Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering
Abstract
1. Introduction
2. Organ-on-a-Chip (OoC)
2.1. Evolution and Biomimetic Principles in Organ-on-a-Chip
- Fluid Flow and Shear Stress: Continuous perfusion ensures even nutrient distribution, removal of waste products, and the application of physiological shear stress, which is critical for maintaining cell viability and function for prolonged periods. This is a significant advantage over static crops [16,17].
- Mechanical Deformation/Stimulation: Many OoC models incorporate the mechanical forces (e.g., tensile stretching, compression) that cells experience in vivo. This is vital for the development, maturation and response of tissues to stimuli [18].
- Electrical Stimulation: Particularly in excitable tissues such as the heart, electrical signals are integrated to induce synchronized beating and promote tissue maturation [19].
- Biochemical gradients: Microfluidics facilitates the generation of precise biochemical gradients, allowing researchers to study cellular responses to drugs and signaling molecules in unprecedented detail [20].
2.2. Essential Components and Strategies of Bioengineering to Fabricate Organ-on-Chip
2.3. Organ-on-a-Chip Models and Applications in the Cardiac Field
2.4. Heart-on-a-Chip Engineering Optimization
2.5. Multi-Organ-on-a-Chip (MOoC) and Body-on-a-Chip Vision
3. Lab-on-a-Chip (LoC)
3.1. Fundamental Principles and Architectural Elements
3.2. Manufacturing Methods
3.3. Monitoring and Detection Methods
3.4. Wide Spectrum of Applications
3.5. HoC Integration in LoC Platform
4. Comparison Between LoC and OoC
4.1. Fundamental Divergence in Primary Objectives and Complexity
4.2. Shared Technological Bases and Interdependencies
4.3. Complementary Roles in the Advancement of Biomedical Research
4.4. Biological Limits and Translational Value of LoCs and OoCs
5. Conclusions and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, D.; Wu, J.C. Integrative approaches in cardiac tissue engineering: Bridging cellular complexity to create accurate physiological models. Iscience 2025, 28, 113003. [Google Scholar] [CrossRef]
- Jensen, C.; Teng, Y. Is It Time to Start Transitioning from 2D to 3D Cell Culture? Front. Mol. Biosci. 2020, 7, 513823. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Why Animal Model Studies Are Lost in Translation. J. Cardiovasc. Aging 2022, 2, 22. [Google Scholar] [CrossRef]
- Feng, H.Z.; Jin, J.P. A Protocol to Study Ex Vivo Mouse Working Heart at Human-like Heart Rate. J. Mol. Cell Cardiol. 2018, 114, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.M.L.; Biesiadecki, B.J.; Ziolo, M.T.; Davis, J.P. The Need for Speed: Mice, Men, and Myocardial Kinetic Reserve. Circ. Res. 2016, 119, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Saorin, G.; Caligiuri, I.; Rizzolio, F. Microfluidic Organoids-on-a-Chip: The Future of Human Models. Semin. Cell Dev. Biol. 2023, 144, 41–54. [Google Scholar] [CrossRef]
- Candarlioglu, P.L.; Dal Negro, G.; Hughes, D.; Balkwill, F.; Harris, K.; Screen, H.; Morgan, H.; David, R.; Beken, S.; Guenat, O.; et al. Organ-on-a-Chip: Current Gaps and Future Directions. Biochem. Soc. Trans. 2022, 50, 665–673. [Google Scholar] [CrossRef]
- An, L.; Liu, Y.; Liu, Y. Organ-on-a-Chip Applications in Microfluidic Platforms. Micromachines 2025, 16, 201. [Google Scholar] [CrossRef]
- Babaliari, E.; Kavatzikidou, P.; Xydias, D.; Psilodimitrakopoulos, S.; Ranella, A.; Stratakis, E. Flow-Induced Shear Stress Combined with Microtopography Inhibits the Differentiation of Neuro-2a Cells. Micromachines 2025, 16, 341. [Google Scholar] [CrossRef]
- Lin, X.; Su, J.; Zhou, S. Microfluidic Chip of Concentration Gradient and Fluid Shear Stress on a Single Cell Level. Chin. Chem. Lett. 2022, 33, 3133–3138. [Google Scholar] [CrossRef]
- Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D Cell Culture to Organs-on-Chips. Trends Cell Biol. 2011, 21, 745–754. [Google Scholar] [CrossRef]
- Azizipour, N.; Avazpour, R.; Rosenzweig, D.H.; Sawan, M.; Ajji, A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Wnorowski, A.; Yang, H.; Wu, J.C. Progress, Obstacles, and Limitations in the Use of Stem Cells in Organ-on-a-Chip Models. Adv. Drug Deliv. Rev. 2019, 140, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Low, L.A.; Mummery, C.; Berridge, B.R.; Austin, C.P.; Tagle, D.A. Organs-on-Chips: Into the next Decade. Nat. Rev. Drug Discov. 2020, 20, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.L.; Urbaczek, A.C.; Zeferino Ribeiro de Souza, F.; Bernal, C.; Rodrigues Perussi, J.; Carrilho, E. Replicating Endothelial Shear Stress in Organ-on-a-Chip for Predictive Hypericin Photodynamic Efficiency. Int. J. Pharm. 2023, 634, 122629. [Google Scholar] [CrossRef]
- Shuchat, S.; Yossifon, G.; Huleihel, M. Perfusion in Organ-on-Chip Models and Its Applicability to the Replication of Spermatogenesis In Vitro. Int. J. Mol. Sci. 2022, 23, 5402. [Google Scholar] [CrossRef]
- Carlos-Oliveira, M.; Lozano-Juan, F.; Occhetta, P.; Visone, R.; Rasponi, M. Current Strategies of Mechanical Stimulation for Maturation of Cardiac Microtissues. Biophys. Rev. 2021, 13, 717–727. [Google Scholar] [CrossRef]
- Schneider, O.; Moruzzi, A.; Fuchs, S.; Grobel, A.; Schulze, H.S.; Mayr, T.; Loskill, P. Fusing Spheroids to Aligned μ-Tissues in a Heart-on-Chip Featuring Oxygen Sensing and Electrical Pacing Capabilities. Mater. Today Bio 2022, 15, 100280. [Google Scholar] [CrossRef]
- Rosser, J.; Bachmann, B.; Jordan, C.; Ribitsch, I.; Haltmayer, E.; Gueltekin, S.; Junttila, S.; Galik, B.; Gyenesei, A.; Haddadi, B.; et al. Microfluidic Nutrient Gradient–Based Three-Dimensional Chondrocyte Culture-on-a-Chip as an in Vitro Equine Arthritis Model. Mater. Today Bio 2019, 4, 100023. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Pan, Y.; Zhou, D.; Liu, Y.; Yin, Y.; Yang, J.; Wang, Y.; Song, Y. Emerging Trends in Organ-on-a-Chip Systems for Drug Screening. Acta Pharm. Sin. B 2023, 13, 2483–2509. [Google Scholar] [CrossRef]
- Ribas, J.; Sadeghi, H.; Manbachi, A.; Leijten, J.; Brinegar, K.; Zhang, Y.S.; Ferreira, L.; Khademhosseini, A. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development. Appl. Vitr. Toxicol. 2016, 2, 82–96. [Google Scholar] [CrossRef]
- Smith, L.; Quelch-Cliffe, R.; Liu, F.; Aguilar, A.H.; Przyborski, S. Evaluating Strategies to Assess the Differentiation Potential of Human Pluripotent Stem Cells: A Review, Analysis and Call for Innovation. Stem Cell Rev. Rep. 2024, 21, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Girisa, S.; Harsha, C. Primary Cell Culture for Organ-on-a-Chip. In Human Organs-on-a-Chip Technology; Academic Press: Cambridge, MA, USA, 2024; pp. 175–197. [Google Scholar] [CrossRef]
- Alam, P.; Maliken, B.D.; Ivey, M.J.; Jones, S.M.; Kanisicak, O. Isolation, Transfection, and Long-Term Culture of Adult Mouse and Rat Cardiomyocytes. J. Vis. Exp. 2020, 2020, e61073. [Google Scholar] [CrossRef]
- Musah, S.; Bhattacharya, R.; Himmelfarb, J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu. Rev. Biomed. Eng. 2024, 26, 383–414. [Google Scholar] [CrossRef] [PubMed]
