Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,745)

Search Parameters:
Keywords = fluid structure interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3689 KB  
Article
Spatiotemporal Evolution and Deformation Mechanism of Deep Foundation Excavation in Water-Rich Sand Strata: A Comparative Study of Monitoring and Simulation
by Yongming Si, Ying Xiao, Kaiqiang Zhu, Jirong Ran, Dengrui Gao and Tao Yang
Buildings 2026, 16(2), 317; https://doi.org/10.3390/buildings16020317 - 12 Jan 2026
Abstract
Deep foundation excavation in water-rich sand strata presents complex deformation characteristics driven by fluid–solid interaction, which distinguishes it from excavations in cohesive soft clay. This study investigates the spatiotemporal evolution and deformation mechanisms of retaining structures through a comparative analysis of field monitoring [...] Read more.
Deep foundation excavation in water-rich sand strata presents complex deformation characteristics driven by fluid–solid interaction, which distinguishes it from excavations in cohesive soft clay. This study investigates the spatiotemporal evolution and deformation mechanisms of retaining structures through a comparative analysis of field monitoring data and 3D numerical simulation, based on a subway station project in Xi’an. While the numerical simulation predicted a continuous “bulging” deformation mode, field monitoring revealed a distinct transition from a “bulging” profile to a “step-like” deformation pattern as the excavation deepened. Quantitatively, while the simulation captured the spatial trend, the measured maximum surface settlement (7.8 mm) exceeded the simulated value (1.2 mm), highlighting the dominant role of seepage consolidation. Detailed analysis indicates that this discrepancy—and the unique step-like evolution—is primarily driven by two mechanisms: the rapid stress relaxation of cohesionless sand during the time lag of support installation, and the superimposed seepage forces induced by continuous dewatering, which are often simplified in standard elastoplastic models. The study further identifies that the vertical displacement of the pile top is governed by the combined effects of basal heave and the “kick-out” deformation at the pile toe. These findings demonstrate that in high-permeability water-rich sand, deformation control depends critically on minimizing the unsupported exposure time of the excavation face. This research provides a theoretical basis for optimizing the spatiotemporal sequencing of excavation in similar geological conditions. Full article
Show Figures

Figure 1

20 pages, 12602 KB  
Article
Comparative Analysis of Flow Behavior and Geochemical Impact of CO2 and Hydrogen in Lithuanian Saline Aquifer: A Simulation and Experimental Study
by Shruti Malik, Parsa Alimohammadiardakani and Mayur Pal
Energies 2026, 19(2), 359; https://doi.org/10.3390/en19020359 - 11 Jan 2026
Abstract
Lithuania covers the deepest parts of the Baltic basin and contains many reservoirs that have been explored for Hydrocarbon production and gas storage projects, including CO2 and hydrocarbon gas storage. Studies have also been conducted to assess the storage potential of these [...] Read more.
Lithuania covers the deepest parts of the Baltic basin and contains many reservoirs that have been explored for Hydrocarbon production and gas storage projects, including CO2 and hydrocarbon gas storage. Studies have also been conducted to assess the storage potential of these reservoirs for gases like CO2 and Hydrogen. In the studies, four saline aquifers, including Syderiai, Vaskai, and D11, and depleted hydrocarbon reservoirs in the Gargzdai structure were evaluated for potential CO2 storage. However, the long-term fate of these gases’ migration at the field scale has not been reported previously. In response to the existing gap, this study aims to evaluate the risks and challenges associated with subsurface CO2 and Hydrogen storage by conducting numerical simulations at two injection rates, of fluid migration, pH variations, and geomechanical responses using the tNavigator platform, complemented by laboratory experiments on outcrops representative of Syderiai formation, to achieve a detailed understanding of geochemical interactions between rocks and fluids. The results reveal distinct gas-specific behaviors: CO2 exhibits enhanced solubility trapping, density-driven convective mixing, and pronounced pH reduction, whereas Hydrogen demonstrates rapid buoyant migration, higher pressure buildup, and negligible geochemical reactivity. Both gases demonstrate short-term storage viability in the Syderiai aquifer under the modeled conditions, with pressure and total vertical stress remaining below the bottom-hole pressure limit of 450 bars. This integrated simulation and experimental study enhances our understanding of Lithuanian reservoirs for the safe, long-term storage of both CO2 and Hydrogen. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
35 pages, 3152 KB  
Review
AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration
by Cosmin Pantu, Alexandru Breazu, Stefan Oprea, Matei Serban, Razvan-Adrian Covache-Busuioc, Octavian Munteanu, Nicolaie Dobrin, Daniel Costea and Lucian Eva
Int. J. Mol. Sci. 2026, 27(2), 676; https://doi.org/10.3390/ijms27020676 - 9 Jan 2026
Viewed by 86
Abstract
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of [...] Read more.
