Topic Editors

Dr. Jingbin Yang
State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Dr. Bauyrzhan Sarsenbekuly
School of Energy and Petroleum Industry, Kazakh-British Technical University, Almaty 050000, Kazakhstan

Polymer Gels for Oil Drilling and Enhanced Recovery

Abstract submission deadline
31 October 2026
Manuscript submission deadline
31 December 2026
Viewed by
2706

Topic Information

Dear Colleagues,

This Topics is devoted to the study of organic and inorganic polymer gels for oil- and gas-field applications, with the overarching goals of improving drilling efficiency and enhancing oil recovery. Contributions are invited on, but not limited to, innovative polymer gel synthesis, mathematical simulation and experimental assessment of polymer gel performance, and field-oriented applications in drilling and improved/enhanced oil recovery.

Polymer gels are elastomers with a three-dimensional (3D) network structure that is composed of polymers and cross-linkers as the main agents, along with other additives. They have been widely used in various aspects of oil–gas drilling and production engineering, such as drilling fluid, lost circulation control, fracturing, acidizing, conformance control, water shutoff, and enhanced oil recovery.

Polymer gels in oil–gas reservoirs are often subjected to high temperatures and salinity, and excessive temperatures and salinity can destroy the structural integrity of the polymer chains, resulting in a substantial decrease in stability. Therefore, maintaining good properties of polymer gels under high-temperature and high-salinity conditions is extremely difficult. So, many efforts should be performed to synthesize novel polymer gels, evaluate the physical and chemical properties of polymer gels in high-temperature and high-salinity conditions, and investigate the application effects of polymer gels in the drilling and enhanced oil recovery processes in the lab.

We look forward to your innovative research on organic or inorganic polymer gels aimed at advancing drilling efficiency and oil recovery.

Dr. Jingbin Yang
Prof. Dr. Yingrui Bai
Dr. Bauyrzhan Sarsenbekuly
Topic Editors

Keywords

  • polymer gel synthesis
  • polymer gel evaluation
  • polymer gel drilling fluids
  • polymer gel plugging
  • polymer gel fracturing fluid
  • polymer gel acid
  • polymer gel conformance control
  • polymer gel displacement
  • polymer gel application

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.5 2011 19.8 Days CHF 2400 Submit
ChemEngineering
ChemEngineering
3.4 4.9 2017 29.6 Days CHF 1600 Submit
Energies
energies
3.2 7.3 2008 16.2 Days CHF 2600 Submit
Gels
gels
5.3 7.6 2015 12.5 Days CHF 2100 Submit
Processes
processes
2.8 5.5 2013 16 Days CHF 2400 Submit
Polymers
polymers
4.9 9.7 2009 14 Days CHF 2700 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
36 pages, 3413 KB  
Article
Toward Sustainable Green and Intelligent Profile Control Gels: An ETI–CFI-Based Structure–Environment Evaluation Framework
by Qiang Chen, Hanmin Xiao, Zhihua Chen, Tong Wu, Hao Chen and Keqiang Wei
Gels 2025, 11(12), 952; https://doi.org/10.3390/gels11120952 - 27 Nov 2025
Viewed by 403
Abstract
In the context of the “dual-carbon” strategy and the escalating challenges posed by ultra-high water-cut reservoirs, the development of green and intelligent profile control gels (PCGs) has become essential for balancing enhanced oil recovery (EOR) efficiency with environmental sustainability. In this study, a [...] Read more.
In the context of the “dual-carbon” strategy and the escalating challenges posed by ultra-high water-cut reservoirs, the development of green and intelligent profile control gels (PCGs) has become essential for balancing enhanced oil recovery (EOR) efficiency with environmental sustainability. In this study, a green performance evaluation framework integrating the Environmental Toxicity Index (ETI) and Carbon Footprint Intensity (CFI) is established to quantitatively assess the environmental friendliness of polymer gel systems. Representative gel types—including conventional chromium(III)–polyacrylamide(Cr(III)–PAM), citric acid–chitosan, and pH-responsive nanogels—are evaluated to reveal their structure–environment interactions. Comparative analysis shows that the Cr(III)–PAM system exhibits strong plugging capability but imposes the highest environmental burden (ETI = 1.45; CFI = 9.1 kg CO2e/kg), whereas the citric acid–chitosan system significantly reduces both toxicity (ETI = 0.42) and carbon footprint (CFI = 2.1). Meanwhile, pH-responsive nanogels demonstrate superior reservoir stability and sustainability under harsh conditions. The proposed ETI–CFI evaluation framework not only enables quantitative benchmarking of green performance but also provides a unified criterion for molecular design, material screening, and engineering application of intelligent green gels. This framework offers practical guidance for the low-carbon transformation of oilfield chemical systems, aligning innovation with sustainability objectives and supporting the realization of dual-carbon goals. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

21 pages, 2725 KB  
Article
Study on Self-Healing and Sealing Technology of Fractured Geothermal Reservoir
by Wenxi Wang and Yang Tian
Processes 2025, 13(12), 3817; https://doi.org/10.3390/pr13123817 - 26 Nov 2025
Viewed by 269
Abstract
Geothermal energy, recognized as a sustainable and clean resource, is playing an increasingly critical role in the global shift toward low-carbon energy systems. Nevertheless, the exploitation of fractured geothermal reservoirs is often impeded by severe lost circulation during drilling, where conventional plugging materials [...] Read more.
Geothermal energy, recognized as a sustainable and clean resource, is playing an increasingly critical role in the global shift toward low-carbon energy systems. Nevertheless, the exploitation of fractured geothermal reservoirs is often impeded by severe lost circulation during drilling, where conventional plugging materials fail under high-temperature, high-salinity, and high-pressure conditions due to inadequate mechanical strength, poor thermal resistance, and lack of self-adaptive sealing behavior. In response, self-healing materials have emerged as an innovative strategy for developing intelligent lost circulation control technologies. Herein, we report a novel self-healing gel (XFFD) synthesized via inverse emulsion polymerization using acrylamide (AM), acrylic acid (AA), p-nitroblue tetrazolium (PNBT), and modified silica nanoparticles (PAS). The resulting material exhibits exceptional thermal stability, with decomposition onset above 356 °C, as determined by thermogravimetric analysis. Rheological and mechanical assessments reveal outstanding viscoelasticity, moderate swelling capacity (4.17-fold in deionized water), and a high self-recovery efficiency of 91.15%, accompanied by a bearing strength of 3.65 MPa. Mechanistic investigations indicate that the autonomous repair capability stems from dynamic non-covalent interactions—primarily hydrogen bonding and ionic associations—enabled by amide and carboxyl groups within the polymer network. Sand bed filtration tests under simulated geothermal conditions (150 °C, 8% salinity) demonstrate that XFFD forms a robust sealing barrier with significantly shallower invasion depth compared to conventional materials such as sulfonated asphalt and calcium carbonate. This work presents an effective self-healing gel system that ensures reliable wellbore strengthening and fluid loss control in challenging high-temperature, high-salinity geothermal drilling operations. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

23 pages, 3792 KB  
Article
Optimization of the Synthesis of Low Viscosity and High Shear Sulfonated Guar Gum for Enhancing Its Performance in Drilling Fluids
by Yifei Zhao, Yansong Pan, Le Xue, Yongfei Li, Weichao Du and Gang Chen
Gels 2025, 11(12), 939; https://doi.org/10.3390/gels11120939 - 22 Nov 2025
Viewed by 377
Abstract
Guar gum (GG) is a classic polysaccharide gel former in drilling fluids, but its native network is hindered by high water-insoluble residue, modest yield-point (YP) build-up and poor tolerance to temperature ≥ 120 °C and salinity ≥ 12 wt% NaCl. Here we transformed [...] Read more.
Guar gum (GG) is a classic polysaccharide gel former in drilling fluids, but its native network is hindered by high water-insoluble residue, modest yield-point (YP) build-up and poor tolerance to temperature ≥ 120 °C and salinity ≥ 12 wt% NaCl. Here we transformed GG into a sulfonated guar gum (SGG) hydrogel via alkaline etherification with sodium 3-chloro-2-hydroxy-propane sulfonate. FTIR, EA and TGA corroborate the grafting of –SO3 groups (DS = 0.18), while rheometry shows that a 0.3 wt% SGG aqueous gel exhibits 34% higher YP/PV ratio and stronger shear-thinning than native GG, indicating a denser yet still reversible three-dimensional network. In 4 wt% Ca-bentonite mud the SGG gel film reduces API fluid loss by 12% and maintains YP/PV = 0.33 after hot-rolling at 120 °C, a retention 4.7-fold that of GG; likewise, in 12 wt% NaCl brine the gel still affords YP/PV = 0.44, evidencing electrostatically reinforced hydration layers that resist ionic compression. Linear-swell tests reveal shale inhibition improved by 14%. The introduced –SO3 functions strengthen inter-chain repulsion and water binding, yielding a thermally robust, salt-tolerant polysaccharide gel network. As a green, high-performance gel additive, SGG offers a promising route for next-generation water-based drilling fluids subjected to high temperature and high salinity. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

23 pages, 1275 KB  
Review
Research Progress of Micro-Nano Bubbles (MNBs) in Petroleum Engineering
by Yubo Lan, Dongyan Qi, Jiawei Li, Tong Yu, Tianyang Liu, Wenting Guan, Min Yuan, Kunpeng Wan and Zhengxiao Xu
Gels 2025, 11(11), 866; https://doi.org/10.3390/gels11110866 - 29 Oct 2025
Viewed by 804
Abstract
Micro-nano bubbles (MNBs), typically characterized by diameters ranging from tens of micrometers to hundreds of nanometers, have gained significant attention in recent years due to advancements in nanotechnology and related characterization methods. This technology has shown great promise in the field of petroleum [...] Read more.
Micro-nano bubbles (MNBs), typically characterized by diameters ranging from tens of micrometers to hundreds of nanometers, have gained significant attention in recent years due to advancements in nanotechnology and related characterization methods. This technology has shown great promise in the field of petroleum engineering. Among the various applications, the integration of MNBs with gel technology plays a critical role in enhancing drilling safety. This paper aims to systematically review the current status, challenges, and optimization strategies for the application of MNBs in petroleum engineering, with a particular focus on their combined use with gel technology in oilfield applications. The paper first introduces the preparation methods and physicochemical properties of MNBs tailored for oilfield applications. It then systematically reviews the use of MNBs in the following three key areas of petroleum engineering: drilling, enhanced oil recovery (EOR), and oil–water separation. The paper also compares domestic and international technological approaches, highlighting the challenges associated with the large-scale application of MNBs in China. Notably, in the areas of drilling and enhanced oil recovery, the synergistic use of MNBs and gel technology has demonstrated significant potential. The gel–MNB combined technology demonstrates particular promise for China’s special reservoirs, as gel’s high molecular weight compensates for MNBs’ sedimentation defects, while their synergistic effects on interfacial tension reduction and drilling fluid stabilization provide an eco-efficient approach for extreme conditions. Additionally, focusing on the combined application of gel and MNB technology, along with adjustments in gel stability and MNB size, could offer a promising solution for the efficient and sustainable development of special reservoirs (such as those with high temperature, pressure, and salinity) in China. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

22 pages, 4279 KB  
Article
Development and Mechanism of the Graded Polymer Profile-Control Agent for Heterogeneous Heavy Oil Reservoirs Under Water Flooding
by Tiantian Yu, Wangang Zheng, Xueqian Guan, Aifen Li, Dechun Chen, Wei Chu and Xin Xia
Gels 2025, 11(11), 856; https://doi.org/10.3390/gels11110856 - 26 Oct 2025
Viewed by 442
Abstract
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, [...] Read more.
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, resulting in a limited effective radius and short functional duration—this study developed a polymeric graded profile-control agent suitable for highly heterogeneous conditions. The physicochemical properties of the system were comprehensively evaluated through systematic testing of its apparent viscosity, salt tolerance, and anti-aging performance. The microscopic oil displacement mechanisms in porous media were elucidated by combining CT scanning and microfluidic visual displacement experiments. Experimental results indicate that the agent exhibits significant hydrophobic association behavior, with a critical association concentration of 1370 mg·L−1, and demonstrates a “low viscosity at low temperature, high viscosity at high temperature” rheological characteristic. At a concentration of 3000 mg·L−1, the apparent viscosity of the solution is 348 mPa·s at 30 °C, rising significantly to 1221 mPa·s at 70 °C. It possesses a salinity tolerance of up to 50,000 mg·L−1, and a viscosity retention rate of 95.4% after 90 days of high-temperature aging, indicating good injectivity, reservoir compatibility, and thermal stability. Furthermore, within a concentration range of 500–3000 mg·L−1, the agent can effectively emulsify Gudao heavy oil, forming O/W emulsion droplets with sizes ranging from 40 to 80 μm, enabling effective plugging of pore throats of corresponding sizes. CT scanning and microfluidic displacement experiments further reveal that the agent possesses a graded control function: in the near-wellbore high-concentration zone, it primarily relies on its aqueous phase viscosity-increasing capability to control the mobility ratio; upon entering the deep reservoir low-concentration zone, it utilizes “emulsion plugging” to achieve fluid diversion, thereby expanding the sweep volume and extending the effective treatment period. This research outcome provides a new technical pathway for the efficient development of highly heterogeneous heavy oil reservoirs. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

Back to TopTop