- Chalak, M.; Hesaraki, M.; Mirbahari, S.N.; Yeganeh, M.; Abdi, S.; Rajabi, S.; Hemmatzadeh, F. Cell Immortality: In Vitro Effective Techniques to Achieve and Investigate Its Applications and Challenges. Life 2024, 14, 417. [Google Scholar] [CrossRef]
- Dalsbecker, P.; Adiels, C.B.; Goksör, M. Liver-on-a-Chip Devices: The Pros and Cons of Complexity. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 323, G188–G204. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Ma, H.; Deng, Y.; Du, J.; Zhao, Y.; Chen, Y. Heart-on-a-Chip: A Revolutionary Organ-on-Chip Platform for Cardiovascular Disease Modeling. J. Transl. Med. 2025, 23, 132. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; et al. A Guide to the Organ-on-a-Chip. Nat. Rev. Methods Primers 2022, 2, 33. [Google Scholar] [CrossRef]
- Sharma, D.; Jia, W.; Chiu, A.; Jang, H.J.; Leonov, V.; Chen, Z.; Zhao, B.; Luo, W.; Tanoto, H.; Zhang, J.; et al. Human IPSC-Derived Cardiac-Specific Extracellular Matrix Scaffolds for Cardiomyocyte Maturation and Post-Myocardial Infarction Repair. Bioact. Mater. 2026, 55, 114–130. [Google Scholar] [CrossRef]
- Chen, T.A.; Zhao, B.B.; Balbin, R.A.; Sharma, S.; Ha, D.; Kamp, T.J.; Zhou, Y.; Zhao, F. Engineering a Robust and Anisotropic Cardiac-Specific Extracellular Matrix Scaffold for Cardiac Patch Tissue Engineering. Matrix Biol. Plus 2024, 23, 100151. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, F.; Fiaschini, N.; Di Nardo, P.; Rinaldi, A. Towards a Material-by-Design Approach to Electrospun Scaffolds for Tissue Engineering Based on Statistical Design of Experiments (DOE). Materials 2023, 16, 1539. [Google Scholar] [CrossRef]
- Carotenuto, F.; Politi, S.; Ul Haq, A.; De Matteis, F.; Tamburri, E.; Terranova, M.L.; Teodori, L.; Pasquo, A.; Di Nardo, P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines 2022, 13, 780. [Google Scholar] [CrossRef]
- Ozcebe, S.G.; Tristan, M.; Zorlutuna, P. Adult Human Heart Extracellular Matrix Improves Human IPSC-CM Function via Mitochondrial and Metabolic Maturation. Stem Cells 2025, 43, sxaf005. [Google Scholar] [CrossRef] [PubMed]
- Goldfracht, I.; Efraim, Y.; Shinnawi, R.; Kovalev, E.; Huber, I.; Gepstein, A.; Arbel, G.; Shaheen, N.; Tiburcy, M.; Zimmermann, W.H.; et al. Engineered Heart Tissue Models from HiPSC-Derived Cardiomyocytes and Cardiac ECM for Disease Modeling and Drug Testing Applications. Acta Biomater. 2019, 92, 145–159. [Google Scholar] [CrossRef]
- Min, S.; Kim, S.; Sim, W.S.; Choi, Y.S.; Joo, H.; Park, J.H.; Lee, S.J.; Kim, H.; Lee, M.J.; Jeong, I.; et al. Versatile Human Cardiac Tissues Engineered with Perfusable Heart Extracellular Microenvironment for Biomedical Applications. Nat. Commun. 2024, 15, 2564. [Google Scholar] [CrossRef]
- Song, M.; Jang, Y.; Kim, S.J.; Park, Y. Cyclic Stretching Induces Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes through Nuclear-Mechanotransduction. Tissue Eng. Regen. Med. 2022, 19, 781–792. [Google Scholar]
- Allen, K.; Pachter, N.; Bandl, A.; Qamar, H.; Ropars, A.; Hookway, T.A. Short-Term Electrical Stimulation Impacts Cardiac Cell Structure and Function. J. Tissue Eng. Regen. Med. 2025, 2025, 3748093. [Google Scholar] [CrossRef]
- LaBarge, W.; Mattappally, S.; Kannappan, R.; Fast, V.G.; Pretorius, D.; Berry, J.L.; Zhang, J. Maturation of Three-Dimensional, HiPSC-Derived Cardiomyocyte Spheroids Utilizing Cyclic, Uniaxial Stretch and Electrical Stimulation. PLoS ONE 2019, 14, e0219442. [Google Scholar] [CrossRef]
- Ruan, J.L.; Tulloch, N.L.; Razumova, M.V.; Saiget, M.; Muskheli, V.; Pabon, L.; Reinecke, H.; Regnier, M.; Murry, C.E. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation 2016, 134, 1557–1567. [Google Scholar] [CrossRef]
- Jain, A.; Choudhury, S.; Sundaresan, N.R.; Chatterjee, K. Essential Role of Anisotropy in Bioengineered Cardiac Tissue Models. Adv. Biol. 2024, 8, 2300197. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Ferguson, M.; Kamp, T.J.; Zhao, F. Constructing Biomimetic Cardiac Tissues: A Review of Scaffold Materials for Engineering Cardiac Patches. Emergent Mater. 2019, 2, 181–191. [Google Scholar] [CrossRef]
- Vunjak-Novakovic, G.; Ronaldson-Bouchard, K.; Radisic, M. Organs-on-a-Chip Models for Biological Research. Cell 2021, 184, 4597–4611. [Google Scholar] [CrossRef]
- Thompson, C.L.; Fu, S.; Knight, M.M.; Thorpe, S.D. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front. Bioeng. Biotechnol. 2020, 8, 602646. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-Chip: Recent Breakthroughs and Future Prospects. Biomed. Eng. OnLine 2020, 19, 9. [Google Scholar] [CrossRef]
- Lim, S.; Kim, S.W.; Kim, I.K.; Song, B.W.; Lee, S. Organ-on-a-Chip: Its Use in Cardiovascular Research. Clin. Hemorheol. Microcirc. 2023, 83, 315–339. [Google Scholar] [CrossRef] [PubMed]
- Farhang Doost, N.; Srivastava, S.K. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. Biosensors 2024, 14, 225. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xiao, Z.; Lv, X.; Zhang, T.; Liu, H. Fabrication and Biomedical Applications of Heart-on-a-Chip. Int. J. Bioprint 2021, 7, 370. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Han, K.; Cao, H.; Huang, X.; Li, X.; Mao, M.; Zhu, H.; Cai, H.; Li, D.; He, J. Heart-on-a-Chip Systems with Tissue-Specific Functionalities for Physiological, Pathological, and Pharmacological Studies. Mater. Today Bio 2024, 24, 100914. [Google Scholar] [CrossRef]
- Cho, K.W.; Lee, W.H.; Kim, B.S.; Kim, D.H. Sensors in Heart-on-a-Chip: A Review on Recent Progress. Talanta 2020, 219, 121269. [Google Scholar] [CrossRef]
- Ellis, B.W.; Acun, A.; Isik Can, U.; Zorlutuna, P. Human IPSC-Derived Myocardium-on-Chip with Capillary-like Flow for Personalized Medicine. Biomicrofluidics 2017, 11, 024105. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Tian, F.; Miao, X.; Wu, D.; Wang, Y.; Wang, H.; You, K.; Li, Q.; Zhao, S.; Wang, W. Heart-on-a-Chip Using Human IPSC-Derived Cardiomyocytes with an Integrated Vascular Endothelial Layer Based on a Culture Patch as a Potential Platform for Drug Evaluation. Biofabrication 2023, 15, 015010. [Google Scholar] [CrossRef]
- Veldhuizen, J.; Chavan, R.; Moghadas, B.; Park, J.G.; Kodibagkar, V.D.; Migrino, R.Q.; Nikkhah, M. Cardiac Ischemia On-a-Chip to Investigate Cellular and Molecular Response of Myocardial Tissue under Hypoxia. Biomaterials 2022, 281, 121336. [Google Scholar] [CrossRef]
- Gaballah, M.; Penttinen, K.; Kreutzer, J.; Mäki, A.J.; Kallio, P.; Aalto-Setälä, K. Cardiac Ischemia On-a-Chip: Antiarrhythmic Effect of Levosimendan on Ischemic Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2022, 11, 1045. [Google Scholar] [CrossRef]
- Mastikhina, O.; Moon, B.U.; Williams, K.; Hatkar, R.; Gustafson, D.; Mourad, O.; Sun, X.; Koo, M.; Lam, A.Y.L.; Sun, Y.; et al. Human Cardiac Fibrosis-on-a-Chip Model Recapitulates Disease Hallmarks and Can Serve as a Platform for Drug Testing. Biomaterials 2020, 233, 119741. [Google Scholar] [CrossRef]
- Kong, M.; Lee, J.; Yazdi, I.K.; Miri, A.K.; Lin, Y.D.; Seo, J.; Zhang, Y.S.; Khademhosseini, A.; Shin, S.R. Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Adv. Healthc. Mater. 2019, 8, e1801146. [Google Scholar] [CrossRef]
