Biocompatibility Data
3.5.3. Regulatory Ambiguity and Approval Barriers
3.6. Critical Bottlenecks: Prioritizing Challenges for Clinical Translation
- Primary Clinical Barrier—Degradation Unpredictability: Extreme variability in degradation rates—spanning ten-fold differences between testing methodologies—combined with environmental sensitivity makes reliable clinical outcome prediction impossible with current technology. This unpredictability represents the most immediate threat to patient safety as implants degrading too rapidly fail before healing completion, while slow degradation causes chronic inflammatory responses.
- Secondary Clinical Barrier—Mechanical Insufficiency: The inability to reliably achieve yield strengths above 200 MPa eliminates consideration for high-load orthopedic applications including femoral fracture fixation and spinal instrumentation, limiting clinical utility to low-load or temporary support roles.
- Regulatory and Economic Barrier—Approval Pathway Uncertainty: Lack of clear regulatory guidance combined with limited approved alloy compositions creates substantial commercial risk discouraging clinical development investment. Regulatory timelines and costs cannot be reliably predicted.
3.7. Key Takeaways
4. Major Advances and Innovations (2020–2025): Addressing Core Challenges
4.1. Alloy Development: Achieving Predictable Performance
4.1.1. Rare-Earth-Free Systems Breakthrough
4.1.2. Strategic Microalloying: Balancing Performance and Biocompatibility
4.1.3. Ion Release Mechanisms and Therapeutic Effects
4.1.4. Advanced Processing Revolution
4.2. Composite and Hybrid Systems: Tailored Solutions
4.3. Surface Engineering: Smart Protective Systems
4.4. Manufacturing and Clinical Translation
4.4.1. Advanced Manufacturing: From Laboratory to Clinical Scale
4.4.2. Clinical Validation: From Bench to Bedside
4.4.3. Regulatory Progress: Accelerating Acceptance
- The RemeOs™ Screw (Bioretec Ltd., Tampere, Finland) became the first Mg-based orthopedic implant to receive both FDA Breakthrough Device Designation and De Novo marketing clearance (2023) for fracture, osteotomy, and deformity correction;
- OSTEOREVIVE received FDA 510(k) clearance as a Mg-based bone void filler (2023);
- The Medical Magnesium Plate System has Breakthrough Device Designation but is not yet cleared for market.
4.5. Market Impact
- Market Size and Growth: The global biodegradable magnesium-based implants market was valued at USD 124–127 million in 2024, with projections reaching USD 157 million by 2031 (CAGR 3.1%) [18,19,111]. The broader magnesium implant market was USD 0.75 billion in 2022, expected to reach USD 1.55 billion by 2030 (CAGR 10.1%) [101].
- Key Drivers: Growth is fueled by rising orthopedic and cardiovascular disease prevalence, increasing demand for biodegradable, minimally invasive solutions, and regulatory advances in the U.S., Europe, and Asia. Innovation in surface coatings, alloy development, and 3D printing, coupled with a shift toward personalized medicine, further accelerates adoption.
- Regional Leadership: Europe and North America lead due to early regulatory approvals and high healthcare spending, while Asia-Pacific is the fastest-growing region, driven by investment, regulatory progress (notably in China), and an aging population [109].
- Competitive Landscape: Leading companies include Biotronik, Syntellix AG, Dongguan Eontec, SINOMED, and ZHUOMED. Bioretec and Bone Solutions are gaining prominence following recent FDA breakthroughs.
4.6. Critical Analysis: Achievements and Persistent Controversies
4.6.1. Comprehensive Progress Synthesis (2020–2025): Barriers Addressed, Evidence, and Outlook
4.6.2. Ongoing Controversies: Results and Discussion
5. Remaining Challenges and Future Directions (2025 and Beyond)
5.1. Fine-Tuning and Personalization of Degradation Kinetics
5.1.1. Lack of Patient- and Application-Specific Degradation Profiles
5.1.2. Need for Improved In Vitro Models
5.1.3. Insufficient Predictive and Real-Time Monitoring Tools
5.2. Gaps in Clinical Safety, Efficacy, and Evidence
5.2.1. Insufficient Long-Term Clinical Data (5–10 Years)
- Most published clinical studies cover only 1–3 years;
- Longest follow-up extends to 152 weeks (~3 years) showing no implant breakage or severe complications [79];
- MgYREZr screws follow-up limited to 6–12 months with no systemic inflammatory reactions [78];
- DREAMS cardiovascular devices showed complete degradation in 9–12 months with no scaffold thrombosis in 46-patient trial [78];
- Most REE toxicity studies are cross-sectional or short-term (<2 years), with less than 5% providing longitudinal tracking beyond five years [25].
5.2.2. Unresolved Issues with Adverse Effects and Clinical Endpoints
- No globally accepted threshold for acceptable hydrogen gas cavity size or Mg2+ serum levels post-implantation.
- Safe Mg2+ concentrations estimated at 2.5–10 mM for optimal osteogenesis and <20 mM to avoid toxicity [78].
- Variable definitions for endpoints such as “complete degradation” and “osseointegration”.
- 37.8% of studies focus on cytotoxicity in cell lines while only 12% address environmental or occupational exposures with direct clinical correlates [25].
5.3. Standardization and Regulatory Barriers
5.3.1. Absence of Harmonized Protocols and Standards
5.3.2. Challenges for Regulatory Approval and Clinical Adoption
5.4. Smart Implant Development: Unmet Needs
5.4.1. Integration of Biosensors Remains Experimental
- pH microprobes (tip size: 10 × 50 μm, positioned 50 μm above magnesium surfaces) demonstrate spatial resolution capabilities [115];
- Real-time electrochemical responses to corrosion events suggest feasibility for embedding biosensors within coating architectures [29];
- Recent prototypes feature embedded microelectronic biosensors monitoring local pH, Mg2+, or REE ion concentrations with wireless readouts for up to 3 months post-implantation [58];
- Dual-mode devices combining degradation tracking with mechanical strain sensors can detect changes in implant stability with <5% error margin [58].
5.4.2. Therapeutic Agent Delivery Not Yet Realized in Clinical Practice
5.5. Broadening Clinical Indications: Barriers and Opportunities
5.5.1. Unproven Performance in Non-Orthopedic Applications
- Prototype Mg alloy stents (AE21, WE43, JDBM) demonstrated complete endothelialization within 6–10 days in porcine models;
- Arterial patency support up to 98 days post-implantation but revealed risks of intimal hyperplasia (40% lumen reduction at 10–35 days) [121];
- AZ91 Mg-alloy-based stents demonstrated complete degradation within 7 days in some models [95];
- Only a minority of clinical trials (<10% of all REE/biodegradable metal research) have evaluated cardiovascular stents [25].
5.5.2. Lack of Cross-Disciplinary, Multicenter Research
5.6. Key Strategic Priorities for the Field
6. Conclusions
- Prioritize development of standardized in vitro testing protocols that accurately predict in vivo behavior.
- Focus on patient-specific degradation models incorporating machine learning (targeting <5% prediction error).
- Establish multicenter clinical registries tracking outcomes beyond 5 years.
- Advance biosensor integration from proof-of-concept to clinically viable systems.
- Establish harmonized international standards specific to biodegradable metals (building on ISO/TS 20721:2025 [119]).
- Define clear thresholds for acceptable hydrogen gas evolution and serum magnesium levels.
- Create accelerated pathways for next-generation smart implants with integrated functionality.
- Develop guidance documents distinguishing biodegradable devices from traditional permanent implants.
- Invest in scalable manufacturing processes ensuring consistent quality across complex geometries.
- Implement comprehensive post-market surveillance systems tracking long-term degradation profiles.
- Collaborate with academic centers to validate predictive models against real-world outcomes.
