System Design and Experimental Study of a Four-Roll Bending Machine
Abstract
1. Introduction
2. Methods
2.1. Overall Structure and Main Technical Specifications
2.2. Roll Bending Working Principle and Technological Process Working Principle
2.3. Technological Process
3. Design
3.1. Roller System Layout
3.2. Guiding Mechanism
3.3. Force Analysis of the Pre-Bending Process
3.4. Critical Component Simulation
3.5. Roll Bending Simulation
4. Control System Design
4.1. Roll Bending Control Requirements
- (1)
- 3-channel digital signal servo driver interface, enabling communication between PC and servo driver, and converting digital signals into pulse signals for output to servo motors.
- (2)
- 1-channel digital signal interface for frequency converter and encoder, respectively achieving speed regulation of stepper motors and detection of spindle rotational position.
- (3)
- 12-channel I/O signal interfaces, enabling limit switch functionality, home position communication with host computer, and fault indication.
- (4)
- 1-channel CN17 BASIC PORT interface, enabling communication between PC and terminal boar.
- (5)
- 1-channel CN17 EXTEND PORT interface, enabling communication among PC, Googol controller, and terminal board.
4.2. Roll Bending Control System Module Division
4.3. Control Process
4.4. Human–Machine Interface Design
4.4.1. Logic Motion Control Module
4.4.2. User Interaction Module
4.4.3. Communication Processing Module
4.4.4. Database Module
5. Experimental Validation
5.1. Experimental Validation of Machine Error
5.2. Experimental Validation of Rolling Accuracy
5.3. Arc Integrity Validation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, M.; Baines, K.; Sansome, D. Design and Performance Considerations of the Continuos Four-roll Bender: A Precision Machine for the Roller Bending of Plates. In Proceedings of the Progress in Precision Engineering: Proceedings of the 6th International Precision Engineering Seminar (IPES 6)/2nd International Conference on Ultraprecision in Manufacturing Engineering (UME 2), May, 1991 Braunschweig, Germany; Springer: Berlin/Heidelberg, Germany, 1991; pp. 277–289. [Google Scholar]
- Corona, E. A simple analysis for bend-stretch forming of aluminum extrusions. Int. J. Mech. Sci. 2004, 46, 433–448. [Google Scholar] [CrossRef]
- Pham, C.; Thuillier, S.; Manach, P.Y. Twisting analysis of ultra-thin metallic sheets. J. Mater. Process. Technol. 2014, 214, 844–855. [Google Scholar] [CrossRef]
- Cha, W.g.; Kim, N. Study on twisting and bowing of roll formed products made of high strength steel. Int. J. Precis. Eng. Manuf. 2013, 14, 1527–1533. [Google Scholar] [CrossRef]
- Frohn-Sörensen, P.; Hochstrate, W.; Schneider, D.; Schiller, M.; Engel, B. Incremental bending of conic profiles on CNC hydraulic bending machines. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 1248–1268. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Cao, K.; Xu, M.; Hu, Y.; Sun, S. Optimized design of hydraulic and control system for longitudinal beam CNC bending machine. J. Phys. Conf. Ser. 2024, 2862, 012011. [Google Scholar] [CrossRef]
- Garad, S.; Ahire, S.; Gaidhani, A.; Bagul, P.; Kakade, D.A. Design and Development of Automatic Bending Machine. Int. J. Eng. Res. Technol. (IJERT) 2020, 9, 1375–1378. [Google Scholar]
- Amiolemhen, P.E.; Abiegbe, J.K. Design and fabrication of a three-rolls plate bending machine. Methodology 2019, 10, 31–41. [Google Scholar]
- Jing, Y.; Jiang, S.; Sun, Q.; Zhao, Y.; Song, Z.; Meng, X.; Li, H. Design and development of high precision four roll CNC roll bending machine and automatic control model. Sci. Rep. 2023, 13, 12954. [Google Scholar] [CrossRef] [PubMed]