- Horton, R.E.; Yadid, M.; McCain, M.L.; Sheehy, S.P.; Pasqualini, F.S.; Park, S.J.; Cho, A.; Campbell, P.; Parker, K.K. Angiotensin II Induced Cardiac Dysfunction on a Chip. PLoS ONE 2016, 11, e0146415. [Google Scholar] [CrossRef]
- Dinani, R.; Manders, E.; Helmes, M.; Wang, L.; Knollmann, B.; Kuster, D.W.D.; van der Velden, J. Real-Time Measurements of Calcium and Contractility Parameters in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J. Vis. Exp. 2023, 2023, e65326. [Google Scholar] [CrossRef]
- Tirgar, P.; Vikstrom, A.; Sepúlveda, J.M.R.; Srivastava, L.K.; Amini, A.; Tabata, T.; Higo, S.; Bub, G.; Ehrlicher, A. Heart-on-a-Miniscope: A Miniaturized Solution for Electrophysiological Drug Screening in Cardiac Organoids. Small 2024, 21, 2409571. [Google Scholar] [CrossRef] [PubMed]
- Hawey, C.; Bourque, K.; Alim, K.; Derish, I.; Rody, E.; Khan, K.; Gendron, N.; Cecere, R.; Giannetti, N.; Hébert, T.E. Measuring Single-Cell Calcium Dynamics Using a Myofilament-Localized Optical Biosensor in HiPSC-CMs Derived from DCM Patients. Cells 2023, 12, 2526. [Google Scholar] [CrossRef]
- Takaki, T.; Tamura, N.; Imahashi, K.; Nishimoto, T.; Yoshida, Y. Simultaneous Optical Recording of Action Potentials and Calcium Transients in Cardiac Single Cells Differentiated from Type 1 CPVT-IPS Cells. Front. Physiol. 2025, 16, 1579815. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, L.; Qiao, L. Recent Developments in Organ-on-a-Chip Technology for Cardiovascular Disease Research. Anal. Bioanal. Chem. 2023, 415, 3911–3925. [Google Scholar] [CrossRef] [PubMed]
- Kitani, T.; Ong, S.G.; Lam, C.K.; Rhee, J.W.; Zhang, J.Z.; Oikonomopoulos, A.; Ma, N.; Tian, L.; Lee, J.; Telli, M.L.; et al. Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients with Breast Cancer. Circulation 2019, 139, 2451–2465. [Google Scholar] [CrossRef] [PubMed]
- Christidi, E.; Huang, H.; Shafaattalab, S.; Maillet, A.; Lin, E.; Huang, K.; Laksman, Z.; Davis, M.K.; Tibbits, G.F.; Brunham, L.R. Variation in RARG Increases Susceptibility to Doxorubicin-Induced Cardiotoxicity in Patient Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Sci. Rep. 2020, 10, 10363. [Google Scholar] [CrossRef]
- Park, Y.G.; Park, N.K.; Lee, Y.; Pramudito, M.A.; Son, Y.J.; Park, H.; Qauli, A.I.; Choi, S.W.; Ban, K.; Choi, J.-I.; et al. A machine learning platform for genotype-specific cardiotoxicity risk prediction using patient-derived iPSC-CMs. J. Adv. Res. 2025, in press. [Google Scholar] [CrossRef]
- Ingber, D.E. Human Organs-on-Chips for Disease Modelling, Drug Development and Personalized Medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bolonduro, O.A.; Hu, N.; Ju, J.; Rao, A.A.; Duffy, B.M.; Huang, Z.; Black, L.D.; Timko, B.P. Heart-on-a-Chip Model with Integrated Extra- And Intracellular Bioelectronics for Monitoring Cardiac Electrophysiology under Acute Hypoxia. Nano Lett. 2020, 20, 2585–2593. [Google Scholar] [CrossRef]
- Li, Z.; Hui, J.; Yang, P.; Mao, H. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development. Biosensors 2022, 12, 370. [Google Scholar] [CrossRef]
- Burnett, S.D.; Blanchette, A.D.; Chiu, W.A.; Rusyn, I. Human Induced Pluripotent Stem Cell (IPSC)-Derived Cardiomyocytes as an in Vitro Model in Toxicology: Strengths and Weaknesses for Hazard Identification and Risk Characterization. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 887–902. [Google Scholar] [CrossRef]
- Funakoshi, S.; Yoshida, Y. Recent Progress of IPSC Technology in Cardiac Diseases. Arch. Toxicol. 2021, 95, 3633–3650. [Google Scholar] [CrossRef]
- Mugaanyi, J.; Huang, J.; Fang, J.; Musinguzi, A.; Lu, C.; Chen, Z. Developments and Applications of Liver-on-a-Chip Technology—Current Status and Future Prospects. Biomedicines 2025, 13, 1272. [Google Scholar] [CrossRef]
- Stucki, A.O.; Stucki, J.D.; Hall, S.R.R.; Felder, M.; Mermoud, Y.; Schmid, R.A.; Geiser, T.; Guenat, O.T. A Lung-on-a-Chip Array with an Integrated Bio-Inspired Respiration Mechanism. Lab. Chip 2015, 15, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.A.P.; Sherfey, J.; Ohri, S.; Nichols, L.; Smith, J.T.; Parekh, P.; Kadar, E.P.; Clark, F.; George, B.T.; Gregory, L.; et al. A Novel Milli-Fluidic Liver Tissue Chip with Continuous Recirculation for Predictive Pharmacokinetics Applications. AAPS J. 2023, 25, 102. [Google Scholar] [CrossRef]
- Sung, J.H. Pharmacokinetic-Based Multi-Organ Chip for Recapitulating Organ Interactions. Methods Cell Biol. 2018, 146, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Li, C.; Cao, J.; Cui, Z.; Du, J.; Fu, Z.; Yang, H.; Chen, P. Organ-on-a-Chip Meets Artificial Intelligence in Drug Evaluation. Theranostics 2023, 13, 4526. [Google Scholar] [CrossRef]
- Herland, A.; Maoz, B.M.; Das, D.; Somayaji, M.R.; Prantil-Baun, R.; Novak, R.; Cronce, M.; Huffstater, T.; Jeanty, S.S.F.; Ingram, M.; et al. Quantitative Prediction of Human Pharmacokinetic Responses to Drugs via Fluidically Coupled Vascularized Organ Chips. Nat. Biomed. Eng. 2020, 4, 421–436. [Google Scholar] [CrossRef]
- Vasconez Martinez, M.G.; Frauenlob, M.; Rothbauer, M. An Update on Microfluidic Multi-Organ-on-a-Chip Systems for Reproducing Drug Pharmacokinetics: The Current State-of-the-Art. Expert. Opin. Drug Metab. Toxicol. 2024, 20, 459–471. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Wang, L.; Xu, S.; Fang, G.; Guo, X.; Chen, Z.; Gu, Z. PBPK Modeling on Organs-on-Chips: An Overview of Recent Advancements. Front. Bioeng. Biotechnol. 2022, 10, 900481. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.; Malhi, M.; Zhao, Q.; Wang, L.; Huang, Z.; Law, J.; Liu, N.; Simmons, C.A.; Maynes, J.T.; Sun, Y. Microengineered Platforms for Characterizing the Contractile Function of in Vitro Cardiac Models. Microsyst. Nanoeng. 2022, 8, 26. [Google Scholar] [CrossRef]
- Soltantabar, P.; Calubaquib, E.L.; Mostafavi, E.; Ghazavi, A.; Stefan, M.C. Heart/Liver-on-a-Chip as a Model for the Evaluation of Cardiotoxicity Induced by Chemotherapies. Organs-A-Chip 2021, 3, 100008. [Google Scholar] [CrossRef]
- Andrysiak, K.; Stępniewski, J.; Dulak, J. Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes, 3D Cardiac Structures, and Heart-on-a-Chip as Tools for Drug Research. Pflug. Arch. 2021, 473, 1061. [Google Scholar] [CrossRef]
- Mehta, V.; Karnam, G.; Madgula, V. Liver-on-Chips for Drug Discovery and Development. Mater. Today Bio 2024, 27, 101143. [Google Scholar] [CrossRef] [PubMed]
- Lee-Montiel, F.T.; Laemmle, A.; Charwat, V.; Dumont, L.; Lee, C.S.; Huebsch, N.; Okochi, H.; Hancock, M.J.; Siemons, B.; Boggess, S.C.; et al. Integrated Isogenic Human Induced Pluripotent Stem Cell–Based Liver and Heart Microphysiological Systems Predict Unsafe Drug–Drug Interaction. Front. Pharmacol. 2021, 12, 667010. [Google Scholar] [CrossRef]
- Ewart, L.; Apostolou, A.; Briggs, S.A.; Carman, C.V.; Chaff, J.T.; Heng, A.R.; Jadalannagari, S.; Janardhanan, J.; Jang, K.J.; Joshipura, S.R.; et al. Performance Assessment and Economic Analysis of a Human Liver-Chip for Predictive Toxicology. Commun. Med. 2022, 2, 154. [Google Scholar] [CrossRef]