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of the neuron. The use of new technologies such as quantum-informed molecular simulation (QIMS), dielectric nanoscale mapping, fluid dynamics of the cell, and imaging of perivascular flow are allowing researchers to understand how the collective interactions among proteins, membranes and their electrical properties, along with fluid dynamics within the cell, form a highly interconnected dynamic system. These systems require fine control over the energetic, mechanical and electrical interactions that maintain their coherence. When there is even a small change in the protein conformations, the electric properties of the membrane, or the viscosity of the cell’s interior, it can cause changes in the high dimensional space in which the system operates to lose some of its stabilizing curvature and become prone to instability well before structural pathologies become apparent. AI has allowed researchers to create digital twin models using combined physical data from multiple scales and to predict the trajectory of the neural system toward instability by identifying signs of early deformation. Preliminary studies suggest that deviations in the ergodicity of metabolic–mechanical systems, contraction of dissipative bandwidth, and fragmentation of attractor basins could be indicators of vulnerability. This study will attempt to combine all of the current research into a cohesive view of the role of progressive loss of multi-physics coherence in neurodegenerative disease. Through integration of protein energetics, electrodynamic drift, and hydrodynamic irregularities, as well as predictive modeling utilizing AI, the authors will provide mechanistic insights and discuss potential approaches to early detection, targeted stabilization, and precision-guided interventions based on neurophysics. Full article
Show Figures

Figure 1

19 pages, 5854 KB  
Article
Effect of Different Impeller Types on Mixing Efficiency in Mechanically Stirred Tanks with Tubular Baffles
by Jesús Eduardo Lugo Hinojosa, Juan Antonio Yáñez Varela, Alejandro Alonzo García, Gabriela Rivadeneyra Romero and Sergio Alejandro Martínez Delgadillo
Processes 2026, 14(2), 225; https://doi.org/10.3390/pr14020225 - 8 Jan 2026
Viewed by 141
Abstract
Efficient mixing in stirred tanks is essential for chemical and biochemical processes. Tubular baffles offer potential energy savings and multifunctionality (e.g., as heat exchangers); however, their interaction with common impeller types is not well understood. This study uses computational fluid dynamics (CFD) simulations [...] Read more.