- von Atzigen, M.; Liebmann, F.; Cavalcanti, N.A.; Baran, T.A.; Wanivenhaus, F.; Spirig, J.M.; Rauter, G.; Snedeker, J.; Farshad, M.; Fürnstahl, P. Reducing residual forces in spinal fusion using a custom-built rod bending machine. Comput. Methods Programs Biomed. 2024, 247, 108096. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Tanaka, Y.; Ichiryu, K. 3D Tube Forming and Applications of a New Bending Machine with Hydraulic Parallel Kinematics. Int. J. Autom. Technol. 2012, 6, 509–515. [Google Scholar] [CrossRef]
- Gaaia, M.; Petcu, P.; Nicolau, A.M. Analysis of a roll bending machine: Enhancing efficiency and functionality. J. Ind. Des. Eng. Graph. 2024, 19, 29–32. [Google Scholar]
- Chen, P.; Lu, S. Springback characteristics and influencing laws of four-axis flexible roll bending forming for aluminum alloy. PLoS ONE 2024, 19, e0306604. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, K. Research on the three-roll-push-bending forming rulesfor improving processing precision. Int. J. Adv. Manuf. Technol. 2017, 90, 763–773. [Google Scholar] [CrossRef]
- Wu, K.; Sun, Y.; Cao, C.; Zhou, C.; Liu, Q.; Chang, X. On simulation analysis of plate forming and deformation compensation technology of the side roll for four-roll plate bending machine. Procedia Eng. 2017, 207, 1617–1622. [Google Scholar] [CrossRef]
- Hua, M.; Baines, K.; Cole, I. Bending mechanisms, experimental techniques and preliminary tests for the continuous four-roll plate bending process. J. Mater. Process. Technol. 1995, 48, 159–172. [Google Scholar] [CrossRef]
- Pachange, R.; Patil, A.; Naik, N.; Ajmani, N.; Bant, P.; Shivaprakash, M. Design And Fabrication Of Manual Roller Bending Machine. Int. Res. J. Eng. Technol. (IRJET) 2019, 7, 2278–2284. [Google Scholar]
- Gu, T.; Zhang, S.; Zhao, Y.; Yang, Y.; Liu, H.; Wu, L.; Liu, J.; Hou, H. Novel method to improve the microstructure and mechanical properties of 45 steel. Met. Mater. Int. 2022, 28, 833–840. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, J.; Xu, C. Development of a symmetrical four-roller bending process. Int. J. Adv. Manuf. Technol. 2019, 104, 4049–4061. [Google Scholar] [CrossRef]
- Jiang, S.; Jing, Y.; Liu, H.; Sun, Q.; Zhao, Y. Theoretical and experimental analysis of springback compensation for four-roll roll forming. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 446. [Google Scholar] [CrossRef]
- Schwenke, H.; Knapp, W.; Haitjema, H.; Weckenmann, A.; Schmitt, R.; Delbressine, F. Geometric error measurement and compensation of machines—An update. CIRP Ann. 2008, 57, 660–675. [Google Scholar] [CrossRef]
Parameter Types | Technical Specifications | Description |
---|---|---|
minimum roll bending radius (mm) | 1000 mm | minimum bending radius |
rolling speed (r/min) | 0~23 r/min | drive roller speed |
rollers diameter (mm) | 180~260 mm | Range |
Center Distance (mm) | 170~380 mm | Upper and Lower Roll Distance Range |
Angle between Side Roll and Bottom Roll | 25° | Side Roller Motion Angle |
Yield Stress | Plastic Strain |
---|---|
229.4605455 | 0 |
232.479666 | 7.94 × |
235.4985931 | 0.000188266 |
238.5176169 | 0.000342428 |
241.5366407 | 0.00058147 |
244.5556645 | 0.000951262 |
Serial Number | Model | Cell Type | Number of Meshes | Number of Nodes |
---|---|---|---|---|
1 | Top roller | C3D8R | 243 | 428 |
2 | Bottom roller | C3D8R | 376 | 633 |
3 | Left roller | C3D8R | 243 | 428 |
4 | Right roller | C3D8R | 243 | 428 |
5 | Profile | C3D8R | 1132 | 2292 |