- Shrestha, J.; Razavi Bazaz, S.; Aboulkheyr Es, H.; Yaghobian Azari, D.; Thierry, B.; Ebrahimi Warkiani, M.; Ghadiri, M. Lung-on-a-Chip: The Future of Respiratory Disease Models and Pharmacological Studies. Crit. Rev. Biotechnol. 2020, 40, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Huh, D. A Human Breathing Lung-on-a-Chip. Ann. Am. Thorac. Soc. 2015, 12, S42–S44. [Google Scholar] [CrossRef]
- Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.; Hamilton, G.A.; Thorneloe, K.S.; McAlexander, M.A.; Ingber, D.E. A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Sci. Transl. Med. 2012, 4, 159ra147. [Google Scholar] [CrossRef]
- Petit, I.; Faucher, Q.; Bernard, J.S.; Giunchi, P.; Humeau, A.; Sauvage, F.L.; Marquet, P.; Védrenne, N.; Di Meo, F. Proximal Tubule-on-Chip as a Model for Predicting Cation Transport and Drug Transporter Dynamics. Sci. Rep. 2025, 15, 2580. [Google Scholar] [CrossRef]
- Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective. Physiol. Rev. 2015, 95, 83. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.P.; Zhang, J.; Nguyen, N.T.; Ta, H.T. Microfluidic Gut-on-a-Chip: Fundamentals and Challenges. Biosensors 2023, 13, 136. [Google Scholar] [CrossRef]
- Kim, H.J.; Huh, D.; Hamilton, G.; Ingber, D.E. Human Gut-on-a-Chip Inhabited by Microbial Flora That Experiences Intestinal Peristalsis-like Motions and Flow. Lab. Chip 2012, 12, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Kann, S.H.; Shaughnessey, E.M.; Coppeta, J.R.; Azizgolshani, H.; Isenberg, B.C.; Vedula, E.M.; Zhang, X.; Charest, J.L. Measurement of Oxygen Consumption Rates of Human Renal Proximal Tubule Cells in an Array of Organ-on-Chip Devices to Monitor Drug-Induced Metabolic Shifts. Microsyst. Nanoeng. 2022, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Palma-Florez, S.; López-Canosa, A.; Moralez-Zavala, F.; Castaño, O.; Kogan, M.J.; Samitier, J.; Lagunas, A.; Mir, M. BBB-on-a-Chip with Integrated Micro-TEER for Permeability Evaluation of Multi-Functionalized Gold Nanorods against Alzheimer’s Disease. J. Nanobiotechnol. 2023, 21, 115. [Google Scholar] [CrossRef]
- Prasanna, P.; Rathee, S.; Rahul, V.; Mandal, D.; Goud, M.S.C.; Yadav, P.; Hawthorne, S.; Sharma, A.; Gupta, P.K.; Ojha, S.; et al. Microfluidic Platforms to Unravel Mysteries of Alzheimer’s Disease: How Far Have We Come? Life 2021, 11, 1022. [Google Scholar] [CrossRef] [PubMed]
- Miny, L.; Rontard, J.; Allouche, A.; Violle, N.; Dubuisson, L.; Batut, A.; Ponomarenko, A.; Talbi, R.; Gautier, H.; Maisonneuve, B.G.C.; et al. Functional Discrimination of CSF from Alzheimer’s Patients in a Brain on Chip Platform. Sci. Rep. 2025, 15, 29738. [Google Scholar] [CrossRef]
- Shirure, V.S.; George, S.C. Design Considerations to Minimize the Impact of Drug Absorption in Polymer-Based Organ-on-a-Chip Platforms. Lab. Chip 2017, 17, 681–690. [Google Scholar] [CrossRef]
- Kieda, J.; Shakeri, A.; Landau, S.; Wang, E.Y.; Zhao, Y.; Lai, B.F.; Okhovatian, S.; Wang, Y.; Jiang, R.; Radisic, M. Advances in Cardiac Tissue Engineering and Heart-on-a-Chip. J. Biomed. Mater. Res. A 2024, 112, 492–511. [Google Scholar] [CrossRef]
- Agarwal, A.; Goss, J.A.; Cho, A.; McCain, M.L.; Parker, K.K. Microfluidic Heart on a Chip for Higher Throughput Pharmacological Studies. Lab. Chip 2013, 13, 3599–3608. [Google Scholar] [CrossRef]
- Nahak, B.K.; Mishra, A.; Preetam, S.; Tiwari, A. Advances in Organ-on-a-Chip Materials and Devices. ACS Appl. Bio Mater. 2022, 5, 3576–3607. [Google Scholar] [CrossRef]
- Batalov, I.; Jallerat, Q.; Kim, S.; Bliley, J.; Feinberg, A.W. Engineering Aligned Human Cardiac Muscle Using Developmentally Inspired Fibronectin Micropatterns. Sci. Rep. 2021, 11, 11502. [Google Scholar] [CrossRef]
- Natarajan, A.; Stancescu, M.; Dhir, V.; Armstrong, C.; Sommerhage, F.; Hickman, J.J.; Molnar, P. Patterned Cardiomyocytes on Microelectrode Arrays as a Functional, High Information Content Drug Screening Platform. Biomaterials 2011, 32, 4267–4274. [Google Scholar] [CrossRef]
- Llucià-Valldeperas, A.; Bragós, R.; Bayés-Genís, A. Simultaneous Electrical and Mechanical Stimulation to Enhance Cells’ Cardiomyogenic Potential. J. Vis. Exp. 2019, 2019, e58934. [Google Scholar] [CrossRef] [PubMed]
- Stoppel, W.L.; Kaplan, D.L.; Black, L.D. Electrical and Mechanical Stimulation of Cardiac Cells and Tissue Constructs. Adv. Drug Deliv. Rev. 2015, 96, 135. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, P.; O’Leary, G.; Zhao, Y.; Xu, Y.; Rafatian, N.; Okhovatian, S.; Landau, S.; Valiante, T.A.; Travas-Sejdic, J.; et al. Flexible 3D Printed Microwires and 3D Microelectrodes for Heart-on-a-Chip Engineering. Biofabrication 2023, 15, 035023. [Google Scholar] [CrossRef]
- Dornhof, J.; Kieninger, J.; Muralidharan, H.; Maurer, J.; Urban, G.A.; Weltin, A. Microfluidic Organ-on-Chip System for Multi-Analyte Monitoring of Metabolites in 3D Cell Cultures. Lab. Chip 2022, 22, 225–239. [Google Scholar] [CrossRef]
- Fuchs, S.; Johansson, S.; Tjell, A.; Werr, G.; Mayr, T.; Tenje, M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater. Sci. Eng. 2021, 7, 2926. [Google Scholar] [CrossRef]
- Kanade, P.P.; Oyunbaatar, N.E.; Shanmugasundaram, A.; Jeong, Y.J.; Kim, E.S.; Lee, B.K.; Lee, D.W. MEA-Integrated Cantilever Platform for Comparison of Real-Time Change in Electrophysiology and Contractility of Cardiomyocytes to Drugs. Biosens. Bioelectron. 2022, 216, 114675. [Google Scholar] [CrossRef]
- Sakamiya, M.; Fang, Y.; Mo, X.; Shen, J.; Zhang, T. A Heart-on-a-Chip Platform for Online Monitoring of Contractile Behavior via Digital Image Processing and Piezoelectric Sensing Technique. Med. Eng. Phys. 2020, 75, 36–44. [Google Scholar] [CrossRef]
- Xu, F.; Jin, H.; Liu, L.; Yang, Y.; Cen, J.; Wu, Y.; Chen, S.; Sun, D. Architecture Design and Advanced Manufacturing of Heart-on-a-Chip: Scaffolds, Stimulation and Sensors. Microsyst. Nanoeng. 2024, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mandal, K.; Hernandez, A.L.; Kawakita, S.; Huang, W.; Bandaru, P.; Ahadian, S.; Kim, H.J.; Jucaud, V.; Dokmeci, M.R.; et al. State of the Art in Integrated Biosensors for Organ-on-a-Chip Applications. Curr. Opin. Biomed. Eng. 2021, 19, 100309. [Google Scholar] [CrossRef]
- Campu, A.; Muresan, I.; Potara, M.; Lazar, D.R.; Lazar, F.L.; Cainap, S.; Olinic, D.M.; Maniu, D.; Astilean, S.; Focsan, M. Portable Microfluidic Plasmonic Chip for Fast Real-Time Cardiac Troponin I Biomarker Thermoplasmonic Detection. J. Mater. Chem. B 2024, 12, 962–972. [Google Scholar] [CrossRef]
- Maiullari, F.; Costantini, M.; Milan, M.; Pace, V.; Chirivì, M.; Maiullari, S.; Rainer, A.; Baci, D.; Marei, H.E.S.; Seliktar, D.; et al. A Multi-Cellular 3D Bioprinting Approach for Vascularized Heart Tissue Engineering Based on HUVECs and IPSC-Derived Cardiomyocytes. Sci. Rep. 2018, 8, 13532. [Google Scholar] [CrossRef]
- Puluca, N.; Lee, S.; Doppler, S.; Münsterer, A.; Dreßen, M.; Krane, M.; Wu, S.M. Bioprinting Approaches to Engineering Vascularized 3D Cardiac Tissues. Curr. Cardiol. Rep. 2019, 21, 90. [Google Scholar] [CrossRef]