Efficient mixing in stirred tanks is essential for chemical and biochemical processes. Tubular baffles offer potential energy savings and multifunctionality (e.g., as heat exchangers); however, their interaction with common impeller types is not well understood. This study uses computational fluid dynamics (CFD) simulations to evaluate the hydrodynamic performance of a novel tubular baffle design compared to conventional flat baffles with three impellers: a Rushton turbine (RT), a pitched blade turbine (PBT), and a hydrofoil (HE3). Dimensionless analysis (power number, NP; and pumping number, NQ), flow visualization, and vorticity dynamics were employed. The results show that, by attenuating large-scale recirculation, tubular baffles reduce power consumption by 64%, 13%, and 23% for the HE3, PBT, and RT, respectively. However, the HE3 impeller experienced a 30% decrease in pumping capacity, which confined the flow to the lower tank. The PBT showed a 10% increase in NQ and intensified bottom circulation. The RT uniquely generated distributed, high-intensity turbulence along the baffle height while maintaining its characteristic dual-loop structure. The analysis critiques the local pumping efficiency metric and advocates for a global flow assessment. The HE3 is optimal for efficient bulk blending at low power; the PBT is optimal for strong bottom circulation processes; and the RT is optimal for applications requiring enhanced interfacial processes, where baffles serve a dual function. This work provides a framework for selecting energy-efficient agitation systems by coupling impeller performance with global tank hydrodynamics. Full article
18 pages, 5163 KB  
Article
CO2 Quasi-Dry Fracturing Technology and Field Application in the Lulehe Formation of the Qaidam Basin
by Hengli Zhai, Xing Yu, Xianbo Meng, Kai Sun, Xiaowei Zhang, Yaopu Xu, Haizhu Wang, Bin Wang and Yan Zheng
Processes 2026, 14(2), 216; https://doi.org/10.3390/pr14020216 - 7 Jan 2026
Viewed by 141
Abstract
Sensitive reservoirs with high clay content commonly suffer from severe water/salt sensitivity and water-lock damage during conventional water-based hydraulic fracturing, which reduces fracture conductivity and post-stimulation performance. To address this issue, we propose a CO2 quasi-dry fracturing approach that combines the low-damage [...] Read more.
Sensitive reservoirs with high clay content commonly suffer from severe water/salt sensitivity and water-lock damage during conventional water-based hydraulic fracturing, which reduces fracture conductivity and post-stimulation performance. To address this issue, we propose a CO2 quasi-dry fracturing approach that combines the low-damage feature of CO2 dry fracturing with the proppant-carrying capacity of a water-based system under atmospheric sand mixing conditions. Taking Well S in the Lulehe Formation (Qaidam Basin) as a case study, we conducted reservoir sensitivity evaluation, laboratory fluid/rock interaction tests, and a field trial with microseismic monitoring. The reservoir is dominated by water and salt sensitivity, indicating high risk of damage when using conventional fluids. Laboratory results show that the CO2 quasi-dry system improves swelling inhibition and enhances core structural stability compared with fresh water. Field implementation was operationally stable and generated an effective stimulated reservoir volume on the order of 105 m3; post-fracturing oil production increased relative to nearby offset wells with a high flowback ratio. The results demonstrate that CO2 quasi-dry fracturing provides an effective low-damage stimulation option for strongly sensitive reservoirs and can be transferred to similar formations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 9862 KB  
Article
Analysis of Wind-Induced Response During the Lifting Construction of Super-Large-Span Heavy Steel Box Girders
by Shuhong Zhu, Xiaotong Sun, Xiaofeng Liu, Wenjie Li and Bin Liang
Buildings 2026, 16(2), 251; https://doi.org/10.3390/buildings16020251 - 6 Jan 2026
Viewed by 119
Abstract
Wind-induced response poses a significant challenge to the stability of extra-large-span heavy steel box girders during synchronous lifting operations. This study adopted a method combining numerical simulation with on-site monitoring to investigate the aerodynamic characteristics the beam during the overall hoisting process of [...] Read more.