- Focus initial commercialization on applications with clear clinical advantages over existing solutions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LAE442 | Lithium–Aluminum–Rare Earth Magnesium Alloy |
ZE21B | Zinc–Rare Earth Magnesium Alloy |
MgYREZr | Magnesium–Yttrium–Rare Earth–Zirconium Alloy |
GDY | Gadolinium–Dysprosium–Yttrium Alloy Series |
JDBM | Specific Magnesium Alloy Designation |
AE21 | Aluminum–Rare Earth Magnesium Alloy |
SNDP-CG | Severe Nano-scale Deformation Processing—Crystal Glass |
LPBF | Laser Powder Bed Fusion |
FSP | Friction Stir Processing |
ECAP | Equal-Channel Angular Pressing |
HPT | High-Pressure Torsion |
SPD | Severe Plastic Deformation |
LSP | Laser Shock Peening |
PTMC-dMA | Poly(Trimethylene Carbonate)-Dimethacrylate |
AMP-PEEK | Amorphous Magnesium Phosphate-Polyetheretherketone |
GelMA-DOPA | Gelatin Methacryloyl-Dihydroxyphenylalanine |
MAO | Micro-Arc Oxidation |
PEO | Plasma Electrolytic Oxidation |
MBG | Mesoporous Bioactive Glass |
cp19k | Barnacle Cement Protein 19k |
CGRP-FAK-VEGF axis | Calcitonin-Gene-Related Peptide-Focal Adhesion Kinase-Vascular Endothelial Growth Factor Pathway |
TD50 | Toxic Dose 50% (dose causing toxicity in 50% of subjects) |
TPMS | Triply Periodic Minimal Surface |
BET | Brunauer–Emmett–Teller (surface area analysis method) |
NMPA | National Medical Products Administration (China) |
KFDA | Korea Food and Drug Administration |
IDE | Investigational Device Exemption (FDA regulatory pathway) |
SBF | Simulated Body Fluid |
DMEM | Dulbecco’s Modified Eagle Medium |
FBS | Fetal Bovine Serum |
References
- Nagels, J.; Stokdijk, M.; Rozing, P.M. Stress Shielding and Bone Resorption in Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2003, 12, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Witte, F.; Fischer, J.; Nellesen, J.; Crostack, H.-A.; Kaese, V.; Pisch, A.; Beckmann, F.; Windhagen, H. In Vitro and in Vivo Corrosion Measurements of Magnesium Alloys. Biomaterials 2006, 27, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, J.; Hopkins, C.; Chow, D.H.; Qin, L. Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives. Adv. Sci. 2020, 7, 1902443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, P.; Wang, N.; Peng, L.; Kang, B.; Zeng, H.; Yuan, G.; Ding, W. Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants. Engineering 2020, 6, 1267–1275. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef]
- Li, H.; Wen, J.; Liu, Y.; He, J.; Shi, H.; Tian, P. Progress in Research on Biodegradable Magnesium Alloys: A Review. Adv. Eng. Mater. 2020, 22, 2000213. [Google Scholar] [CrossRef]
- Ding, W. Opportunities and Challenges for the Biodegradable Magnesium Alloys as Next-Generation Biomaterials. Regen. Biomater. 2016, 3, 79–86. [Google Scholar] [CrossRef]
- Lu, Y.; Deshmukh, S.; Jones, I.; Chiu, Y.-L. Biodegradable Magnesium Alloys for Orthopaedic Applications. Biomater. Transl. 2021, 2, 214–235. [Google Scholar]
- Zhang, Y.; Xu, J.; Ruan, Y.C.; Yu, M.K.; O’Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; et al. Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats. Nat. Med. 2016, 22, 1160–1169. [Google Scholar] [CrossRef]
- Wei, K.; Gao, M.; Wang, Z.; Zeng, X. Effect of Energy Input on Formability, Microstructure and Mechanical Properties of Selective Laser Melted AZ91D Magnesium Alloy. Mater. Sci. Eng. A 2014, 611, 212–222. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, J.; Liu, H. Magnesium-Based Biodegradable Materials for Biomedical Applications. MRS Adv. 2018, 3, 2359–2364. [Google Scholar] [CrossRef]
- Huse, E.C. A New Ligature. Chic. Med. J. Exam. 1878, 37, 171–172. [Google Scholar] [PubMed]
- Andrews, E.W. Absorbable Metal Clips as Substitutes for Ligatures and Deep Sutures in Wound Closure; American Medical Association: Chicago, IL, USA, 1917. [Google Scholar]
- Brar, H.S.; Platt, M.O.; Sarntinoranont, M.; Martin, P.I.; Manuel, M.V. Magnesium as a Biodegradable and Bioabsorbable Material for Medical Implants. JOM 2009, 61, 31–34. [Google Scholar] [CrossRef]
- Lambotte, A. Lutilisation Du Magnesium Comme Materiel Perdu Dans Losteosynthese [The Use of Magnesium as Material for Osteosynthesis]. Bull. Mem. Soc. Nat. Chir. 1932, 28, 1325–1334. (In French) [Google Scholar]
- Noviana, D.; Paramitha, D.; Ulum, M.F.; Hermawan, H. The Effect of Hydrogen Gas Evolution of Magnesium Implant on the Postimplantation Mortality of Rats. J. Orthop. Transl. 2016, 5, 9–15. [Google Scholar] [CrossRef]
- Lespinasse, V. A Practical Mechanical Method of End-to-End Anastomosis of Blood-Vessels. Available online: https://www.periodicos.capes.gov.br/index.php/acervo/buscador.html?task=detalhes&id=W2087493664 (accessed on 11 June 2025).
- Biodegradable Magnesium-Based Implants Market, Report Size, Worth, Revenue, Growth, Industry Value, Share 2025. Available online: https://reports.valuates.com/market-reports/QYRE-Auto-21D13488/global-biodegradable-magnesium-based-implants (accessed on 12 June 2025).
- Exploring Opportunities in Biodegradable Magnesium-Based Implants Sector. Available online: https://www.datainsightsmarket.com/reports/biodegradable-magnesiumbased-implants-1730815 (accessed on 12 June 2025).