Serial Number | Side Roller Displacement (mm) | Bending Radius (mm) |
---|---|---|
1 | 23 | 1750.37 |
2 | 24 | 1595.36 |
3 | 26 | 1156.15 |
Components | Function |
---|---|
Googol GTS-800 Controller (1 channels) | Driving each axis |
Servo Drive ASDA-B3 (3 channels) | Receiving and outputting signals |
YLK Parallel Servo-Electric Cylinder (3 channels) | Implementing roller telescoping |
Kinco FV20 Variable Frequency Drive (1 channels) | Controlling drive wheel rotational speed |
OMRON E6B2-CWZ1X Incremental Rotary Encoder (1 channels) | Monitoring profile displacement |
Field Names | Data Types | Constraints | Description |
---|---|---|---|
RollerID | INT | PRIMARY KEY | Roller Unique ID (1–4) |
Diameter | FLOAT | NOT NULL | Roller Diameter (mm) |
PositionX | FLOAT | NOT NULL | X-axis Installation Coordinate (mm) |
PositionY | FLOAT | NOT NULL | Y-axis Installation Coordinate (mm) |
Roll Gap | FLOAT | NOT NULL | Roller Clearance (mm) |
Field Names | Data Types | Constraints | Description |
---|---|---|---|
MaterialCode | NVARCHAR(20) | PRIMARY KEY | Material Code (e.g., Q235B) |
MaterialName | NVARCHAR(50) | NOT NULL | Material Name (e.g., Carbon Steel) |
ElasticModulus | FLOAT | NOT NULL | Elastic Modulus (GPa) |
PoissonRatio | FLOAT | CHECK (0 < Value < 0.5) | Poisson’s Ratio |
Density | FLOAT | NOT NULL | Density (kg/m³) |
YieldStress | FLOAT | NOT NULL | Yield Stress (MPa) |
Field Names | Data Types | Constraints | Description |
---|---|---|---|
ProfileID | INT | PRIMARY KEY | Profile Unique ID |
SectionType | NVARCHAR(20) | NOT NULL | Section Type (e.g., Round Tube) |
Length | FLOAT | NOT NULL | Profile Length (mm) |
Width | FLOAT | NOT NULL | Profile Width (mm) |
Thickness | FLOAT | NOT NULL | Wall Thickness (mm) |
Group Number | Serial Number | Side Roll Displacement | Rolling Radius (mm) | Maximum Error (%) |
---|---|---|---|---|
1 | 1 | 5620.04 | ||
2 | 10 | 5612.56 | 0.72 | |
3 | 5579.39 | |||
2 | 4 | 3977.93 | ||
5 | 15 | 3983.51 | 0.96 | |
6 | 3944.99 | |||
3 | 7 | 2373.44 | ||
8 | 20 | 2354.32 | 0.81 | |
9 | 2370.29 |
Serial Number | Preset Radius (mm) | Actual Radius (mm) | Δ Radius (mm) | Error (%) | Average Error (%) |
---|---|---|---|---|---|
1 | 1500 | 1512.61 | 12.61 | 0.840 | |
2 | 2000 | 2021.82 | 21.82 | 1.090 | |
3 | 2500 | 2523.95 | 23.95 | 0.950 | 0.798 |
4 | 3000 | 3018.50 | 18.50 | 0.610 | |
5 | 3500 | 3517.50 | 17.50 | 0.500 |
Serial Number | Preset Radius (mm) | Actual Radius (mm) | Δ Radius (mm) | Error (%) | Average Error (%) |
---|---|---|---|---|---|
1 | 1030 | 1085.12 | 55.12 | 5.35 | |
2 | 970 | 1020.23 | 50.23 | 5.18 | |
3 | 2015 | 2070.47 | 55.47 | 2.75 | 3.676 |
4 | 1985 | 2040.09 | 55.09 | 2.78 | |
5 | 3020 | 3090.10 | 70.10 | 2.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Sun, Q.; Zhao, Y.; Jiang, S.; Jing, Y. System Design and Experimental Study of a Four-Roll Bending Machine. Appl. Sci. 2025, 15, 7383. https://doi.org/10.3390/app15137383
Guo D, Sun Q, Zhao Y, Jiang S, Jing Y. System Design and Experimental Study of a Four-Roll Bending Machine. Applied Sciences. 2025; 15(13):7383. https://doi.org/10.3390/app15137383
Chicago/Turabian StyleGuo, Dongxu, Qun Sun, Ying Zhao, Shangsheng Jiang, and Yigang Jing. 2025. "System Design and Experimental Study of a Four-Roll Bending Machine" Applied Sciences 15, no. 13: 7383. https://doi.org/10.3390/app15137383
APA StyleGuo, D., Sun, Q., Zhao, Y., Jiang, S., & Jing, Y. (2025). System Design and Experimental Study of a Four-Roll Bending Machine. Applied Sciences, 15(13), 7383. https://doi.org/10.3390/app15137383