Wind-induced response poses a significant challenge to the stability of extra-large-span heavy steel box girders during synchronous lifting operations. This study adopted a method combining numerical simulation with on-site monitoring to investigate the aerodynamic characteristics the beam during the overall hoisting process of the Xiaotun Bridge. A high-fidelity finite element model was established using Midas NFX 2024 R1, and fluid–structure interaction (FSI) analysis was conducted, utilizing the RANS k-ε turbulence model to simulate stochastic wind fields. The results show that during the lifting stage from 3 m to 25 m, the maximum horizontal displacement of the steel box girder rapidly increases at wind angles of 90° and 60°, and the peak displacement is reached at 25 m. Under a strong breeze at a 90° wind angle and 25 m lifting height, the maximum lateral displacement was 42.88 mm based on FSI analysis, which is approximately 50% higher than the 28.58 mm obtained from linear static analysis. Subsequently, during the 25 m to 45 m lifting stage, the displacement gradually decreases and exhibits a linear correlation with lifting height. Concurrently, the maximum stress of the lifting lug of the steel box girder increases rapidly in the 3–25 m lifting stage, reaches the maximum at 25 m, and gradually stabilizes in the 25–45 m lifting stage. The lug stress under the same critical condition reached 190.80 MPa in FSI analysis, compared with 123.83 MPa in static analysis, highlighting a significant dynamic amplification. Furthermore, the detrimental coupling effect between mechanical vibrations from the lifting platform and wind loads was quantified; the anti-overturning stability coefficient was reduced by 10.48% under longitudinal vibration compared with lateral vibration, and a further reduction of up to 39.33% was caused by their synergy with wind excitation. Field monitoring validated the numerical model, with stress discrepancies below 9.7%. Based on these findings, a critical on-site wind speed threshold of 9.38 m/s was proposed, and integrated control methods were implemented to ensure construction safety. During on-site lifting, lifting lug stresses were monitored in real time, and if the predefined threshold was exceeded, contingency measures were immediately activated to ensure a controlled termination. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 2564 KB  
Article
Mechanism Study on Enhancing Fracturing Efficiency in Coalbed Methane Reservoirs Using Highly Elastic Polymers
by Penghui Bo, Qingfeng Lu, Wenfeng Wang and Wenlong Wang
Processes 2026, 14(2), 191; https://doi.org/10.3390/pr14020191 - 6 Jan 2026
Viewed by 134
Abstract
Coalbed methane development is constrained by reservoir characteristics including high gas adsorption, high salinity, and high closure pressure, which impose significant limitations on conventional polymer fracturing fluids regarding viscosity enhancement, proppant transport, and fracture maintenance. In this study, a novel polymer fracturing fluid [...] Read more.
Coalbed methane development is constrained by reservoir characteristics including high gas adsorption, high salinity, and high closure pressure, which impose significant limitations on conventional polymer fracturing fluids regarding viscosity enhancement, proppant transport, and fracture maintenance. In this study, a novel polymer fracturing fluid system, Z-H-PAM, was designed and synthesized to achieve strong salt tolerance, low adsorption affinity, and high elasticity to withstand closure pressure. This was accomplished through the molecular integration of a zwitterionic monomer ZM-1 and a hydrophobic associative monomer HM-2, forming a unified structure that combines rigid hydrated segments with a hydrophobic elastic network. The results indicate that ZM-1 provides a stable hydration layer and low adsorption tendency under high-salinity conditions, while HM-2 contributes to a high-storage-modulus, three-dimensional physically cross-linked network via reversible hydrophobic association. Their synergistic interaction enables Z-H-PAM to retain viscoelasticity that is significantly superior to conventional HPAM and to achieve rapid structural recovery in high-mineralization environments. Systematic evaluation shows that this system achieves a static sand-suspension rate exceeding 95% in simulated flowback fluid, produces broken gel residues below 90 mg/L, and results in a core damage rate of only 10.5%. Moreover, it maintains 88.8% of its fracture conductivity under 30 MPa closure pressure. Notably, Z-H-PAM can be prepared directly using high-salinity flowback water, maintaining high elasticity and sand-carrying capacity while enabling fluid recycling and reducing reservoir damage. This work clarifies the multi-scale mechanisms of strongly hydrated and highly elastic polymers in coalbed methane reservoirs, offering a theoretical and technical pathway for developing efficient and low-damage fracturing materials. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

33 pages, 21972 KB  
Article
Wave Attenuation Performance of a Floating Breakwater Integrated with Flexible Wave-Dissipating Structures
by Xianlin Jia, Su Guo, Kangjie Wang, Sai Fu, Xintong Yu and Wei Peng
J. Mar. Sci. Eng. 2026, 14(1), 97; https://doi.org/10.3390/jmse14010097 - 4 Jan 2026
Viewed by 173
Abstract
This study develops a two-dimensional numerical model to investigate the hydrodynamic performance of a floating breakwater coupled with flexible wave-dissipating structures (FWDS). The model integrates the immersed boundary method with a finite element structural solver, enabling accurate simulation of fluid–structure interactions under wave [...] Read more.