- Jang, J.; Kim, H.J. 3D Bioprinting and In Vitro Cardiovascular Tissue Modeling. Bioengineering 2017, 4, 71. [Google Scholar] [CrossRef]
- Materne, E.M.; Maschmeyer, I.; Lorenz, A.K.; Horland, R.; Schimek, K.M.S.; Busek, M.; Sonntag, F.; Lauster, R.; Marx, U. The Multi-Organ Chip—A Microfluidic Platform for Long-Term Multi-Tissue Coculture. J. Vis. Exp. 2015, 2015, 52526. [Google Scholar] [CrossRef]
- Lee, S.H.; Sung, J.H. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv. Healthc. Mater. 2018, 7, 1700419. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, H.N. From Single- to Multi-Organ-on-a-Chip System for Studying Metabolic Diseases. Biochip J. 2023, 17, 133–146. [Google Scholar] [CrossRef]
- Oleaga, C.; Riu, A.; Rothemund, S.; Lavado, A.; McAleer, C.W.; Long, C.J.; Persaud, K.; Narasimhan, N.S.; Tran, M.; Roles, J.; et al. Investigation of the Effect of Hepatic Metabolism on Off-Target Cardiotoxicity in a Multi-Organ Human-on-a-Chip System. Biomaterials 2018, 182, 176–190. [Google Scholar] [CrossRef]
- Maschmeyer, I.; Lorenz, A.K.; Schimek, K.; Hasenberg, T.; Ramme, A.P.; Hübner, J.; Lindner, M.; Drewell, C.; Bauer, S.; Thomas, A.; et al. A Four-Organ-Chip for Interconnected Long-Term Co-Culture of Human Intestine, Liver, Skin and Kidney Equivalents. Lab. Chip 2015, 15, 2688–2699. [Google Scholar] [CrossRef] [PubMed]
- Review, T.; Li, R.; Loc, /; Butler, D.; Reyes, D.R. Heart-on-a-Chip Systems: Disease Modeling and Drug Screening Applications. Lab. Chip 2024, 24, 1494–1528. [Google Scholar] [CrossRef]
- Gabbin, B.; Meraviglia, V.; Angenent, M.L.; Ward-van Oostwaard, D.; Sol, W.; Mummery, C.L.; Rabelink, T.J.; van Meer, B.J.; van den Berg, C.W.; Bellin, M. Heart and Kidney Organoids Maintain Organ-Specific Function in a Microfluidic System. Mater. Today Bio 2023, 23, 100818. [Google Scholar] [CrossRef]
- Cong, Y.; Han, X.; Wang, Y.; Chen, Z.; Lu, Y.; Liu, T.; Wu, Z.; Jin, Y.; Luo, Y.; Zhang, X. Drug Toxicity Evaluation Based on Organ-on-a-Chip Technology: A Review. Micromachines 2020, 11, 381. [Google Scholar] [CrossRef]
- Gao, X.; Wang, T.; Huang, W.; Liu, C.; Zhang, Z.; Deng, Y.; Huang, J. Multi-Organ-on-a-Chip: Modeling Strategy, Method, and Biomedical Applications. Biomicrofluidics 2025, 19, 41503. [Google Scholar]
- Arakawa, H.; Sugiura, S.; Kawanishi, T.; Shin, K.; Toyoda, H.; Satoh, T.; Sakai, Y.; Kanamori, T.; Kato, Y. Kinetic Analysis of Sequential Metabolism of Triazolam and Its Extrapolation to Humans Using an Entero-Hepatic Two-Organ Microphysiological System. Lab. Chip 2020, 20, 537–547. [Google Scholar] [CrossRef]
- Lee, J.; Mehrotra, S.; Zare-Eelanjegh, E.; Rodrigues, R.O.; Akbarinejad, A.; Ge, D.; Amato, L.; Kiaee, K.; Fang, Y.C.; Rosenkranz, A.; et al. A Heart-Breast Cancer-on-a-Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. Small 2021, 17, 2004258. [Google Scholar] [CrossRef] [PubMed]
- Chramiec, A.; Teles, D.; Yeager, K.; Marturano-Kruik, A.; Pak, J.; Chen, T.; Hao, L.; Wang, M.; Lock, R.; Tavakol, D.N.; et al. Integrated Human Organ-on-a-Chip Model for Predictive Studies of Anti-Tumor Drug Efficacy and Cardiac Safety. Lab. Chip 2020, 20, 4357–4372. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H. Multi-Organ-on-a-Chip for Pharmacokinetics and Toxicokinetic Study of Drugs. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 969–986. [Google Scholar] [CrossRef]
- Shroff, T.; Aina, K.; Maass, C.; Cipriano, M.; Lambrecht, J.; Tacke, F.; Mosig, A.; Loskill, P. Studying Metabolism with Multi-Organ Chips: New Tools for Disease Modelling, Pharmacokinetics and Pharmacodynamics. Open Biol. 2022, 12, 210333. [Google Scholar] [CrossRef]
- Wu, K.; He, X.; Wang, J.; Pan, T.; He, R.; Kong, F.; Cao, Z.; Ju, F.; Huang, Z.; Nie, L. Recent Progress of Microfluidic Chips in Immunoassay. Front. Bioeng. Biotechnol. 2022, 10, 1112327. [Google Scholar] [CrossRef]
- Zhou, W.M.; Yan, Y.Y.; Guo, Q.R.; Ji, H.; Wang, H.; Xu, T.T.; Makabel, B.; Pilarsky, C.; He, G.; Yu, X.Y.; et al. Microfluidics applications for high-throughput single cell sequencing. J. Nanobiotechnol. 2021, 19, 312. [Google Scholar] [CrossRef]
- Erb, A.; Vetter, J.; Steinmann, J.; Blaeser, A.; Stark, R.W. Interdiffusion in Microfluidic Interface Rotation between Two Laminarly Flowing Liquids of Different Densities. Phys. Fluids 2025, 37, 33613. [Google Scholar] [CrossRef]
- Ouro-Koura, H.; Ogunmolasuyi, A.; Suleiman, O.; Omodia, I.; Easter, J.; Roye, Y.; Das, K.S. Boundary Condition Induced Passive Chaotic Mixing in Straight Microchannels. Phys. Fluids 2022, 34, 051703. [Google Scholar] [CrossRef]
- Hassan, S.U.; Tariq, A.; Noreen, Z.; Donia, A.; Zaidi, S.Z.J.; Bokhari, H.; Zhang, X. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Diagnostics 2020, 10, 509. [Google Scholar] [CrossRef] [PubMed]
- Narayanamurthy, V.; Jeroish, Z.E.; Bhuvaneshwari, K.S.; Bayat, P.; Premkumar, R.; Samsuri, F.; Yusoff, M.M. Advances in Passively Driven Microfluidics and Lab-on-Chip Devices: A Comprehensive Literature Review and Patent Analysis. RSC Adv. 2020, 10, 11652–11680. [Google Scholar] [CrossRef]
- Alizadeh, A.; Hsu, W.L.; Wang, M.; Daiguji, H. Electroosmotic Flow: From Microfluidics to Nanofluidics. Electrophoresis 2021, 42, 834–868. [Google Scholar] [CrossRef]
- Escandón, J.P.; Torres, D.A.; Hernández, C.G.; Gómez, J.R.; Vargas, R.O. Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel. Colloids Interfaces 2022, 6, 60. [Google Scholar] [CrossRef]
- Ducloué, L.; Haque, M.A.; Goral, M.; Ilyas, M.; Gong, J.P.; Lindner, A. Color-Switching Hydrogels as Integrated Microfluidic Pressure Sensors. Sci. Rep. 2024, 14, 6333. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, A.; Brodský, J.; Gablech, I.; Lednický, T.; Vopařilová, P.; Zítka, O.; Zeng, W.; Neužil, P. Microfluidics Chips Fabrication Techniques Comparison. Sci. Rep. 2024, 14, 28793. [Google Scholar] [CrossRef]
- Scott, S.M.; Ali, Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Sarkar, T.; Tran, T.; Moinuddin, S.M.; Saha, D.; Ahsan, F. Multilayer Soft Photolithography Fabrication of Microfluidic Devices Using a Custom-Built Wafer-Scale PDMS Slab Aligner and Cost-Efficient Equipment. Micromachines 2022, 13, 1357. [Google Scholar] [CrossRef]
- Xu, J.; Harasek, M.; Gföhler, M. From Soft Lithography to 3D Printing: Current Status and Future of Microfluidic Device Fabrication. Polymers 2025, 17, 455. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.D.; Tresco, P.A.; Yost, C.C.; Gale, B.K. Achieving Biocompatibility and Tailoring Mechanical Properties of SLA 3D Printed Devices for Microfluidic and Cell Culture Applications. Lab. Chip 2024, 24, 4632–4638. [Google Scholar] [CrossRef] [PubMed]
- Ahmadianyazdi, A.; Miller, I.J.; Folch, A. Tunable Resins with PDMS-like Elastic Modulus for Stereolithographic 3D-Printing of Multimaterial Microfluidic Actuators. Lab. Chip 2023, 23, 4019–4032. [Google Scholar] [CrossRef]
- Kriener, K.; Sinclair, K.; Robison, G.; Lala, R.; Finley, H.; Richardson, W.J.; Midwinter, M.J. Investigating the Reliability of Shore Hardness in the Design of Procedural Task Trainers. Bioengineering 2025, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Xu, Q.; Liu, W. An Overview of Substrate Stiffness Guided Cellular Response and Its Applications in Tissue Regeneration. Bioact. Mater. 2022, 15, 82–102. [Google Scholar] [CrossRef]