- Li, D.; Zhang, D.; Yuan, Q.; Liu, L.; Li, H.; Xiong, L.; Guo, X.; Yan, Y.; Yu, K.; Dai, Y.; et al. In Vitro and in Vivo Assessment of the Effect of Biodegradable Magnesium Alloys on Osteogenesis. Acta Biomater. 2022, 141, 454–465. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Yang, Y.; Bai, J.; Shuai, C.; Buhagiar, J.; Ning, X. Laser Powder Bed Fusion of Biodegradable Magnesium Alloys: Process, Microstructure and Properties. Int. J. Extrem. Manuf. 2025, 7, 022007. [Google Scholar] [CrossRef]
- Zan, R.; Shen, S.; Huang, Y.; Yu, H.; Liu, Y.; Yang, S.; Zheng, B.; Gong, Z.; Wang, W.; Zhang, X.; et al. Research Hotspots and Trends of Biodegradable Magnesium and Its Alloys. Smart Mater. Med. 2023, 4, 468–479. [Google Scholar] [CrossRef]
- Weng, W.; Biesiekierski, A.; Li, Y.; Dargusch, M.; Wen, C. A Review of the Physiological Impact of Rare Earth Elements and Their Uses in Biomedical Mg Alloys. Acta Biomater. 2021, 130, 80–97. [Google Scholar] [CrossRef]
- Nie, S.; Chen, J.; Liu, C.; Zhou, C.; Zhao, J.; Wang, Z.; Sun, J.; Huang, Y. Effects of Extract Solution from Magnesium Alloys Supplemented with Different Compositions of Rare Earth Elements on in Vitro Epithelial and Osteoblast Progenitor Cells. Front. Bioeng. Biotechnol. 2023, 11, 1138675. [Google Scholar] [CrossRef]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of Rare Earth Elements: An Overview on Human Health Impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn Alloy as a Degradable Biomaterial. Acta Biomater. 2010, 6, 626–640. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, C.; Dai, C.; Yang, F. Corrosion Behaviors of Mg and Its Alloys with Different Al Contents in a Modified Simulated Body Fluid | Request PDF. J. Alloys Compd. 2009, 488, 392–399. [Google Scholar] [CrossRef]
- Akbarzadeh, F.Z.; Sarraf, M.; Ghomi, E.R.; Kumar, V.V.; Salehi, M.; Ramakrishna, S.; Bae, S. A State-of-the-Art Review on Recent Advances in the Fabrication and Characteristics of Magnesium-Based Alloys in Biomedical Applications. J. Magnes. Alloys 2024, 12, 2569–2594. [Google Scholar] [CrossRef]
- Aparicio, M.; Mosa, J.; Gómez-Herrero, M.; Abd Al-Jaleel, Z.; Guzman, J.; Jitianu, M.; Klein, L.C.; Jitianu, A. Self-Healing Engineered Multilayer Coatings for Corrosion Protection of Magnesium Alloy AZ31B. ACS Mater. Au 2025, 5, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, D.; Zhang, P.; Markert, B. Rapid Prediction of the Corrosion Behaviour of Coated Biodegradable Magnesium Alloys Using Phase Field Simulation and Machine Learning. Comput. Mater. Sci. 2025, 247, 113546. [Google Scholar] [CrossRef]
- Shalomeev, V.; Aikin, N.; Chorniy, V.; Naumik, V. Design and Examination of the New Biosoluble Casting Alloy of the System Mg–Zr–Nd for Osteosynthesis. Mater. Sci. 2019, 1, 40–48. [Google Scholar] [CrossRef]
- Shalomeev, V.A.; Tsivirko, E.I.; Aikin, N.D. High-Quality Magnesium-Based Alloys with Improved Properties for Engineering. Innov. Mater. Technol. Metall. Mech. Eng. 2019. [Google Scholar] [CrossRef]
- Yin, Z.-Z.; Qi, W.-C.; Zeng, R.-C.; Chen, X.-B.; Gu, C.-D.; Guan, S.-K.; Zheng, Y.-F. Advances in Coatings on Biodegradable Magnesium Alloys. J. Magnes. Alloys 2020, 8, 42–65. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium Basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Zeng, X.; Wang, Z.; Deng, J.; Liu, M.; Huang, G.; Yuan, X. Selective Laser Melting of Mg-Zn Binary Alloys: Effects of Zn Content on Densification Behavior, Microstructure, and Mechanical Property. Mater. Sci. Eng. A 2019, 756, 226–236. [Google Scholar] [CrossRef]
- Zumdick, N.A.; Jauer, L.; Kersting, L.C.; Kutz, T.N.; Schleifenbaum, J.H.; Zander, D. Additive Manufactured WE43 Magnesium: A Comparative Study of the Microstructure and Mechanical Properties with Those of Powder Extruded and as-Cast WE43. Mater. Charact. 2019, 147, 384–397. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Lindtner, R.A.; Hausbrandt, P.; Tschegg, E.; Stanzl-Tschegg, S.E.; Zanoni, G.; Beck, S.; Weinberg, A.-M. Bone–Implant Interface Strength and Osseointegration: Biodegradable Magnesium Alloy versus Standard Titanium Control. Acta Biomater. 2011, 7, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.; Ramsoomair, D.; Carter, C. Magnesium: Its Proven and Potential Clinical Significance. South. Med. J. 2001, 94, 1195–1201. [Google Scholar] [CrossRef]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef]
- Seelig, M.G. A Study of Magnesium Wire as an Absorbable Suture and Ligature Material. Arch. Surg. 1924, 8, 669–680. [Google Scholar] [CrossRef]
- Kammer, C. Magnesium-Taschenbuch; Alu Media: Berlin, Germany, 2011; ISBN 978-3-87017-264-0. [Google Scholar]
- Kumar, K.; Gill, R.S.; Batra, U. Challenges and Opportunities for Biodegradable Magnesium Alloy Implants. Mater. Technol. 2018, 33, 153–172. [Google Scholar] [CrossRef]
- Chamy, R.; Rosenkranz, F.; Chamy, R.; Rosenkranz, F. Biodegradation—Engineering and Technology; InTechOpen: Rijeka, Croatia, 2013; ISBN 978-953-51-1153-5. [Google Scholar]
- Han, J.; Wan, P.; Ge, Y.; Fan, X.; Tan, L.; Li, J.; Yang, K. Tailoring the Degradation and Biological Response of a Magnesium–Strontium Alloy for Potential Bone Substitute Application. Mater. Sci. Eng. C 2016, 58, 799–811. [Google Scholar] [CrossRef]
- Sukhodub, L.; Panda, A.; Dyadyura, K.; Pandova, I.; Krenicky, T. The Design Criteria for Biodegradable Magnesium Alloy Implants. MM Sci. J. 2018, 12, 2673–2679. [Google Scholar] [CrossRef]
- Li, R.W.; Kirkland, N.T.; Truong, J.; Wang, J.; Smith, P.N.; Birbilis, N.; Nisbet, D.R. The Influence of Biodegradable Magnesium Alloys on the Osteogenic Differentiation of Human Mesenchymal Stem Cells: Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Biomed. Mater. Res. 2014, 102, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009+A11:2025; Biological Evaluation of Medical Devices—Tests for In Vitro Cytotoxicity. British Standards Institution: London, UK, 2025.
- Li, N.; Zheng, Y. Novel Magnesium Alloys Developed for Biomedical Application: A Review. J. Mater. Sci. Technol. 2013, 29, 489–502. [Google Scholar] [CrossRef]
- Pogorielov, M.; Husak, E.; Solodivnik, A.; Zhdanov, S. Magnesium-Based Biodegradable Alloys: Degradation, Application, and Alloying Elements. Interv. Med. Appl. Sci. 2017, 9, 27–38. [Google Scholar] [CrossRef]
- Chaya, A.; Yoshizawa, S.; Verdelis, K.; Myers, N.; Costello, B.J.; Chou, D.-T.; Pal, S.; Maiti, S.; Kumta, P.N.; Sfeir, C. In Vivo Study of Magnesium Plate and Screw Degradation and Bone Fracture Healing. Acta Biomater. 2015, 18, 262–269. [Google Scholar] [CrossRef]
- Kannan, M.B.; Raman, R.K.S. In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid. Biomaterials 2008, 29, 2306–2314. [Google Scholar] [CrossRef]
- Persaud-Sharma, D.; McGoron, A. Biodegradable Magnesium Alloys: A Review of Material Development and Applications. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25–39. [Google Scholar] [CrossRef]
- Xin, Y.; Hu, T.; Chu, P.K. In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review. Acta Biomater. 2011, 7, 1452–1459. [Google Scholar] [CrossRef]