This study develops a two-dimensional numerical model to investigate the hydrodynamic performance of a floating breakwater coupled with flexible wave-dissipating structures (FWDS). The model integrates the immersed boundary method with a finite element structural solver, enabling accurate simulation of fluid–structure interactions under wave excitation. Validation against benchmark cases, including cantilever beam deflection and flexible vegetation under waves, confirms the model’s reliability. Parametric analyses were conducted to examine the influence of the elastic modulus and height of the FWDS on wave attenuation efficiency. Results show that structural flexibility plays a crucial role in modifying wave reflection, transmission, and dissipation characteristics. A lower elastic modulus enhances energy dissipation through large deformation and vortex generation, while higher stiffness promotes reflection with reduced dissipation. Increasing the height of the FWDS improves overall wave attenuation but exhibits diminishing returns for long-period waves. The findings highlight that optimized flexibility and geometry can effectively enhance the energy-dissipating capacity of floating breakwaters. This study provides a theoretical basis for the design and optimization of hybrid floating breakwaters integrating flexible elements for coastal and offshore wave energy mitigation. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

20 pages, 6827 KB  
Article
Multiphysics Modelling and Experimental Validation of Road Tanker Dynamics: Stress Analysis and Material Characterization
by Conor Robb, Gasser Abdelal, Pearse McKeefry and Conor Quinn
Computation 2026, 14(1), 7; https://doi.org/10.3390/computation14010007 - 2 Jan 2026
Viewed by 164
Abstract
Crossland Tankers is a leading manufacturer of bulk-load road tankers in Northern Ireland. These tankers transport up to forty thousand litres of liquid over long distances across diverse road conditions. Liquid sloshing within the tank has a significant impact on driveability and the [...] Read more.
Crossland Tankers is a leading manufacturer of bulk-load road tankers in Northern Ireland. These tankers transport up to forty thousand litres of liquid over long distances across diverse road conditions. Liquid sloshing within the tank has a significant impact on driveability and the tanker’s lifespan. This study introduces a novel Multiphysics model combining Smooth Particle Hydrodynamics (SPH) and Finite Element Analysis (FEA) to simulate fluid–structure interactions in a full-scale road tanker, validated with real-world road test data. The model reveals high-stress zones under braking and turning, with peak stresses at critical chassis locations, offering design insights for weight reduction and enhanced safety. Results demonstrate the approach’s effectiveness in optimising tanker design, reducing prototyping costs, and improving longevity, providing a valuable computational tool for industry applications. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

26 pages, 3943 KB  
Review
Review of Numerical Simulation of Overburden Grouting in Foundation Improvement
by Pengfei Guo, Weiquan Zhao, Linxiu Qu, Xifeng Li, Yahui Ma and Pan Li
Geotechnics 2026, 6(1), 3; https://doi.org/10.3390/geotechnics6010003 - 1 Jan 2026
Viewed by 210
Abstract
Overburden layers, composed of unconsolidated sediments, are widely distributed in construction, transportation, and water conservancy projects, but their inherent defects (e.g., developed pores, low strength) easily induce engineering disasters. Grouting is a core reinforcement technology, yet traditional design relying on empirical formulas and [...] Read more.