- Ribeiro, A.J.S.; Ang, Y.S.; Fu, J.D.; Rivas, R.N.; Mohamed, T.M.A.; Higgs, G.C.; Srivastava, D.; Pruitt, B.L. Contractility of Single Cardiomyocytes Differentiated from Pluripotent Stem Cells Depends on Physiological Shape and Substrate Stiffness. Proc. Natl. Acad. Sci. USA 2015, 112, 12705–12710. [Google Scholar] [CrossRef]
- Mai, Z.; Lin, Y.; Lin, P.; Zhao, X.; Cui, L. Modulating Extracellular Matrix Stiffness: A Strategic Approach to Boost Cancer Immunotherapy. Cell Death Dis. 2024, 15, 307. [Google Scholar] [CrossRef]
- Querceto, S.; Santoro, R.; Gowran, A.; Grandinetti, B.; Pompilio, G.; Regnier, M.; Tesi, C.; Poggesi, C.; Ferrantini, C.; Pioner, J.M. The Harder the Climb the Better the View: The Impact of Substrate Stiffness on Cardiomyocyte Fate. J. Mol. Cell Cardiol. 2022, 166, 36–49. [Google Scholar] [CrossRef]
- Körner, A.; Mosqueira, M.; Hecker, M.; Ullrich, N.D. Substrate Stiffness Influences Structural and Functional Remodeling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front. Physiol. 2021, 12, 710619. [Google Scholar] [CrossRef]
- Chin, I.L.; Amos, S.E.; Jeong, J.H.; Hool, L.; Hwang, Y.; Choi, Y.S. Mechanosensation Mediates Volume Adaptation of Cardiac Cells and Spheroids in 3D. Mater. Today Bio 2022, 16, 100391. [Google Scholar] [CrossRef]
- Iturri, J.; Miholich, J.; Zemljic, S.; Andorfer-Sarr, A.; Benitez, R.; Toca-Herrera, J.L. The Stiffness of Elastomeric Surfaces Influences the Mechanical Properties of Endothelial Cells. arXiv 2022. [Google Scholar] [CrossRef]
- Marazzi, D.; Trovalusci, F.; Di Nardo, P.; Carotenuto, F. Three-Dimensional Printed Biomimetic Elastomeric Scaffolds: Experimental Study of Surface Roughness and Pore Generation. Biomimetics 2025, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, R.; Shao, N.; Zhao, Y. Developing 3D Bioprinting for Organs-on-Chips. Lab. Chip 2025, 25, 1081–1096. [Google Scholar] [CrossRef]
- Shafique, H.; Karamzadeh, V.; Kim, G.; Shen, M.L.; Morocz, Y.; Sohrabi-Kashani, A.; Juncker, D. High-Resolution Low-Cost LCD 3D Printing for Microfluidics and Organ-on-a-Chip Devices. Lab. Chip 2024, 24, 2774–2790. [Google Scholar] [CrossRef]
- Leong, K.M.; Sun, A.Y.; Quach, M.L.; Lin, C.H.; Craig, C.A.; Guo, F.; Robinson, T.R.; Chang, M.M.; Olanrewaju, A.O. Democratizing Access to Microfluidics: Rapid Prototyping of Open Microchannels with Low-Cost LCD 3D Printers. ACS Omega 2024, 9, 45537–45544. [Google Scholar] [CrossRef] [PubMed]
- Doloi, S.; Das, M.; Li, Y.; Cho, Z.H.; Xiao, X.; Hanna, J.V.; Osvaldo, M.; Ng Wei Tat, L. Democratizing Self-Driving Labs: Advances in Low-Cost 3D Printing for Laboratory Automation. Digit. Discov. 2025, 4, 1685–1721. [Google Scholar] [CrossRef]
- Calabretta, M.M.; Zangheri, M.; Calabria, D.; Lopreside, A.; Montali, L.; Marchegiani, E.; Trozzi, I.; Guardigli, M.; Mirasoli, M.; Michelini, E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. Sensors 2021, 21, 4309. [Google Scholar] [CrossRef]
- Zhou, P.; He, H.; Ma, H.; Wang, S.; Hu, S. A Review of Optical Imaging Technologies for Microfluidics. Micromachines 2022, 13, 274. [Google Scholar] [CrossRef]
- Măriuţa, D.; Colin, S.; Barrot-Lattes, C.; Le Calvé, S.; Korvink, J.G.; Baldas, L.; Brandner, J.J. Miniaturization of Fluorescence Sensing in Optofluidic Devices. Microfluid. Nanofluid. 2020, 24, 65. [Google Scholar] [CrossRef]
- Lyu, C.; Yang, D.; Xu, X.; Cai, Y.; Liang, B.; Zhou, C.; Ye, X.; Wang, J. A Compact Automated Magnetic Digital Microfluidic Chemiluminescence Immunoassay System for Rapid and Sensitive Detection of Protein Biomarkers. Lab. Chip 2025, 25, 6202–6214. [Google Scholar] [CrossRef]
- Demello, A.J. ACS Sensors from a Microfluidics Perspective. ACS Sens. 2020, 5, 3650–3651. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Wu, T.; Lin, C.; Xie, L.; Chen, Q. Advanced Luminescence Nanoprobes for Microfluidic Paper-Based Point-of-Care Assays: A Review. TrAC Trends Anal. Chem. 2024, 176, 117737. [Google Scholar] [CrossRef]
- Shin, S.R.; Zhang, Y.S.; Kim, D.J.; Manbohi, A.; Avci, H.; Silvestri, A.; Aleman, J.; Hu, N.; Kilic, T.; Keung, W.; et al. Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Anal. Chem. 2016, 88, 10019–10027. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Xu, C. All-Printed Microfluidic–Electrochemical Devices for Glucose Detection. Biosensors 2024, 14, 569. [Google Scholar] [CrossRef] [PubMed]
- Umme, S.; Siciliano, G.; Primiceri, E.; Turco, A.; Tarantini, I.; Ferrara, F.; Chiriacò, M.S. Electrochemical Sensors for Liquid Biopsy and Their Integration into Lab-on-Chip Platforms: Revolutionizing the Approach to Diseases. Chemosensors 2023, 11, 517. [Google Scholar] [CrossRef]
- Hadavi, D.; Tosheva, I.; Siegel, T.P.; Cuypers, E.; Honing, M. Technological Advances for Analyzing the Content of Organ-on-a-Chip by Mass Spectrometry. Front. Bioeng. Biotechnol. 2023, 11, 1197760. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, M.; Xu, D. Integrated Microfluidic Chip Coupled to Mass Spectrometry: A Minireview of Chip Pretreatment Methods and Applications. J. Chromatogr. Open 2021, 1, 100021. [Google Scholar] [CrossRef]
- Wang, X.; Yi, L.; Mukhitov, N.; Schrell, A.M.; Dhumpa, R.; Roper, M.G. Microfluidics-to-Mass Spectrometry: A Review of Coupling Methods and Applications. J. Chromatogr. A 2015, 1382, 98–116. [Google Scholar] [CrossRef] [PubMed]
- Kogler, S.; Kømurcu, K.S.; Olsen, C.; Shoji, J.Y.; Skottvoll, F.S.; Krauss, S.; Wilson, S.R.; Røberg-Larsen, H. Organoids, Organ-on-a-Chip, Separation Science and Mass Spectrometry: An Update. TrAC Trends Anal. Chem. 2023, 161, 116996. [Google Scholar] [CrossRef]
- Ha, N.S.; Onley, J.R.; Deng, K.; Andeer, P.; Bowen, B.P.; Gupta, K.; Kim, P.W.; Kuch, N.; Kutschke, M.; Parker, A.; et al. A Combinatorial Droplet Microfluidic Device Integrated with Mass Spectrometry for Enzyme Screening. Lab. Chip 2023, 23, 3361–3369. [Google Scholar] [CrossRef]
- Tang, D.; Li, P.; Qi, S.; Wu, Q.; Yu, R.; Liu, M.; Wang, Z. Point-of-Care Analysis for Foodborne Pathogens in Food Samples Based on a Fully Enclosed Microfluidic Chip Cartridge. Lab. Chip 2025, 25, 3537–3548. [Google Scholar] [CrossRef]
- Yang, L.; Yi, W.; Sun, F.; Xu, M.; Zeng, Z.; Bi, X.; Dong, J.; Xie, Y.; Li, M. Application of Lab-on-Chip for Detection of Microbial Nucleic Acid in Food and Environment. Front. Microbiol. 2021, 12, 765375. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, L.; Zhang, H.; Shang, L.; Zhao, Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem. Rev. 2021, 121, 7468–7529. [Google Scholar] [CrossRef]
- Yedire, S.G.; Khan, H.; AbdelFatah, T.; Moakhar, R.S.; Mahshid, S. Microfluidic-Based Colorimetric Nucleic Acid Detection of Pathogens. Sens. Diagn. 2023, 2, 763–780. [Google Scholar] [CrossRef]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef] [PubMed]