- Wu, G.; Ibrahim, J.M.; Chu, P.K. Surface Design of Biodegradable Magnesium Alloys—A Review. Surf. Coat. Technol. 2013, 233, 2–12. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Staiger, M.P.; Nisbet, D.; Davies, C.H.J.; Birbilis, N. Performance-Driven Design of Biocompatible Mg Alloys. JOM 2011, 63, 28–34. [Google Scholar] [CrossRef]
- Aggarwal, D.; Sharma, S.; Gupta, M. Impact of Rare Earth Particulates Addition on the Wear Rate of Magnesium Composites with Improved Mechanical and Microstructural Properties for Orthopedic Applications. Prog. Compos. Mater. 2024, 1, 2. [Google Scholar] [CrossRef]
- McGaughey, S.A.; Iqbal, S.; De Rosa, A.; Caley, J.A.; Kaksonen, A.H.; Villa-Gomez, D.; Byrt, C.S. Interactions of Rare Earth Elements with Living Organisms and Emerging Biotechnical Applications. Plants People Planet 2025. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable Biomaterials Based on Magnesium Corrosion. Curr. Opin. Solid. State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef]
- Shalomeev, V.; Tabunshchyk, G.; Matiukhin, A.; Shyrobokov, V.; Shyrobokova, N.; Hornostai, V.; Kulabneva, E. Refining of Biosoluble Alloy of Mg-Nd-Zr System for Manufacture of Implants. In Proceedings of the 31st International Conference on Metallurgy and Materials, Brno, Czech Republic, 18–19 May 2022; pp. 622–627. [Google Scholar]
- Eddy Jai Poinern, G.; Brundavanam, S.; Fawcett, D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Asian J. Bus. Ethics 2013, 2, 218–240. [Google Scholar] [CrossRef]
- Markov, O.E.; Khvashchynskyi, A.S.; Musorin, A.V.; Markova, M.A.; Shapoval, A.A.; Hrudkina, N.S. Investigation of new method of large ingots forging based on upsetting of workpieces with ledges. Int. J. Adv. Manuf. Technol. 2022, 122, 1383–1394. [Google Scholar] [CrossRef]
- Li, L.-Y.; Cui, L.-Y.; Zeng, R.-C.; Li, S.-Q.; Chen, X.-B.; Zheng, Y.; Kannan, M.B. Advances in Functionalized Polymer Coatings on Biodegradable Magnesium Alloys—A Review. Acta Biomater. 2018, 79, 23–36. [Google Scholar] [CrossRef]
- Khrebtova, O.; Shapoval, O.; Markov, O.; Kukhar, V.; Hrudkina, N.; Rudych, M. Control systems for the temperature field during drawing, taking into account the dynamic modes of the technological installation. In Proceedings of the 2022 IEEE 4th International Conference on Modern Electrical and Energy System, MEES 2022, Kremenchuk, Ukraine, 20–23 October 2022; IEEE: New York, NY, USA, 2022. ISBN 979-835034683-1. [Google Scholar] [CrossRef]
- Anishchenko, O.S.; Kukhar, V.V.; Prysyazhnyi, A.H.; Agarkov, V.V.; Klimov, E.S.; Chernenko, S.M. The material for physical simulation of metal-forming processes in super-plastic state. IOP Conf. Ser. Mater. Sci. Eng. 2019, 473, 012040. [Google Scholar] [CrossRef]
- Anishchenko, O.; Kukhar, V.; Artiukh, V.; Trebukhin, A.; Zotkina, N. Effect of blank curvature and thinning on shell stresses at superplastic forming. Adv. Intell. Syst. Comput. 2020, 982, 809–817. [Google Scholar] [CrossRef]
- Anishchenko, A.; Kukhar, V.; Artiukh, V.; Arkhipova, O. Application of G. Lame’s and J. Gielis’ formulas for description of shells superplastic forming. MATEC Web Conf. 2018, 239, 06007. [Google Scholar] [CrossRef]
- Zeng, R.-C.; Cui, L.; Jiang, K.; Liu, R.; Zhao, B.-D.; Zheng, Y.-F. In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(l-Lactic Acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants. ACS Appl. Mater. Interfaces 2016, 8, 10014–10028. [Google Scholar] [CrossRef]
- Ostrowski, N.J.; Lee, B.; Roy, A.; Ramanathan, M.; Kumta, P.N. Biodegradable Poly(Lactide-Co-Glycolide) Coatings on Magnesium Alloys for Orthopedic Applications. J. Mater. Sci. Mater. Med. 2013, 24, 85–96. [Google Scholar] [CrossRef]
- Abdal-hay, A.; Amna, T.; Lim, J.K. Biocorrosion and Osteoconductivity of PCL/nHAp Composite Porous Film-Based Coating of Magnesium Alloy. Solid. State Sci. 2013, 18, 131–140. [Google Scholar] [CrossRef]
- Bai, K.; Zhang, Y.; Fu, Z.; Zhang, C.; Cui, X.; Meng, E.; Guan, S.; Hu, J. Fabrication of Chitosan/Magnesium Phosphate Composite Coating and the in Vitro Degradation Properties of Coated Magnesium Alloy. Mater. Lett. 2012, 73, 59–61. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Q.; Liu, X.; Li, Q.; Zhang, H.; Yang, D.; Jiang, Y. Biocompatibility, Degradation Behavior, and Mechanical Properties of Magnesium Alloy Plates In Vivo. Appl. Bionics Biomech. 2023, 2023, 4436396. [Google Scholar] [CrossRef]
- Dziuba, D.; Meyer-Lindenberg, A.; Seitz, J.M.; Waizy, H.; Angrisani, N.; Reifenrath, J. Long-Term in Vivo Degradation Behaviour and Biocompatibility of the Magnesium Alloy ZEK100 for Use as a Biodegradable Bone Implant. Acta Biomater. 2013, 9, 8548–8560. [Google Scholar] [CrossRef] [PubMed]
- Abhishek, M.S.; Satish, J.; Anshu, D.; Debrupa, L.; Arup Kumar, D. Biocompatibility and Biodegradability Evaluation of Magnesium-Based Intramedullary Bone Implants in Avian Model. J. Biomed. Mater. Res. A 2021, 109, 1479–1489. [Google Scholar] [CrossRef]
- Xi, Z.; Wu, Y.; Xiang, S.; Sun, C.; Wang, Y.; Yu, H.; Fu, Y.; Wang, X.; Yan, J.; Zhao, D.; et al. Corrosion Resistance and Biocompatibility Assessment of a Biodegradable Hydrothermal-Coated Mg-Zn-Ca Alloy: An in Vitro and in Vivo Study. ACS Omega 2020, 5, 4548–4557. [Google Scholar] [CrossRef]
- Angrisani, N.; Reifenrath, J.; Zimmermann, F.; Eifler, R.; Meyer-Lindenberg, A.; Vano-Herrera, K.; Vogt, C. Biocompatibility and Degradation of LAE442-Based Magnesium Alloys after Implantation of up to 3.5 Years in a Rabbit Model. Acta Biomater. 2016, 44, 355–365. [Google Scholar] [CrossRef]
- Sanchez, A.H.M.; Luthringer, B.J.C.; Feyerabend, F.; Willumeit, R. Mg and Mg Alloys: How Comparable Are in Vitro and in Vivo Corrosion Rates? A Review. Acta Biomater. 2015, 13, 16–31. [Google Scholar] [CrossRef]
- Tao, M.; Cui, Y.; Sun, S.; Zhang, Y.; Ge, J.; Yin, W.; Li, P.; Wang, Y. Versatile Application of Magnesium-Related Bone Implants in the Treatment of Bone Defects. Mater. Today Bio 2025, 31, 101635. [Google Scholar] [CrossRef]
- Zhao, D.-W.; Zhang, T.-W.; Wang, W.-D.; Wang, Z.-M.; Wang, F.-Y.; Yang, X.; Li, R.-H.; Cheng, L.-L.; Zhang, Y.; Wang, H.-Y.; et al. Internal Fixation with Biodegradable High Purity Magnesium Screws in the Treatment of Ankle Fracture. J. Orthop. Transl. 2025, 51, 198–206. [Google Scholar] [CrossRef]
- Seetharaman, S.; Sankaranarayanan, D.; Gupta, M. Magnesium-Based Temporary Implants: Potential, Current Status, Applications, and Challenges. J. Funct. Biomater. 2023, 14, 324. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, R.; Chen, X.; Luo, Y.; Du, W.; Zhu, Y.; Ruan, Y.C.; Xu, J.; Wang, J.; Qin, L. Chronic Kidney Disease: A Contraindication for Using Biodegradable Magnesium or Its Alloys as Potential Orthopedic Implants? Biomed. Mater. 2024, 19, 045023. [Google Scholar] [CrossRef]
- Shalomeev, V.; Tabunshchyk, G.; Greshta, V.; Nykiel, M.; Korniejenko, K. Influence of Alkaline Earth Metals on Structure Formation and Magnesium Alloy Properties. Materials 2022, 15, 4341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Lu, Q.; Qin, J.; Shi, H.; Zhang, P.; Yan, H.; Shi, H.; Wang, X. A View of Magnesium Alloy Modification and Its Application in Orthopedic Implants. J. Mater. Res. Technol. 2025, 36, 1536–1561. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gajević, S.; Sharma, L.K.; Pradhan, R.; Miladinović, S.; Ašonja, A.; Stojanović, B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. Materials 2024, 17, 5157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, W.; Liu, J.; Wang, L.; Tang, Y.; Wang, K. A Review on Magnesium Alloys for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 953344. [Google Scholar] [CrossRef]
- Shalomeev, V.; Tsivirco, E.; Vnukov, Y.; Osadchaya, Y.; Makovskyi, S. Development of New Casting Magnesium-Based Alloys with Increased Mechanical Properties. East.-Eur. J. Enterp. Technol. 2016, 4, 4–10. [Google Scholar] [CrossRef]
- Sreenivasamurthy, S.A.; Akhter, F.F.; Akhter, A.; Su, Y.; Zhu, D. Cellular Mechanisms of Biodegradable Zinc and Magnesium Materials on Promoting Angiogenesis. Biomater. Adv. 2022, 139, 213023. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Zou, D.; Zu, H.; Li, W.; Zheng, Y. An Overview of Magnesium-Based Implants in Orthopaedics and a Prospect of Its Application in Spine Fusion. Bioact. Mater. 2024, 39, 456–478. [Google Scholar] [CrossRef]
- Mehdizade, M.; Eivani, A.R.; Esmaielzadeh, O.; Rostamian, P. ZnO and Cu/ZnO-Modified Magnesium Orthopedic Implant with Improved Osteoblast Cellular Activity: An in-Vitro Study. J. Mater. Res. Technol. 2024, 28, 935–950. [Google Scholar] [CrossRef]
- Shalomeev, V.; Sheyko, S.; Hrechanyi, O.; Vasilchenko, T.; Hrechana, A. Research of the Boundaries of the “Metal Filter” Section during Filtration of Magnesium Alloy AZ91. Appl. Eng. Sci. 2025, 21, 100212. [Google Scholar] [CrossRef]
- Greshta, V.; Shalomeev, V.; Bovkun, S.; Kulabneva, E. Practical Aspects of Obtaining Deformed Blanks for the Production of Biodegradable Implants of Increased Quality. J. Chem. Technol. Metall. 2025, 60, 225–236. [Google Scholar] [CrossRef]
- Vignesh, P.; Ramanathan, S.; Ashokkumar, M.; Ananthi, V. Biodegradable Mg–3Zn Alloy/Titanium–Hydroxyapatite Hybrid Composites: Corrosion and Cytotoxicity Evaluation for Orthopedic Implant Applications. Trans. Indian. Inst. Met. 2024, 77, 1701–1710. [Google Scholar] [CrossRef]
- Sonaye, S.Y.; Dal-Fabbro, R.; Bottino, M.C.; Sikder, P. Osseointegration of 3D-Printable Polyetheretherketone–Magnesium Phosphate Bioactive Composites for Craniofacial and Orthopedic Implants. ACS Biomater. Sci. Eng. 2025, 11, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; He, Y.; Jia, R.; Li, S.; Duan, L.; Xu, S.; Mei, D.; Tang, X.; Zhu, S.; Wei, J.; et al. Enhancing the Corrosion Resistance of Magnesium Alloys with Biodegradable Poly(Trimethylene Carbonate) Chemical Modification Coating. Mater. Today Adv. 2024, 21, 100460. [Google Scholar] [CrossRef]
- Mohanta, M.; Ramdhun, Y.; Thirugnanam, A.; Gupta, R.; Verma, D.; Deepak, T.; Babu, A.R. Biodegradable AZ91 Magnesium Alloy/Sirolimus/Poly D, L-lactic-co-glycolic Acid-based Substrate for Cardiovascular Device Application. J. Biomed. Mater. Res. 2024, 112, e35350. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Xu, J.; Zou, J.; Li, Y.R.; Zhou, Z.; Liu, K.; Jia, Q.; Jiang, H.B. Advances in Amelioration of Plasma Electrolytic Oxidation Coatings on Biodegradable Magnesium and Alloys. Heliyon 2024, 10, e24348. [Google Scholar] [CrossRef]
- Wu, G.-L.; Yen, C.-E.; Hsu, W.-C.; Yeh, M.-L. Incorporation of Cerium Oxide Nanoparticles into the Micro-Arc Oxidation Layer Promotes Bone Formation and Achieves Structural Integrity in Magnesium Orthopedic Implants. Acta Biomater. 2025, 191, 80–97. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Sun, X.-J.; Qi, L.-J.; Li, J.-A.; Iqbal, M.; Guan, S.-K. Bio-Inspired Barnacle Cement Coating of Biodegradable Magnesium Alloy for Cerebrovascular Application. Rare Met. 2024, 43, 5164–5185. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings 2021, 11, 747. [Google Scholar] [CrossRef]
- Liu, J.; Yin, B.; Song, F.; Liu, B.; Peng, B.; Wen, P.; Tian, Y.; Zheng, Y.; Ma, X.; Wang, C. Improving Corrosion Resistance of Additively Manufactured WE43 Magnesium Alloy by High Temperature Oxidation for Biodegradable Applications. J. Magnes. Alloys 2024, 12, 940–953. [Google Scholar] [CrossRef]
- Fu, Q.; Liang, W.; Huang, J.; Jin, W.; Guo, B.; Li, P.; Xu, S.; Chu, P.K.; Yu, Z. Research Perspective and Prospective of Additive Manufacturing of Biodegradable Magnesium-Based Materials. J. Magnes. Alloys 2023, 11, 1485–1504. [Google Scholar] [CrossRef]
- Zhi, P.; Liu, L.; Chang, J.; Liu, C.; Zhang, Q.; Zhou, J.; Liu, Z.; Fan, Y. Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material. Metals 2022, 12, 1500. [Google Scholar] [CrossRef]
- Dachasa, K.; Chuni Aklilu, T.; Gashaw Ewnete, B.; Mosisa Ejeta, B.; Fufa Bakare, F. Magnesium-Based Biodegradable Alloy Materials for Bone Healing Application. Adv. Mater. Sci. Eng. 2024, 2024, 1325004. [Google Scholar] [CrossRef]
- Magnesium Implant Market Key Challenges, Growth and Opportunities 2025. Available online: https://www.linkedin.com/pulse/magnesium-implant-market-key-challenges-growth-eplyf (accessed on 12 June 2025).
- Amukarimi, S.; Mozafari, M. Biodegradable Magnesium Biomaterials—Road to the Clinic. Bioengineering 2022, 9, 107. [Google Scholar] [CrossRef]
- Thomas, K.K.; Zafar, M.N.; Pitt, W.G.; Husseini, G.A. Biodegradable Magnesium Alloys for Biomedical Implants: Properties, Challenges, and Surface Modifications with a Focus on Orthopedic Fixation Repair. Appl. Sci. 2023, 14, 10. [Google Scholar] [CrossRef]
- Nuthana Kalva, S.; Ali, F.; Koç, M. Recent Advances in the Post-Processing of Magnesium Based Scaffolds for Orthopedic Applications. Next Mater. 2025, 6, 100295. [Google Scholar] [CrossRef]
- Kazemzadeh-Narbat, M. FDA Regulatory Challenges for Magnesium-Based Orthopedic Devices. ODT, 21 May 2024. [Google Scholar]
- Degradable Medical Magnesium Implants Market. Available online: https://www.linkedin.com/pulse/degradable-medical-magnesium-implants-market-wander-whiz-zd8ef (accessed on 12 June 2025).
- Amin, V.Y.; Nallajennugari, S.R.; Chahal, R.S. The Efficacy of Biodegradable Magnesium-Based Implants in Orthopedic Surgery. Int. Arch. Orthop. Surg. 2025, 8, 1–9. [Google Scholar] [CrossRef]
- Data Bridge Market Research. North America Magnesium Alloys Market Report—Industry Trends and Forecast to 2029; Data Bridge Market Research: Pune, India, 2022. [Google Scholar]
- Ibrahem Khaled, N.; Santhiya, D. Zein-Bioactive Glass Nanocomposite Coating on Magnesium Alloy Substrate for Orthopedic Applications. Adv. Compos. Mater. 2024, 33, 324–346. [Google Scholar] [CrossRef]
- De Luca, A.; Ruggiero, R.; Cordaro, A.; Marrelli, B.; Raimondi, L.; Costa, V.; Bellavia, D.; Aiello, E.; Pavarini, M.; Piccininni, A.; et al. Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications. J. Funct. Biomater. 2024, 15, 382. [Google Scholar] [CrossRef]
- Cao, B.; Cao, L.; Kallmes, D.F. Degradation Rate Assessment of Biodegradable Magnesium Alloys. Mater. Sci. Appl. 2024, 15, 245–252. [Google Scholar] [CrossRef]
- Barzegari, M.; Mei, D.; Lamaka, S.V.; Geris, L. Computational Modeling of Degradation Process of Biodegradable Magnesium Biomaterials. Corros. Sci. 2021, 190, 109674. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kikuta, A. Development of a Model System for Gas Cavity Formation Behavior of Magnesium Alloy Implantation. ACS Biomater. Sci. Eng. 2022, 8, 2437–2444. [Google Scholar] [CrossRef]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021.