Overburden layers, composed of unconsolidated sediments, are widely distributed in construction, transportation, and water conservancy projects, but their inherent defects (e.g., developed pores, low strength) easily induce engineering disasters. Grouting is a core reinforcement technology, yet traditional design relying on empirical formulas and on-site trials suffers from high costs and low prediction accuracy. Numerical simulation has become a key bridge connecting grouting theory and practice. This study systematically reviews the numerical simulation of overburden grouting based on 82 core articles screened via the PRISMA framework. First, the theoretical system is clarified: core governing equations for seepage, stress, grout diffusion, and chemical fields, as well as their coupling mechanisms (e.g., HM coupling via effective stress principle), are sorted out, and the advantages/disadvantages of different equations are quantified. The material parameter characterization focuses on grout rheological models (Newtonian, power-law, Bingham) and overburden heterogeneity modeling. Second, numerical methods and engineering applications are analyzed: discrete (DEM) and continuous (FEM/FDM) methods, as well as their coupling modes, are compared; the simulation advantages (visualization of diffusion mechanisms, parameter controllability, low-cost risk prediction) are verified by typical cases. Third, current challenges and trends are identified: bottlenecks include the poor adaptability of models in heterogeneous strata, unbalanced accuracy–efficiency, insufficient rheological models for complex grouts, and theoretical limitations of multi-field coupling. Future directions involve AI-driven parameter optimization, cross-scale simulation, HPC-enhanced computing efficiency, and targeted models for environmentally friendly grouts. The study concludes that overburden grouting simulation has formed a complete “theory–parameter–method–application” system, evolving from a “theoretical tool” to the “core of engineering decision-making”. The core contradiction lies in the conflict between refinement requirements and technical limitations, and breakthroughs rely on the interdisciplinary integration of AI, multi-scale simulation, and HPC. This review provides a clear technical context for researchers and practical reference for engineering technicians. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

27 pages, 1098 KB  
Review
Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering
by Daniele Marazzi, Federica Trovalusci, Paolo Di Nardo and Felicia Carotenuto
Biomimetics 2026, 11(1), 18; https://doi.org/10.3390/biomimetics11010018 - 30 Dec 2025
Viewed by 426
Abstract
Microfluidic technologies have ushered in a new era in cardiac tissue engineering, providing more predictive in vitro models compared to two-dimensional culture studies. This review examines Organ-on-a-Chip (OoC) and Lab-on-a-Chip (LoC) platforms, with a specific focus on cardiovascular applications. OoCs, and particularly Heart-on-a-Chip [...] Read more.
Microfluidic technologies have ushered in a new era in cardiac tissue engineering, providing more predictive in vitro models compared to two-dimensional culture studies. This review examines Organ-on-a-Chip (OoC) and Lab-on-a-Chip (LoC) platforms, with a specific focus on cardiovascular applications. OoCs, and particularly Heart-on-a-Chip systems, have advanced biomimicry to a higher level by recreating complex 3D cardiac microenvironments in vitro and dynamic fluid flow. These platforms employ induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), engineered extracellular matrices, and dynamic mechanical and electrical stimulation to reproduce the structural and functional features of myocardial tissue. LoCs have introduced miniaturization and integration of analytical functions into compact devices, enabling high-throughput screening, advanced diagnostics, and efficient pharmacological testing. They enable the investigation of pathophysiological mechanisms, the assessment of cardiotoxicity, and the development of precision medicine approaches. Furthermore, progress in multi-organ systems expands the potential of microfluidic technologies to simulate heart–liver, heart–kidney, and heart–tumor interactions, providing more comprehensive predictive models. However, challenges remain, including the immaturity of iPSC-derived cells, the lack of standardization, and scalability issues. In general, microfluidic platforms represent strategic tools for advancing cardiovascular research in translation and accelerating therapeutic innovation within precision medicine. Full article
Show Figures

Graphical abstract

11 pages, 6726 KB  
Article
Bench-Scale Study of Magnetically Influenced Dynamic Response in a Sloshing Tank
by Harun Tayfun Söylemez and İbrahim Özkol
Appl. Sci. 2026, 16(1), 360; https://doi.org/10.3390/app16010360 - 29 Dec 2025
Viewed by 121
Abstract
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents [...] Read more.