- Tsui, J.H.; Lee, W.; Pun, S.H.; Kim, J.; Kim, D.H. Microfluidics-Assisted in Vitro Drug Screening and Carrier Production. Adv. Drug Deliv. Rev. 2013, 65, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Jiao, S.; Li, Y.; Zhou, Y.; Zhang, X.; Maryam, B.; Liu, X. Microfluidic Sensors for the Detection of Emerging Contaminants in Water: A Review. Sci. Total Environ. 2024, 929, 172734. [Google Scholar] [CrossRef]
- Bhusal, A.; Yogeshwaran, S.; Goodarzi Hosseinabadi, H.; Cecen, B.; Miri, A.K. Microfluidics for High Throughput Screening of Biological Agents and Therapeutics. Biomed. Mater. Devices 2024, 3, 93–107. [Google Scholar] [CrossRef]
- Gurkan, U.A.; Wood, D.K.; Carranza, D.; Herbertson, L.H.; Diamond, S.L.; Du, E.; Guha, S.; Di Paola, J.; Hines, P.C.; Papautsky, I.; et al. Next Generation Microfluidics: Fulfilling the Promise of Lab-on-a-Chip Technologies. Lab. Chip 2024, 24, 1867. [Google Scholar] [CrossRef]
- Rafiq, S.M.; Majumder, R.; Joshi, D.; Dar, A.H.; Dash, K.K.; Pandey, V.K.; Sidiqi, U.S. Lab-on-a-chip device for food quality control and safety. Food Control 2025, 164, 110596. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, Y.; Wang, Z.; Wang, Z.; Xie, J.; Zhai, H.; Huang, Z.; Wang, Y.; Wu, Q.; Ding, Y.; et al. The Recent Advances of High-Throughput Biosensors for Rapid Detection of Foodborne Pathogens. TrAC Trends Anal. Chem. 2024, 176, 117736. [Google Scholar] [CrossRef]
- Ardila, C.M. Advancing Healthcare through Laboratory on a Chip Technology: Transforming Microorganism Identification and Diagnostics. World J. Clin. Cases 2025, 13, 97737. [Google Scholar] [CrossRef]
- Kutluk, H.; Bastounis, E.E.; Constantinou, I.; Kutluk, H.; Constantinou, I.; Bastounis, E.E.; Karls, E. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv. Healthc. Mater. 2023, 12, 2203256. [Google Scholar] [CrossRef] [PubMed]
- Fanizza, F.; Campanile, M.; Forloni, G.; Giordano, C.; Albani, D. Induced Pluripotent Stem Cell-Based Organ-on-a-Chip as Personalized Drug Screening Tools: A Focus on Neurodegenerative Disorders. J. Tissue Eng. 2022, 13, 20417314221095339. [Google Scholar] [CrossRef] [PubMed]
- Kuru, C.İ.; Ulucan-Karnak, F. Lab-on-a-Chip: A Stepping Stone for Personalized Healthcare Management. In Lab-on-a-Chip Devices for Advanced Biomedicines: Laboratory Scale Engineering to Clinical Ecosystem; Royal Society of Chemistry: Tokyo, Japan, 2024; pp. 221–243. [Google Scholar] [CrossRef]
- Roberts, A.; Mahari, S.; Gandhi, S. Cells and Organs on a Chip in Biomedical Sciences. In Microfluidics and Multi Organs on Chip; Springer Nature: Singapore, 2022; pp. 219–245. [Google Scholar] [CrossRef]
- Saha, R.; Sarkar, M.; Choudhury, S.S.; Kumar, H.; Bhatt, G.; Bhattacharya, S. Evolution of 3d Printing Technology in Fabrication of Microfluidic Devices and Biological Applications: A Comprehensive Review. J. Micromanufacturing 2024, 7, 110–140. [Google Scholar] [CrossRef]
- Paoli, R.; Di Giuseppe, D.; Badiola-Mateos, M.; Martinelli, E.; Lopez-Martinez, M.J.; Samitier, J. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications. Sensors 2021, 21, 1382. [Google Scholar] [CrossRef]
- Dkhar, D.S.; Kumari, R.; Malode, S.J.; Shetti, N.P.; Chandra, P. Integrated Lab-on-a-Chip Devices: Fabrication Methodologies, Transduction System for Sensing Purposes. J. Pharm. Biomed. Anal. 2023, 223, 115120. [Google Scholar] [CrossRef]
- Tawade, P.; Mastrangeli, M. Integrated Electrochemical and Optical Biosensing in Organs-on-Chip. ChemBioChem 2024, 25, e202300560. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Izadifar, Z.; Charrez, B.; Almeida, M.; Robben, S.; Pilobello, K.; van der Graaf-Mas, J.; Marquez, S.L.; Ferrante, T.C.; Shcherbina, K.; Gould, R.; et al. Organ Chips with Integrated Multifunctional Sensors Enable Continuous Metabolic Monitoring at Controlled Oxygen Levels. Biosens. Bioelectron. 2024, 265, 116683. [Google Scholar] [CrossRef]
- Tian, C.; Tu, Q.; Liu, W.; Wang, J. Recent Advances in Microfluidic Technologies for Organ-on-a-Chip. TrAC Trends Anal. Chem. 2019, 117, 146–156. [Google Scholar] [CrossRef]
- Patel, A.A. Microfluidics and Lab-on-a-Chip Technologies in Molecular Diagnostics. In Innovations and Implications in Molecular Diagnostics; CRC Press: Boca Raton, FL, USA, 2025; pp. 153–167. [Google Scholar] [CrossRef]
- Malic, L.; Brassard, D.; Veres, T.; Tabrizian, M. Integration and Detection of Biochemical Assays in Digital Microfluidic LOC Devices. Lab. Chip 2010, 10, 418–431. [Google Scholar] [CrossRef]
- Yoon, S.; Kilicarslan You, D.; Jeong, U.; Lee, M.; Kim, E.; Jeon, T.J.; Kim, S.M. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and C. Elegans-Based Innovations. Biosensors 2024, 14, 55. [Google Scholar] [CrossRef]
- Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-Chip: A New Paradigm for Drug Development. Trends Pharmacol. Sci. 2020, 42, 119. [Google Scholar] [CrossRef]
- Picollet-D’hahan, N.; Zuchowska, A.; Lemeunier, I.; Le Gac, S. Multiorgan-on-a-Chip: A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotechnol. 2021, 39, 788–810. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Jeong, S. State-of-the-Art in High Throughput Organ-on-Chip for Biotechnology and Pharmaceuticals. Clin. Exp. Reprod. Med. 2024, 52, 114. [Google Scholar] [CrossRef]
- Phan, D.T.T.; Wang, X.; Craver, B.M.; Sobrino, A.; Zhao, D.; Chen, J.C.; Lee, L.Y.N.; George, S.C.; Lee, A.P.; Hughes, C.C.W. A Vascularized and Perfused Organ-on-a-Chip Platform for Large-Scale Drug Screening Applications. Lab. Chip 2017, 17, 511–520. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Foo, G.W.; Aggarwal, N.; Chang, M.W. Organ-on-Chip Technology: Opportunities and Challenges. Biotechnol. Notes 2024, 5, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Wikswo, J.P.; Block, F.E.; Cliffel, D.E.; Goodwin, C.R.; Marasco, C.C.; Markov, D.A.; McLean, D.L.; McLean, J.A.; McKenzie, J.R.; Reiserer, R.S.; et al. Engineering Challenges for Instrumenting and Controlling Integrated Organ-on-Chip Systems. IEEE Trans. Biomed. Eng. 2013, 60, 682–690. [Google Scholar] [CrossRef]
- Ding, C.; Chen, X.; Kang, Q.; Yan, X. Biomedical Application of Functional Materials in Organ-on-a-Chip. Front. Bioeng. Biotechnol. 2020, 8, 555817. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Zhou, C.; Lu, K.; Liu, Y.; Xuan, L.; Wang, X. Organoid-on-a-Chip: Current Challenges, Trends, and Future Scope toward Medicine. Biomicrofluidics 2023, 17, 051505. [Google Scholar] [CrossRef]
- Usman Khan, M.; Cai, X.; Shen, Z.; Mekonnen, T.; Kourmatzis, A.; Cheng, S.; Gholizadeh, H. Challenges in the Development and Application of Organ-on-Chips for Intranasal Drug Delivery Studies. Pharmaceutics 2023, 15, 1557. [Google Scholar] [CrossRef]
- Ramadan, Q.; Zourob, M. Organ-on-a-Chip Engineering: Toward Bridging the Gap between Lab and Industry. Biomicrofluidics 2020, 14, 041501. [Google Scholar]
- Zhao, Y.; Wang, E.Y.; Lai, F.B.L.; Cheung, K.; Radisic, M. Organs-on-a-Chip: A Union of Tissue Engineering and Microfabrication. Trends Biotechnol. 2023, 41, 410–424. [Google Scholar] [CrossRef]
- Nunes, G.A.M.d.A.; da Silva, A.K.A.; Faria, R.M.; Santos, K.S.; Aguiar, A.d.C.; da Costa, L.B.M.; Luz, G.V.d.S.; Carneiro, M.L.B.; Rosa, M.F.F.; Joanitti, G.A.; et al. State-of-the-Art Organ-on-Chip Models and Designs for Medical Applications: A Systematic Review. Biomimetics 2025, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xiang, Y.; Yang, Y.; Long, X.; Xiao, Z.; Nan, Y.; Jiang, Y.; Qiu, Y.; Huang, Q.; Ai, K. State-of-the-Art Advancements in Liver-on-a-Chip (LOC): Integrated Biosensors for LOC. Biosens. Bioelectron. 2022, 218, 114758. [Google Scholar] [CrossRef]
- Beverung, S.; Wu, J.; Steward, R. Lab-on-a-Chip for Cardiovascular Physiology and Pathology. Micromachines 2020, 11, 898. [Google Scholar] [CrossRef]
- Yu, Z.; Fidler, T.P.; Ruan, Y.; Vlasschaert, C.; Nakao, T.; Uddin, M.M.; Mack, T.; Niroula, A.; Brett Heimlich, J.; Zekavat, S.M.; et al. Genetic Modification of Inflammation- and Clonal Hematopoiesis-Associated Cardiovascular Risk. J. Clin. Investig. 2023, 133, e168597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qu, K.Y.; Zhou, B.; Luo, Y.; Zhu, Z.; Pan, D.J.; Cui, C.; Zhu, Y.; Chen, M.L.; Huang, N.P. Design and Fabrication of an Integrated Heart-on-a-Chip Platform for Construction of Cardiac Tissue from Human IPSC-Derived Cardiomyocytes and in Situ Evaluation of Physiological Function. Biosens. Bioelectron. 2021, 179, 113080. [Google Scholar] [CrossRef] [PubMed]
- Tajeddin, A.; Mustafaoglu, N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines 2021, 12, 1443. [Google Scholar] [CrossRef]
- Staicu, C.E.; Jipa, F.; Axente, E.; Radu, M.; Radu, B.M.; Sima, F. Lab-on-a-Chip Platforms as Tools for Drug Screening in Neuropathologies Associated with Blood–Brain Barrier Alterations. Biomolecules 2021, 11, 916. [Google Scholar] [CrossRef] [PubMed]
- Paloschi, V.; Sabater-Lleal, M.; Middelkamp, H.; Vivas, A.; Johansson, S.; Van Der Meer, A.; Tenje, M.; Maegdefessel, L. Organ-on-a-Chip Technology: A Novel Approach to Investigate Cardiovascular Diseases. Cardiovasc. Res. 2021, 117, 2742–2754. [Google Scholar] [CrossRef] [PubMed]
- Obeid, P.J.; Yammine, P.; El-Nakat, H.; Kassab, R.; Tannous, T.; Nasr, Z.; Maarawi, T.; Dahdah, N.; El Safadi, A.; Mansour, A.; et al. Organ-On-A-Chip Devices: Technology Progress and Challenges. ChemBioChem 2024, 25, e202400580. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y. Advances in Organ-on-a-Chip for the Treatment of Cardiovascular Diseases. MedComm Biomater. Appl. 2023, 2, e63. [Google Scholar] [CrossRef]


| OoC Model | Key Applications/Disease Models | Representative Quantitative Readouts |
|---|---|---|
| Heart-on-Chip | Ischemia–reperfusion, cardiac fibrosis, myocardial hypertrophy, LQTS, doxorubicin-induced cardiotoxicity, drug screening, personalized medicine | Electrophysiological signals (heart rate, rhythm, wavefront propagation, action potential amplitude/duration, resting membrane potential), contractile/kinetic beat force (contraction force, beat rate, calcium transient amplitude, post-rest potentiation), oxygen consumption, cell viability, cell morphology [80,81,82]. |
| Liver-on-Chip | Drug metabolism, drug-induced liver injury (DILI), immune-mediated liver injury, chronic liver disease, ADME processes | Albumin secretion, expression of phase I/II enzymes and transporters (CYP activity), biomarkers of inflammation (interleukins, cytokines), fibrosis levels, transcriptomic analysis of specific cellular markers [83,84,85]. |
| Lung-on-Chip | Pulmonary edema, impact of smoking, environmental particulate toxicity, air-blood barrier function, inflammatory responses | Production of intracellular reactive oxygen species (ROS), nanoparticle uptake, fluid accumulation (edema), endothelial cell activation, neutrophil adhesion/trans-migration [86,87,88]. |
| Kidney-on-a-chip | Filtration, resorption, drug transport, nephrotoxicity, drug–drug interactions, regulation of homeostasis | Na/Pi co-transporter expression, albumin reabsorption, active transport of compounds (e.g., creatinine, PAH, metformin) via specific transporters (OCT2, OAT1), efflux ratios [26,89,90] |
| Gut-on-Chip | Nutrient/drug absorption, transport, gut-microbiome interactions, intestinal infections, inflammatory responses, peristaltic movements | Trans-epithelial Electrical Resistance (TEER) for barrier integrity, specific amino peptidase activity for epithelial function, excessive bacterial growth, secretion of inflammatory cytokines [91,92,93] |
| Brain-on-Chip | Modeling of the blood–brain barrier (BBB), neurodegenerative diseases (Alzheimer’s, Parkinson’s), drug transport through the BBB, neuroinflammation, neuronal communication | Trans-epithelial Electrical Resistance (TEER) for barrier function, permeability assays, electrical signals from neuronal networks (e.g., mean discharge frequency, synchronous discharge patterns), beta-amyloid aggregation, phosphorylated tau accumulation, neuro-inflammatory activity [94,95,96] |
| Characteristic | Lab-on-a-Chip (LoC) | Organ-on-a-Chip (OoC) |
|---|---|---|
| Primary Objective | Miniaturization and automation of analytical laboratory functions | Biomimicry of the physiology and pathology of human organs/tissues in vitro [13,48]. |
| Biomimicry Level | Low-moderate; focus on analytical performance rather than complex in vivo replication | High; aims to replicate structural, functional and dynamic aspects of the native fabric [207,208] |
| Typical Cellular Components | It can use various cell types (primary, immortalized) or even non-biological samples; often 2D crops | Mainly human-relevant cells (iPSCs, primary cells); often 3D cultures with multiple cell types [7,209] |
| Key Application Focus | Diagnostics, analytical chemistry, environmental monitoring, general high-throughput screening | Disease modeling, drug discovery/toxicity/efficacy, personalized medicine, ADME-Tox, inter-organ communication [7,13] |
| Key Challenges | Manufacturing complexity, surface-dependent effects, signal-to-noise ratios, fluidic actuation | Cell maturation, long-term culture viability, standardization, material limitations (PDMS uptake), chronic disease reproduction, inter-organ scaling [13,208,209] |
| Typical outputs/readouts | Chemical concentrations, presence/absence of analytes, electrical signals, optical signals | Electrophysiological signals, contractile strength, biochemical markers (e.g., albumin, enzymes), barrier integrity (TEER), cell morphology, gene expression [7,48,210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Marazzi, D.; Trovalusci, F.; Di Nardo, P.; Carotenuto, F. Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering. Biomimetics 2026, 11, 18. https://doi.org/10.3390/biomimetics11010018
Marazzi D, Trovalusci F, Di Nardo P, Carotenuto F. Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering. Biomimetics. 2026; 11(1):18. https://doi.org/10.3390/biomimetics11010018
Chicago/Turabian StyleMarazzi, Daniele, Federica Trovalusci, Paolo Di Nardo, and Felicia Carotenuto. 2026. "Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering" Biomimetics 11, no. 1: 18. https://doi.org/10.3390/biomimetics11010018
APA StyleMarazzi, D., Trovalusci, F., Di Nardo, P., & Carotenuto, F. (2026). Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering. Biomimetics, 11(1), 18. https://doi.org/10.3390/biomimetics11010018