- Amaral, C.; Paiva, M.; Rodrigues, A.R.; Veiga, F.; Bell, V. Global Regulatory Challenges for Medical Devices: Impact on Innovation and Market Access. Appl. Sci. 2024, 14, 9304. [Google Scholar] [CrossRef]
- ISO/TS 20721:2025; Implants for Surgery—Absorbable Implants—General Guidelines and Requirements for Assessment of Absorbable Metallic Implants. International Organization for Standardization: Geneva, Switzerland, 2025.
- Müller, E.; Schoberwalter, T.; Mader, K.; Seitz, J.-M.; Kopp, A.; Baranowsky, A.; Keller, J. The Biological Effects of Magnesium-Based Implants on the Skeleton and Their Clinical Implications in Orthopedic Trauma Surgery. Biomater. Res. 2024, 28, 0122. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; He, L.; Zhang, X.; Mei, Y.; Wu, T.; Wang, J.; Zheng, Y.; Tang, H. Surface Engineering of Biodegradable Magnesium Alloys as Orthopedic Implant Materials: Recent Developments and Future Prospects. Coatings 2025, 15, 191. [Google Scholar] [CrossRef]
- Ji, Y.; Hou, M.; Zhang, J.; Wang, T.; Cao, C.; Yang, H.; Zhang, X. Surface Modification of WE43 Magnesium Alloys with Dopamine Hydrochloride Modified GelMA Coatings. Coatings 2022, 12, 1074. [Google Scholar] [CrossRef]
- Gu, X.N.; Xie, X.H.; Li, N.; Zheng, Y.F.; Qin, L. In Vitro and in Vivo Studies on a Mg–Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal. Acta Biomater. 2012, 8, 2360–2374. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Z.; Sun, Y. Effects of a Thaw Slump on Active Layer in Permafrost Regions with the Comparison of Effects of Thermokarst Lakes on the Qinghai–Tibet Plateau, China. Geoderma 2018, 314, 47–57. [Google Scholar] [CrossRef]
- Garimella, A.; M, R.; Ghosh, S.B.; Bandyopadhyay-Ghosh, S.; Agrawal, A.K. Bioactive Fluorcanasite Reinforced Magnesium Alloy-Based Porous Bio-Nanocomposite Scaffolds with Tunable Mechanical Properties. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2023, 111, 463–477. [Google Scholar] [CrossRef]
- Wei, X.; Ma, S.; Meng, J.; Qing, H.; Zhao, Q. In Vitro Evaluation of a Novel Mg–Sn–Ge Ternary Alloy for Orthopedic Applications. J. Alloys Compd. 2023, 953, 169813. [Google Scholar] [CrossRef]
Property | Magnesium Alloys | Titanium Alloys | Stainless Steel |
---|---|---|---|
Elastic Modulus | Good | Fair | Poor |
Density Match to Bone | Excellent | Poor | Poor |
Strength | Moderate (sufficient for many indications) | High | High |
Biocompatibility | Good (no major toxicity, favorable) | Good (no major toxicity) | Good (no major toxicity) |
Biodegradability | Complete resorption | Non-biodegradable | Non-biodegradable |
No Removal Surgery | Yes | No | No |
Feature | Traditional Metals | Magnesium Alloys | Clinical Impact |
---|---|---|---|
Post-healing presence | Permanent | Complete resorption | Eliminates removal surgery |
Secondary surgery rate | 30% (general), 10–20% (pediatric) | Rare/Never | Reduced morbidity/cost |
Biological role | Inert foreign body | Essential metabolic element | Enhanced integration |
Stress shielding | Severe (4–29× stiffness) | Minimal (1.3–6× stiffness) | Preserved bone density |
Parameter | Historical (Pre-1950) | Modern (2013-Present) | Improvement Factor |
---|---|---|---|
Degradation Rate | Complete in 8 days–5 weeks | 0.02–0.31 mm/year | 100–1000× control |
Tensile Strength | Insufficient data | Up to 365 MPa | Bone-compatible |
Clinical Cases | Anecdotal reports | 25,000+ documented | Systematic validation |
Gas Evolution | Uncontrolled cavities | <0.01 mL/cm2/day | Managed evolution |
Regulatory Status | No approvals | Multiple CE marks, FDA IDEs | Commercial viability |
Material | Density (g/cm3) | Elastic Modulus (GPa) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|---|
Pure Mg | 1.74 | 45 | 130–220 | 6.4 |
Mg Alloys | 1.74–2.0 | 41–45 | 150–365 | 2–20 |
Stainless Steel | 7.9–8.1 | 200–230 | 480–834 | 12–50 |
Ti Alloys | 4.4–4.5 | 110–114 | 550–1400 | 8–15 |
Cortical Bone | 1.8–2.1 | 15–30 | 130–180 | 1–3 |
Architecture | Plateau Stress (MPa) | Young’s Modulus (GPa) | Porosity (%) |
---|---|---|---|
Gyroid | 32.34 ± 1.36 | 0.760 ± 0.020 | 75 |
Diamond | 16.20 ± 0.66 | 0.466 ± 0.035 | 75 |
Biomimetic | 7.47 ± 0.56 | 0.207 ± 0.018 | 75 |
Element | TD50 (mol/L) | Classification | Daily Limit (mg/day) | Impurity Limit (ppm) | Clinical Concern |
---|---|---|---|---|---|
Aluminum | - | Moderate–Severe | 1.0 | - | Neurotoxicity, Alzheimer’s |
Yttrium | 2.54 × 10−4 | Moderate | 0.016 | - | Bone/liver accumulation |
Zinc | 9.28 × 10−5 | Severe | 15–40 | - | Essential but toxic at high levels |
Nickel | 4.15 × 10−5 | Severe | - | 20–50 | Cytotoxicity, allergenic |
Copper | 4.59 × 10−5 | Severe | 2–3 | 100–300 | Corrosion acceleration |
Iron | - | Moderate | - | 35–50 | Cathodic acceleration |
Manganese | - | Moderate | 2–5 | - | Neurological effects at high doses |
Lithium | - | Moderate | 0.5–2.0 | - | Therapeutic but narrow window |
Total REE | - | Moderate | 4.2 | - | Accumulation in bone/liver |
Alloy System | Tensile Strength (MPa) | Degradation Rate (mm/year) | Key Achievement | Reference |
---|---|---|---|---|
Mg-1Ca | 315.6 ± 20.7 | 0.291 ± 0.06 | Exceptional performance | [28] |
Mg-2Zn-1Mn | 243.5 | 0.36 | Lowest degradation rate | [20] |
Mg-2Sr | 253.3 ± 23 | 0.281 ± 0.06 | Optimal Sr content | [28] |
Mg-2Zn-0.05Ca | 280 (extruded) | - | Clinical optimization | [78] |
MgZn1Ca0.5 | 210 | - | Ternary composition | [79] |
MgZn4Ca0.2 | 297 | - | High strength profile | [80] |
High-purity Mg (99.99%) | - | 3% mass loss/30 days | Clinical efficacy proven | [79,81] |
Alloying Strategy | Base System | Performance Improvement | Biocompatibility/Toxicity Notes | Reference |
---|---|---|---|---|
Neodymium oxide (1.5% Nd2O3) | Mg-HA composites | 14.7% UTS increase, 85.2% wear reduction | No acute cytotoxicity at low concentrations; Nd shows moderate in vivo toxicity, but alloyed forms are less concerning | [23,57] |
Manganese addition | Mg-1Zn-1Mn | YS: 44 → 246 MPa (459% increase; mainly via extrusion) | Manganese is biocompatible in small amounts | [78] |
Manganese (0.5 wt%) | Mg-0.5Bi-0.5Sn | Corrosion rate: 0.59 → 0.22 mm/a (63% reduction) | No significant biocompatibility issues | [85] |
Zirconium addition | Mg + Zr + ZnO | Grain size: 71 → 39 μm (45% reduction) | Zr widely used in biomedical Mg alloys, good safety | [83] |
Zirconium (1 wt%) | Various systems | 50% microhardness increase | See above | [83] |
Gd (up to 2.32 wt%) | GDY-Mg alloys | Maintained high cell proliferation and osteogenic activity | No cytotoxicity observed over 5 days; Gd is moderately toxic in ionic form but safe in controlled alloy release | [23,24,25] |
Processing Method | Grain Size Achievement | Mechanical Enhancement | Reference |
---|---|---|---|
FSP (6-pass) | 21–28 μm → 2.1 μm | Uniform precipitates, no infection | [83,89] |
LPBF WE43 | 44.3 μm → 1–3 μm | YS: 250.2 ± 3.5 MPa, UTS: 312 ± 3.7 MPa | [21] |
LPBF + Zr | 8.99 μm → 0.93 μm | Enhanced strength and corrosion | [21] |
ECAP/HPT | Conventional → sub-micron | 365 MPa UTS, 34% elongation | [80] |
SPD Nanocrystalline | Conventional → 0.07 μm | 260 MPa, superior corrosion control | [22] |
SNDP-CG (Mg49Cu42Y9) | Glass-crystal dual phase | 3300 MPa (approaching theoretical) | [88] |
Composite Type | Mechanical Property | Degradation Control | Biological Enhancement | Reference |
---|---|---|---|---|
Mg-3Zn/Ti/HA | 217 MPa compression (+15.8%) | 21% corrosion improvement | Cell viability: 79% → 91.7% | [92] |
AMP-PEEK | 120 → 70 MPa (28 days) | Minimal mass reduction | Comparable to Ti implants | [93] |
PTMC-dMA coating | Maintained strength | H2: 0.16 vs. 14.37 mL/cm2 | 3× adhesion improvement | [94] |
ZK60-MBG (5 wt%) | Enhanced hardness | 0.89 → 0.31 mm·yr−1 | Improved bioactivity | [21] |
Mg/(5–20)PLA | 160–240 MPa | 0.001–0.02 mm/year | Tailored profiles | [80] |
Mg/(10–30)HA | Up to 200 MPa | As low as 0.01 mm/year | Enhanced integration | [80] |
Treatment System | Corrosion Improvement | Biological Enhancement | Durability | Reference |
---|---|---|---|---|
Mesoporous silica + Ce-doped glass | 5 orders magnitude (10−11 A/cm2) | Self-healing capability | 540 h testing | [29] |
LSP + PEO (AZ80) | 5× polarization resistance | Self-healing properties | 30 μm nanocrystalline | [96] |
Sr-doped HA (ZK60) | 146 → 1.6 μA/cm2 | Enhanced osseointegration | Validated in vivo | [96] |
MAO/CeNPs | Superior protection | 55% gap coverage (12 h), M2 promotion | 85% volume at 1 month | [97] |
Barnacle cement cp19k | 32% degradation reduction | IL-10: 233.7 pg·mL−1, EC: 284.9 μm | 336 h stability | [98] |
MAO/PLA duplex (AZ31) | 611 → 1.8 μA/cm2 | Improved bone cell adhesion | >45 MPa adhesion | [99] |
Chitosan-CeO2 nanocomposite | 3 orders magnitude lower i_corr * | Self-healing, anti-inflammatory | pH-triggered release | [99] |
Collagen/CaP composite | 1.42 V E_corr *, 0.87 μA/cm2 | Enhanced osteoinductivity | Seals microcracks | [99] |
Technology | Achievement | Performance Metric | Reference |
---|---|---|---|
LPBF optimization | 99.9% relative density | 80 W/800 mm/s optimal | [100] |
Production accuracy | ±50 μm precision | >70% porosity achievable | [25] |
Powder atomization | ≥95% sphericity | 20–70 μm size range | [101] |
Quality control | <2% batch variation | Real-time monitoring | [30] |
Industrial scale | >90% reproducibility | 15–20% cost reduction | [25] |
LPBF WE43 | 250.2 ± 3.5 MPa YS | 99.91% density | [83] |
Application/Indication | Device (Patients) | Outcome/Union Rate | Follow-Up | Adverse Events | Degradation Timeframe | Reference |
---|---|---|---|---|---|---|
Ankle fractures | High-purity Mg (n = 24) | 100% healing, no complications | 146.0 ± 14.5 weeks | None reported | Complete by 18 mo | [18,79] |
Multiple procedures | MAGNEZIX® (>25,000) | Complete degradation 6–18 months; high healing | Up to 2 years | Not reported | 6–18 mo | [18,19] |
Hallux valgus | MAGNEZIX® CS 3.2 | 79% union (6 wks), 90% (12 wks) | 16 months | Not reported | 6–18 mo | [18,102] |
Fracture fixation | MAGNEZIX® (>120) | 95% full union | 12–24 months | Not reported | 6–18 mo | [18,80] |
Tibial spine | Mg screws | Complete healing, full recovery | 12 months | Not reported | Not specified | [19,103] |
Osteonecrosis, femoral neck | 99.99% pure Mg (China, multicenter, ongoing) | Trials approved | – | – | – | [3,19,104] |
Medial malleolar fracture | Ca–P-coated Mg–Nd–Zn–Zr screws (n = 9) | Good alignment; no malunion/failure/infection | 12–17 months | None reported | Major degradation at 12 mo; almost complete by 17 mo | [19,105] |
Various (musculoskeletal) | Hydroxyapatite-coated Mg alloy | Increased cell adhesion, reduced degradation | Up to 12 months | None reported | Not specified | [19,105] |
Cardiovascular (animal, preclinical) | Rapamycin-eluting Mg–Nd–Zn–Zr stents | No restenosis or thrombosis; complete endothelialization | 1–5 months | None reported | Stent degraded by 5 mo | [18,105] |
Device/Brand | Regulatory Body | Year | Application/Indication | Reference |
---|---|---|---|---|
MAGNEZIX® Screw (Syntellix) | CE Mark (EU) | 2013 | Orthopedic/trauma fixation | [18,19,104,105,108,109] |
High-purity Mg screws | NMPA (China) | 2019 | Orthopedic | [18,19,79,104] |
High-purity Mg screws | CE Mark (EU) | 2020 | Orthopedic | [18,19,79] |
K-MET (Mg-Zn-Ca) | KFDA (Korea) | 2015 | Metacarpal fracture | [18,19] |
RESOLOY® (Mg alloy) | CE Mark (EU) | 2020+ | Various | [18,79]; |
RemeOs™ Screw (Bioretec) | FDA Breakthrough, De Novo (USA) | 2021/2023 | Fracture, osteotomy, deformity correction | [18,19,104,105,108] |
OSTEOREVIVE (Bone Solutions) | FDA 510(k) (USA) | 2023 | Bone void filler | [19,108] |
Medical Magnesium Plate System | FDA Breakthrough (USA) | 2022 | Trauma/Orthopedic | [19,108] |
Multiple Mg devices (ongoing) | FDA IDE (USA) | 2022+ | U.S. trials initiated | [19,104,110] |
Material/Coating System | Degradation Rate/Mass Loss | Test Conditions | Reference |
---|---|---|---|
Pure Mg (99.99%) | 3% mass loss (30 days) | DMEM + 10% FBS | [81] |
Mg-2Sr-6Zn alloy | ~50% mass loss (30 days) | DMEM + 10% FBS | [81] |
Mg-2Zn-1Mn | 0.36 mm/year | In vivo | [20] |
Mg-6Zn | 2.3 mm/year | In vivo | [20] |
Mg-1Ca | 1.3 mm/year | In vivo | [20] |
Mg-2Sr | 1.0 mm/year | In vivo | [20] |
WE43MEO (15 μm coating) | 49.6 μg cm−2 d−1 | Corrosion test | [30] |
WE43MEO (30 μm coating) | 30.3 μg cm−2 d−1 | Corrosion test | [30] |
Bare Mg | 6.96 mm/year | Immersion test | [112] |
Zein-BG coated Mg | 0.86 mm/year | Immersion test | [112] |
ZE21B bare | 15.9 mm·year−1 | 336 h test | [113] |
ZE21B + cp19k coating | 9.36 mm·year−1 | 336 h test | [113] |
Mg-1Zn-2.9Y | 13 mm/year | Clinical study | [114] |
Mg-2Zn | 0.4 mm/year | Clinical study | [114] |
Test Parameter | Current Approach | Variability/Limitation | Reference |
---|---|---|---|
Solution composition | pH 5.6–7.45, Cl−: 145–148 mM | Significant variation affects kinetics | [115] |
Sample preparation | 0.5 g Mg chips in 500 mL solution | Non-standardized methodology | [115] |
Test duration | 22–24 h monitoring | Short-term assessment only | [115] |
Mg concentration range | 58.70 ± 2.35 to 792.5 ± 111.0 mg/L | Optimized extraction parameters | [80] |
Volume change quantification | Only 30% of studies measure | Insufficient characterization | [81] |
Coating effect assessment | <40% of studies evaluate | Limited surface modification data | [81] |
Gas cavity volume (1.0 μm coating) | 1.57 ± 0.23 mm3/mm2 | Coating thickness dependent | [116] |
Gas cavity volume (1.6 μm coating) | 1.06 ± 0.22 mm3/mm2 | 28-day measurement | [116] |
Gas cavity volume (2.0 μm coating) | 0.38 ± 0.09 mm3/mm2 | Critical coating control needed | [116] |
Hydrogen evolution (bare Mg) | 73.4 mL/cm2 (10 days) | Gas production measurement | [112] |
Hydrogen evolution (coated) | 37.7 mL/cm2 (10 days) | Coating effectiveness | [112] |
Technology/Approach | Performance/Capability | Accuracy/Resolution | Reference |
---|---|---|---|
Multi-input CNN | Corrosion curve prediction | 0.5% mean relative error | [30] |
Bayesian optimization | Mg2+ diffusion in NaCl | 0.06273 mm2/h coefficient | [115] |
Bayesian optimization | Mg2+ diffusion in SBF | 0.000338 mm2/h coefficient | [115] |
Simulation prediction error (NaCl) | Quantitative benchmarking | 5.35% maximum error | [115] |
Simulation prediction error (SBF) | Quantitative benchmarking | 1.03% maximum error | [115] |
ML alloy composition analysis | Zn primary determinant identification | Quantitative ranking | [83] |
Active learning ML (TPMS) | Yield strength optimization | >20% improvement (6 cycles) | [21] |
pH microprobe monitoring | Spatial resolution capability | 10 × 50 μm tip, 50 μm positioning | [115] |
Electrochemical tracking | Self-healing mechanism detection | Real-time potential monitoring | [29] |
Category | Current State | Identified Gaps | Impact on Regulatory Approval | References |
---|---|---|---|---|
Testing Protocols | Immersion tests: 0.5 g Mg chips in 500 mL solution, 22–24 h monitoring | Lack of standardization required for regulatory harmonization | Variable results compromise regulatory submissions | [115] |
Solution Parameters | pH: 5.6–7.45; Cl−: 145–148 mM | No consensus on standardized testing environments | Inconsistent data affects cross-study comparisons | [115] |
ISO Standards | ISO 10993-5, 10993-12 available | Insufficiently specific for degradable materials | Current standards inadequate for Mg alloy evaluation | [80] |
Clinical Frameworks | ASTM protocols for in vitro testing | Absence of standardized clinical evaluation frameworks | Barriers to regulatory approval and global adoption | [112] |
LPBF-Specific Protocols | No unified protocols exist | Missing standards for corrosion measurement, mechanical testing, biocompatibility evaluation | Cannot evaluate advanced manufacturing approaches | [21] |
Approved Devices | 8 devices globally approved (2023) | None with integrated biosensors or therapeutic delivery | Conservative approval pathways limit innovation | [22] |
Safety Thresholds | Estimated safe Mg2+: 2.5–10 mM (optimal), <20 mM (toxicity limit) | No globally accepted thresholds for H2 gas or Mg2+ serum levels | Uncertainty in establishing approval criteria | [78] |
Coating System | Drug/Agent | Release Profile | Biological Effect | Reference |
---|---|---|---|---|
Mg-ZnO-N | ZnO nanoparticles | H2 volume: 54.63 → 14.72 mL/cm2 | Cell viability: 1.118 → 1.981 | [89] |
Mg-Cu/ZnO-N | Cu/ZnO nanoparticles | H2 volume: 54.63 → 6.67 mL/cm2 | Enhanced cell viability | [89] |
Bisphosphonate-MAO | Bisphosphonate | Stable binding, controlled release | Inhibits osteosarcoma, supports bone regeneration | [78] |
Drug-PEO composite | Various drugs | Sustained release 24 days, 2-day burst | Controlled therapeutic delivery | [96] |
Curcumin-PEO | Curcumin | NIR-responsive release | 99.95% antibacterial (S. aureus) | [96] |
PLGA/sirolimus | Sirolimus | Zero-order kinetics, 45% release | Corrosion rate: 0.095 →0.075 mm/y | [96] |
GelMA-DOPA | Catechol groups | 0.38 mM catechol content | Coating thickness: 9.62 ± 1.7 μm | [122] |
Application | Material/Device | Performance Metrics | Challenges | Reference |
---|---|---|---|---|
Cardiovascular | AE21, WE43, JDBM stents | Endothelialization: 6–10 days, Patency: 98 days | Intimal hyperplasia: 40% lumen reduction | [121] |
Cardiovascular | AZ91 stents | Complete degradation: 7 days | Rapid degradation, imaging compatibility | [95] |
Spinal Fusion | Mg-Sr alloys (2 wt%) | Optimal mechanical strength | Low compressive strength, gas accumulation | [78] |
Gastrointestinal | AZ31 staples (MAO/PLLA) | Complete degradation: 90 days | Coating durability in harsh environment | [83] |
Gastrointestinal | Pure Mg staples | Homogeneous corrosion: 9 weeks | Degradation rate control | [78] |
Dental/Craniofacial | Mg screws/ mini-plates | Under investigation | Application-specific requirements | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aikin, M.; Shalomeev, V.; Kukhar, V.; Kostryzhev, A.; Kuziev, I.; Kulynych, V.; Dykha, O.; Dytyniuk, V.; Shapoval, O.; Zagorskis, A.; et al. Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation. Crystals 2025, 15, 671. https://doi.org/10.3390/cryst15080671
Aikin M, Shalomeev V, Kukhar V, Kostryzhev A, Kuziev I, Kulynych V, Dykha O, Dytyniuk V, Shapoval O, Zagorskis A, et al. Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation. Crystals. 2025; 15(8):671. https://doi.org/10.3390/cryst15080671
Chicago/Turabian StyleAikin, Mykyta, Vadim Shalomeev, Volodymyr Kukhar, Andrii Kostryzhev, Ihor Kuziev, Viktoriia Kulynych, Oleksandr Dykha, Volodymyr Dytyniuk, Oleksandr Shapoval, Alvydas Zagorskis, and et al. 2025. "Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation" Crystals 15, no. 8: 671. https://doi.org/10.3390/cryst15080671
APA StyleAikin, M., Shalomeev, V., Kukhar, V., Kostryzhev, A., Kuziev, I., Kulynych, V., Dykha, O., Dytyniuk, V., Shapoval, O., Zagorskis, A., Burko, V., Khliestova, O., Titov, V., & Hrushko, O. (2025). Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation. Crystals, 15(8), 671. https://doi.org/10.3390/cryst15080671