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents a bench-scale experimental investigation of the interaction between static magnetic fields and the dynamic response of a mechanically excited water-tank system, with particular emphasis on distinguishing sloshing-related motion from higher-frequency mechanical effects. A rectangular acrylic tank was subjected to near-resonant horizontal excitation at a fixed fill height. A ferromagnetic steel plate was mounted externally beneath the tank and kept identical in all experiments, while either permanent magnets or mass-matched nonmagnetic dummies were attached externally to one sidewall. Two configurations were examined: a symmetric split-wall layout (15 + 15) magnets and a single-wall high-field arrangement with 30 magnets (Mag–30@L) together with its dummy control (Dummy–30@L). The center-of-gravity motion CGy(t) was reconstructed from four load cells and analyzed in the time and frequency domains. Band-limited analysis of the primary sloshing mode near 0.55 Hz revealed no statistically significant influence of the magnetic field, indicating that static magnets do not measurably affect the fundamental sloshing dynamics under the present conditions. In contrast, a higher-frequency response component in the 10–20 Hz range, attributed to mechanically induced fluid–structure interaction associated with actuator reversal dynamics, was consistently attenuated when magnets were present; this component is absent in corresponding CFD simulations and is, therefore, not associated with sloshing motion. Given the extremely small magnetic Reynolds and Stuart numbers for water, the observations do not support any volumetric magnetohydrodynamic mechanism; instead, they demonstrate a modest magnetic influence on a mechanically excited, high-frequency coupled mode specific to the present experimental system. The study is intentionally limited to bench scale and provides a reproducible dataset that may inform future investigations of magnetically influenced fluid–structure interactions in experimental sloshing rigs. Full article
Show Figures

Figure 1

34 pages, 10361 KB  
Article
Numerical Study of Heat Transfer Intensification in a Chamber with Heat Generating by Irradiated Gold Nanorods: One-Way Multiphysics and Multiscale Approach
by Paweł Ziółkowski, Piotr Radomski, Aimad Koulali, Dominik Kreft, Jacek Barański and Dariusz Mikielewicz
Energies 2026, 19(1), 181; https://doi.org/10.3390/en19010181 - 29 Dec 2025
Viewed by 186
Abstract
This study evaluates energy conversion and heat transfer in a germicidal chamber employing gold nanorods (AuNRs) irradiated with an infrared laser (808 nm, 0.8 W) to generate heat via localized surface plasmon resonance. The investigation focused on the preliminary selection of chamber materials [...] Read more.
This study evaluates energy conversion and heat transfer in a germicidal chamber employing gold nanorods (AuNRs) irradiated with an infrared laser (808 nm, 0.8 W) to generate heat via localized surface plasmon resonance. The investigation focused on the preliminary selection of chamber materials and the geometry of the bottom surface supporting the AuNRs as the heat source in a photothermoablation application. A one-way multiphysics and multiscale approach was applied, integrating nanoscale heating phenomena with a macroscale fluid and heat flow. The validated 2D numerical model shows satisfactory agreement with experimental data and is suitable for further design analyses. Computational Fluid Dynamics (CFD) simulations were conducted to determine temperature and entropy distributions, mean and maximum temperatures, and Nusselt numbers, allowing the assessment of the energy conversion process under different configurations and AuNR dimensions. The results indicate that a configuration with a gradually descending stepped structure enhances interactions between nanoparticles and the fluid, increasing the internal energy and producing elevated temperatures. Under optimal conditions, a temperature rise of approximately 75 °C was achieved. These findings demonstrate that integrating material selection, surface geometry, and nanoparticle absorbance optimization can significantly improve the efficiency of bacterial inactivation in germicidal chambers. This study provides a framework for future investigations on fully three-dimensional multiscale and multiphysical modeling, as well as a targeted AuNR design to maximize the thermal performance. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 5378 KB  
Article
Influence of Ply Angle on the Cavitation Performance of Composite Propellers
by Zheng Huang, Zhangtao Chen, Shenhan Lin and Sinan Wu
J. Mar. Sci. Eng. 2026, 14(1), 57; https://doi.org/10.3390/jmse14010057 - 29 Dec 2025
Viewed by 191
Abstract
In response to the core challenge of effectively controlling deformation to suppress cavitation in composite propellers under fluid–structure interaction (FSI), this study proposes a numerical investigation method based on pre-deformation design. A systematic analysis of the cavitation characteristics of a PC456-type composite propeller [...] Read more.
In response to the core challenge of effectively controlling deformation to suppress cavitation in composite propellers under fluid–structure interaction (FSI), this study proposes a numerical investigation method based on pre-deformation design. A systematic analysis of the cavitation characteristics of a PC456-type composite propeller is conducted using a two-way FSI algorithm. Distinct deformation fields are first constructed by implementing different ply angles (0°, 90°, and 150°). The open-water hydrodynamic and cavitation performance of these pre-deformed propellers are then compared under uniform inflow. Furthermore, their unsteady responses under transient FSI conditions are examined in a non-uniform wake field. Numerical results demonstrate that the ply angle significantly influences the deformation distribution and hydrodynamic performance of the propeller. Under steady conditions, the 0° ply propeller exhibits the optimal cavitation-hydrodynamic performance, whereas the 90° ply configuration performs the poorest. In a non-uniform wake, the 0° ply propeller achieves 75% of the thrust fluctuation reduction effect observed in the 90° ply propeller, while requiring only 19% of its maximum deformation magnitude; additionally, it demonstrates a more gradual oscillation trend in the cavity area ratio. This study provides theoretical insights and design guidance for enhancing the cavitation performance of composite propellers through ply design and deformation control. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

19 pages, 8162 KB  
Article
Analysis of Pore Structure Characteristics and Controlling Factors of Shale Reservoirs: A Case Study of the Qing-1 Member in Gulong Sag, Songliao Basin, China
by Shanshan Li, Zhongying Lei, Wangshui Hu, Huanshan Shi and Wangfa Wu
Appl. Sci. 2026, 16(1), 343; https://doi.org/10.3390/app16010343 - 29 Dec 2025
Viewed by 152
Abstract
The characteristics of shale oil reservoirs, such as low porosity, ultra-low permeability, and complex pore structure, are key factors affecting effective pore space and fluid migration. This study focuses on medium-to-high maturity mud shale in the Qing-1 Member of the Qingshankou Formation in [...] Read more.
The characteristics of shale oil reservoirs, such as low porosity, ultra-low permeability, and complex pore structure, are key factors affecting effective pore space and fluid migration. This study focuses on medium-to-high maturity mud shale in the Qing-1 Member of the Qingshankou Formation in the Gulong Sag. Using methods such as XRD, organic geochemical testing, and multi-scale pore characterization (FE-SEM, low-temperature CO2–N2 adsorption, high-pressure mercury intrusion, and CT scanning), the lithofacies and pore structure were comprehensively characterized, and their controlling factors were analyzed. The results indicate: (1) The mineral composition is dominated by felsic and clay minerals. Based on a three-level classification standard of “mineral composition–sedimentary structure–organic matter abundance”, seven subfacies were identified, with the dominant lithofacies being Felsic–Clayey Mixed Shale and Felsic-bearing Clay Shale. (2) The reservoir space consists of inorganic pores, organic pores, microfractures, and a small amount of other auxiliary pores, exhibiting “bimodal” pore size characteristics. Micro–mesopores dominate adsorption, while macropores/microfractures control free oil seepage; mesopores contribute the most to pore volume. (3) In terms of oil-bearing potential, Felsic–Clayey Mixed Shale shows prominent movable oil potential (average OSI: 133.08 mg/g; S1 > 2 mg/g, OSI > 100 mg/g). (4) CT-based 3D stick-and-ball models indicate that Felsic–Clayey Mixed Shale has the best connectivity (connectivity rate: 30.63%), with throat radii mostly ranging from 1–15 μm and pore radii from 2–20 μm. (5) Pore development is synergistically controlled by total organic carbon (TOC, with an optimal range of approximately 1–2.5%), clay/felsic mineral ratio, and bedding/structural fractures. The formation of the pore system is the result of dynamic coupling of organic–inorganic interactions during diagenetic evolution: intergranular pores of clay minerals and microfractures jointly contribute to specific surface area and pore volume, while bedding fractures connect nanopore clusters to enhance seepage capacity. This study improves the integrated understanding of dominant lithofacies, pore structure, and oil-bearing potential in the Qing-1 Member of the Gulong Sag, providing a basis for sweet spot evaluation and development optimization. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop