Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = fluid–solid thermal coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7133 KB  
Article
Energy Transfer Characteristics of Surface Vortex Heat Flow Under Non-Isothermal Conditions Based on the Lattice Boltzmann Method
by Qing Yan, Lin Li and Yunfeng Tan
Processes 2026, 14(2), 378; https://doi.org/10.3390/pr14020378 - 21 Jan 2026
Viewed by 147
Abstract
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to [...] Read more.
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to deterioration of downstream product quality and abnormal equipment operation. The vortex evolution process exhibits notable three-dimensional unsteadiness, multi-scale turbulence, and dynamic gas–liquid interfacial changes, accompanied by strong coupling effects between temperature gradients and flow field structures. Traditional macroscopic numerical models show clear limitations in accurately capturing these complex physical mechanisms. To address these challenges, this study developed a mesoscopic numerical model for gas-liquid two-phase vortex flow based on the lattice Boltzmann method. The model systematically reveals the dynamic behavior during vortex evolution and the multi-field coupling mechanism with the temperature field while providing an in-depth analysis of how initial perturbation velocity regulates vortex intensity and stability. The results indicate that vortex evolution begins near the bottom drain outlet, with the tangential velocity distribution conforming to the theoretical Rankine vortex model. The vortex core velocity during the critical penetration stage is significantly higher than that during the initial depression stage. An increase in the initial perturbation velocity not only enhances vortex intensity and induces low-frequency oscillations of the vortex core but also markedly promotes the global convective heat transfer process. With regard to the temperature field, an increase in fluid temperature reduces the viscosity coefficient, thereby weakening viscous dissipation effects, which accelerates vortex development and prolongs drainage time. Meanwhile, the vortex structure—through the induction of Taylor vortices and a spiral pumping effect—drives shear mixing and radial thermal diffusion between fluid regions at different temperatures, leading to dynamic reconstruction and homogenization of the temperature field. The outcomes of this study not only provide a solid theoretical foundation for understanding the generation, evolution, and heat transfer mechanisms of vortices under industrial thermal conditions, but also offer clear engineering guidance for practical production-enabling optimized operational parameters to suppress vortices and enhance drainage efficiency. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Multiphysics Simulation for Efficient and Reliable Systems for Low-Temperature Plasma Treatment of Metals
by Nina Yankova Penkova, Boncho Edward Varhoshkov, Valery Todorov, Hristo Antchev, Kalin Krumov and Vesselin Iliev
Materials 2026, 19(2), 382; https://doi.org/10.3390/ma19020382 - 17 Jan 2026
Viewed by 225
Abstract
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the [...] Read more.
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the coupled electromagnetic, fluid flow, and thermal processes in vacuum chambers for the low-temperature plasma treatment of metal parts have been developed. They were solved numerically via ANSYS/CFX software for a discretized solid and gas space of a plasma nitriding chamber. The specific electrical conductivity of the gas mixture, containing plasma, has been calibrated on the basis of an electrical model of the chamber and in situ measurements. The three-dimensional fields of pressure, temperature, velocity, turbulent characteristics, electric current density, and voltage in the chamber have been simulated and analysed. Methods for further development and application of the models and for technological and constructive enhancement of the plasma treatment technologies are discussed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

20 pages, 1485 KB  
Article
SPH Simulation of Multiple Droplets Impact and Solidification on a Cold Surface
by Lujie Yuan, Qichao Wang and Hongbing Xiong
Coatings 2026, 16(1), 117; https://doi.org/10.3390/coatings16010117 - 15 Jan 2026
Viewed by 230
Abstract
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet [...] Read more.
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet impact and freezing. The model is validated against benchmark cases, including the Young–Laplace relation, wetting dynamics, single-droplet impact and the Stefan solidification problem, showing good agreement. Using the validated model, we investigate two droplets—either centrally or off-centrally—impacting on a cold surface. Simulations reveal two distinct solidification patterns: convex pattern (CVP), which results in a mountain-like splat morphology, and concave pattern (CCP), which leads to a valley-like shape. The criterion for the two patterns is explored with two dimensionless numbers, the Reynolds number Re and the Stefan number Ste. When Re17.8, droplets tend to solidify in CVP; at higher Reynolds numbers Re18.8, they tend to solidify in CCP. The transition between the two patterns is primarily governed by Re, with Ste exerting a secondary influence. For example, when droplets have Re=9.9 and Ste=5.9, they tend to solidify in a convex pattern, whereas at Re=19.8 and Ste=5.9, they tend to solidify in a concave pattern. Also, the solidification state of the first droplet greatly influences the subsequent spreading and solidification of the second droplet. A parametric study on CCP cases with varying vertical and horizontal offsets shows that larger vertical offsets accelerate solidification and reduce the maximum spreading factor. For small vertical distances, the solidification time increases with horizontal offset by more than 29%; for large vertical distances the change is minor. These results clarify how droplet interactions govern coating morphology and thermal evolution during thermal spraying. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

32 pages, 7548 KB  
Article
Research on the Flow and Heat Transfer Characteristics of a Molten Salt Globe Valve Based on an Electromagnetic Induction Heating System
by Shuxun Li, Xiaoya Wen, Bohao Zhang, Lingxia Yang, Yuhao Tian and Xiaoqi Meng
Actuators 2026, 15(1), 50; https://doi.org/10.3390/act15010050 - 13 Jan 2026
Viewed by 128
Abstract
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, [...] Read more.
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, faces significant challenges related to low-temperature salt crystallization and thermal stress control. This study proposes an active electromagnetic induction heating method based on a triangular double-helix cross-section coil to address issues such as molten salt blockage in the seal bellows and excessive thermal stress during heating. First, electromagnetic simulation comparisons show that the ohmic loss of the proposed coil is approximately 3.5 times and 1.8 times higher than that of conventional circular and rectangular coils, respectively, demonstrating superior heating uniformity and energy efficiency. Second, transient electromagnetic-thermal-fluid-structure multiphysics coupling analysis reveals that during heating, the temperature in the bellows seal region stabilizes above 543.15 K, exceeding the solidification point of the molten salt, while the whole valve reaches thermal stability within about 1000 s, effectively preventing local solidification. Finally, thermal stress analysis indicates that under a preheating condition of 473.15 K, the transient thermal shock stress on the valve body and bellows is reduced by 266.84% and 253.91%, respectively, compared with the non-preheating case, with peak stresses remaining below the allowable stress limit of the material, thereby significantly extending the service life of the valve. This research provides an effective solution for ensuring reliable operation of molten salt valves and improving the overall performance of CSP systems. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

25 pages, 10778 KB  
Article
Research on Friction and Structural Optimization Design of Segmented Annular Seal
by Zhenpeng He, Hongyu Wang, Shijun Zhao, Jiaxin Si, Ning Li, Baichun Li and Wendong Luo
Lubricants 2026, 14(1), 23; https://doi.org/10.3390/lubricants14010023 - 5 Jan 2026
Viewed by 331
Abstract
As a critical sealing component in aero-engines, the segmented annular seal is prone to friction and wear during the running-in stage, which seriously impairs its sealing performance and service life. To address this issue, this study takes the three-petal segmented annular seal made [...] Read more.
As a critical sealing component in aero-engines, the segmented annular seal is prone to friction and wear during the running-in stage, which seriously impairs its sealing performance and service life. To address this issue, this study takes the three-petal segmented annular seal made of T482 graphite as the research object, adopting a combined method of high-speed ring-block friction and wear tests and thermal–fluid–solid coupling simulation to investigate its friction and wear mechanisms and optimize its structural design. The results show that the segmented annular seal undergoes more severe friction and wear in the low-speed running-in stage; the wear rate increases with the rise in loading force and decreases with the increase in rotational speed, and the variation trend of surface roughness is consistent with that of the friction coefficient. Frictional heat and wear-induced scratches intensify the deformation and leakage of the seal, thereby leading to the risk of seal failure. Optimizing the depth of radial dynamic pressure grooves can significantly improve the opening performance of the seal, while optimizing the width of axial grooves mainly affects the seal leakage. This research provides a theoretical basis for improving the service life and sealing performance of segmented annular seals in aero-engines. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

31 pages, 39539 KB  
Article
Thermovibrationally Driven Ring-Shaped Particle Accumulations in Corner-Heated Cavities with the D2h Symmetry
by Balagopal Manayil Santhosh and Marcello Lappa
Micromachines 2026, 17(1), 39; https://doi.org/10.3390/mi17010039 - 29 Dec 2025
Viewed by 221
Abstract
Over the last decade, numerical simulations and experiments have confirmed the existence of a novel class of vibrationally excited solid-particle attractors in cubic cavities containing a fluid in non-isothermal conditions. The diversity of emerging particle structures, in both morphology and multiplicity, depends strongly [...] Read more.
Over the last decade, numerical simulations and experiments have confirmed the existence of a novel class of vibrationally excited solid-particle attractors in cubic cavities containing a fluid in non-isothermal conditions. The diversity of emerging particle structures, in both morphology and multiplicity, depends strongly on the uni- or multi-directional nature of the imposed temperature gradients. The present study seeks to broaden this theoretical framework by further increasing the complexity of the thermal “information” coded along the external boundary of the fluid container. In particular, in place of the thermal inhomogeneities located in the center of otherwise uniformly cooled or heated walls, here, a cubic cavity with temperature boundary conditions satisfying the D2h (in Schoenflies notation) or “mmm” (in Hermann–Mauguin notation) symmetry is considered. This configuration, equivalent to a bipartite vertex coloring of a cube leading to a total of 24 thermally controlled planar surfaces, possesses three mutually perpendicular twofold rotation axes and inversion symmetry through the cube’s center. To reduce the problem complexity by suppressing potential asymmetries due to fluid-dynamic instabilities of inertial nature, the numerical analysis is carried out under the assumption of dilute particle suspension and one-way solid–liquid phase coupling. The results show that a kaleidoscope of new particle structures is enabled, whose main distinguishing mark is the essentially one-dimensional (filamentary) nature. These show up as physically disjoint or intertwined particle circuits in striking contrast to the single-curvature or double-curvature spatially extended accumulation surfaces reported in earlier investigations. Full article
(This article belongs to the Special Issue Microfluidic Systems for Sustainable Energy)
Show Figures

Figure 1

13 pages, 4070 KB  
Article
Analysis of Heat Dissipation Performance for a Ventilated Honeycomb Sandwich Structure Based on the Fluid–Solid–Thermal Coupling Method
by Pengfei Xiao, Xin Zhang, Chunping Zhou, Heng Zhang and Jie Li
Energies 2025, 18(24), 6593; https://doi.org/10.3390/en18246593 - 17 Dec 2025
Viewed by 304
Abstract
In recent years, honeycomb sandwich structures have seen continuous development due to their excellent structural performance and design flexibility in heat dissipation. However, their complex heat transfer mechanisms and diverse modes of thermal exchange necessitate research on the air flow behavior and temperature [...] Read more.
In recent years, honeycomb sandwich structures have seen continuous development due to their excellent structural performance and design flexibility in heat dissipation. However, their complex heat transfer mechanisms and diverse modes of thermal exchange necessitate research on the air flow behavior and temperature distribution characteristics of micro-channels and lattice pores. This study investigates the internal flow field within a ventilated honeycomb sandwich structure through numerical simulation. The spatial flow characteristics and temperature distribution are analyzed, with a focus on the effects of turbulent kinetic energy, heat flux distribution on the heated surface, and varying pressure drop conditions on the thermal performance. The results indicate that the micro-channels inside the honeycomb core lead to a strong correlation between temperature distribution, flow velocity, and turbulence intensity. Regions with higher flow velocity and turbulent kinetic energy exhibit lower temperatures, confirming the critical role of flow motion in heat transfer. Heat flux analysis further verifies that heat is primarily removed by airflow, with superior heat exchange occurring inside the honeycomb cells compared to the solid regions. The intensive mixing induced by highly turbulent flow within the small cells enhances contact with the solid surface, thereby improving heat conduction from the solid to the flow. Moreover, as the inlet pressure increases, the overall temperature gradually decreases but exhibits a saturation trend. This indicates that beyond a certain pressure level, further increasing the inlet pressure yields diminishing returns in heat dissipation enhancement. Full article
(This article belongs to the Topic Heat and Mass Transfer in Engineering)
Show Figures

Figure 1

15 pages, 5972 KB  
Article
Thermal Hydraulics and Solid Mechanics Multiphysics Safety Analysis of a Heavy Water Reactor with Thorium-Based Fuel
by Bayan Kurbanova, Yuriy Sizyuk, Ansar Aryngazin, Zhanna Alsar, Ahmed Hassanein and Zinetula Insepov
J. Nucl. Eng. 2025, 6(4), 53; https://doi.org/10.3390/jne6040053 - 30 Nov 2025
Viewed by 626
Abstract
Growing environmental awareness has renewed interest in thorium as a nuclear fuel, underscoring the need for further studies to evaluate how reactors perform when conventional fuels are replaced with thorium-based alternatives. In this study, thermal hydraulics and solid mechanics computations were simulated using [...] Read more.
Growing environmental awareness has renewed interest in thorium as a nuclear fuel, underscoring the need for further studies to evaluate how reactors perform when conventional fuels are replaced with thorium-based alternatives. In this study, thermal hydraulics and solid mechanics computations were simulated using COMSOL multiphysics to investigate the safe operating conditions of a heavy water reactor with thorium-based fuel. The thermo-mechanical analysis of the fuel rod under transient heating conditions provides critical insights into strain, displacement, stress, and coolant flow behavior at elevated volumetric heat sources. After 3 s of heating, the strain distribution in the fuel exhibits a high-strain core surrounded by a low-strain rim, with peak volumetric strain increasing nearly linearly from 0.006 to 0.014 as heat generation rises. Displacement profiles confirm that radial deformation is concentrated at the outer surface, while axial elongation remains uniform and scales systematically with power. The resulting von Mises stress fields show maxima at the outer surface, increasing from ~0.06 to 0.15 GPa at the centerline with higher heat input but remaining within structural safety margins. Cladding simulations demonstrate nearly uniform axial expansion, with displacements increasing from ~0.012 mm to 0.03 mm across the investigated power range, and average strain remains negligible (≈10−4), while mean stresses increase moderately yet stay well below the yield strength of zirconium alloys, confirming safe elastic behavior. Hydrodynamic analysis shows that coolant velocity decreases smoothly along the axial direction but maintains stability, with only minor reductions under increased heat sources. Overall, the coupled thermo-mechanical and fluid-dynamic results confirm that both the fuel and cladding remain structurally stable under the studied conditions. By using COMSOL’s multiphysics capabilities, and unlike most legacy codes optimized for uranium-based fuel, this work is designed to easily incorporate non-traditional fuels such as thorium-based systems, including user-defined material properties, temperature-dependent thermal polynomial formulas, and mechanical response. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

17 pages, 4599 KB  
Article
Reproducible Thermo-Fluid–Solid-Coupled Modeling of Wet Milling of Al6061: Parametric Influence and Surface Integrity Assessment
by Yanping Xiao, Xuanzhong Wu, Xin Tong, Enqing Chen and Cheng Zhang
Metals 2025, 15(11), 1256; https://doi.org/10.3390/met15111256 - 17 Nov 2025
Viewed by 453
Abstract
Wet milling of aluminum alloys involves complex interactions among thermal, fluid, and mechanical fields that strongly affect cutting temperature, stress distribution, and surface integrity. To achieve reproducible and physics-based predictions of these coupled phenomena, this study develops a three-dimensional thermo–fluid–solid-coupled Eulerian–Lagrangian (CEL) framework [...] Read more.
Wet milling of aluminum alloys involves complex interactions among thermal, fluid, and mechanical fields that strongly affect cutting temperature, stress distribution, and surface integrity. To achieve reproducible and physics-based predictions of these coupled phenomena, this study develops a three-dimensional thermo–fluid–solid-coupled Eulerian–Lagrangian (CEL) framework for the wet milling of Al6061. The model system in this study evaluated the effects of milling cutter feed rate and spindle speed, feed per tooth of the milling cutter, axial cutting depth, and coolant flow rate on equivalent stress and peak milling temperature., as well as their correlation with surface roughness metrics (Ra, Sa). Simulation results reveal that higher feed rates significantly raise Tpeak (+12.9%) while reducing σeq (−22.7%) and deteriorating surface quality (Ra +104.2%, Sa +29.9%). Increasing spindle speed lowers both Tpeak (−2.2%) and σeq (−8.5%) and improves surface finish (Ra −39.3%, Sa −16.6%). A greater depth of cut amplifies mechanical and thermal loads, increasing Tpeak (+10.3%) and σeq (+17%). Enhanced coolant flow reduces Tpeak (−23.5%) and σeq (−6.1%) and markedly improves surface quality (Ra −88.8%, Sa −51.3%). Research findings indicate that coolant coverage is the dominant factor determining surface integrity. Although experimental data for Tpeak and σeq were not directly validated, this framework clearly articulates modeling assumptions, quantifies parameter sensitivities, and provides a reproducible methodology for future experimental-numerical verification. Full article
Show Figures

Figure 1

25 pages, 4868 KB  
Article
Effects of Hydrogen-Rich Gas Injection on Combustion Characteristics in Blast Furnace Raceway and Thermal Load of Tuyere: A Numerical Simulation Study
by Chun-Cheng Lai, Kuan-Yu Chen, Dai-Qui Vo, Hsuan-Chung Wu, Huey-Jiuan Lin, Bo-Jhih Lin, Tsung-Yen Huang and Shan-Wen Du
Metals 2025, 15(11), 1241; https://doi.org/10.3390/met15111241 - 12 Nov 2025
Viewed by 664
Abstract
Hydrogen-rich gas (HRG) injection is a promising low-carbon solution for blast furnace ironmaking. This study conducted numerical simulations in the lower part of a blast furnace to analyze the combustion behavior of coinjected coke oven gas (COG) and pulverized coal (PC) within the [...] Read more.
Hydrogen-rich gas (HRG) injection is a promising low-carbon solution for blast furnace ironmaking. This study conducted numerical simulations in the lower part of a blast furnace to analyze the combustion behavior of coinjected coke oven gas (COG) and pulverized coal (PC) within the raceway and the associated thermal load on the tuyere. A three-dimensional computational fluid dynamics model incorporating fluid–thermal–solid coupling and the GRI-Mech 3.0 chemical kinetic mechanism (validated for 300–2500 K) was established to simulate the lance–blowpipe–tuyere–raceway region. The simulation results revealed that moderate COG injection accelerated volatile release from PC and enlarged the high-temperature zone (>2000 K). However, excessive COG injection intensified oxygen competition and shortened the residence time of PC, ultimately decreasing the burnout rate. Notably, although COG has high reactivity, its injection did not cause an increase in tuyere temperature. By contrast, the presence of an unburned gas layer near the upper wall of the tuyere and the existence of a strong convective cooling effect contributed to a reduction in tuyere temperature. An optimized cooling water channel was designed to enhance flow distribution and effectively suppress localized overheating. The findings of this study offer valuable technical insights for ensuring safe COG injection and advancing low-carbon steelmaking practices. Full article
Show Figures

Figure 1

21 pages, 8838 KB  
Article
Multi-Physics Coupling Mechanism of the Dynamic Sealing Performance of the O-Ring at the Neck of a Type IV Hydrogen Storage Cylinder Under Linearly Decreasing Filling Conditions
by Enhui Zhang, Xiaolong Shi, Wenchao Wang and Zhiqiang Wang
Symmetry 2025, 17(11), 1921; https://doi.org/10.3390/sym17111921 - 10 Nov 2025
Viewed by 536
Abstract
To address the degradation of O-ring material properties and reduced dynamic seal reliability caused by excessive hydrogen temperature rise in a Type IV hydrogen cylinder due to constant-flow filling strategies, this study systematically investigates the coupled mechanism by which a linearly decreasing flow [...] Read more.
To address the degradation of O-ring material properties and reduced dynamic seal reliability caused by excessive hydrogen temperature rise in a Type IV hydrogen cylinder due to constant-flow filling strategies, this study systematically investigates the coupled mechanism by which a linearly decreasing flow filling strategy maintains sealing performance through temperature rise regulation. By establishing a fluid–thermal–solid coupled mathematical model that comprehensively considers the Joule–Thomson effect, compression heat, gas swelling, and material nonlinear behavior, combined with numerical simulation methods, the sealing performance of the linear decreasing and constant-flow filling strategies was systematically compared across three key dimensions: temperature field distribution, evolution of seal ring material properties, and contact stress at the sealing interface. Results demonstrate that the linear decrease filling strategy effectively suppresses hydrogen temperature rise, achieving a 4.6% lower temperature increase at completion compared to the constant-flow strategy. Concurrently, this strategy mitigates thermally induced degradation of seal material properties, reducing contact stress fluctuations by 5% and significantly enhancing dynamic seal reliability. This research provides theoretical foundations and design support for optimizing filling protocols in high-performance hydrogen storage vessels. Full article
Show Figures

Figure 1

18 pages, 5371 KB  
Article
Thermal Characteristics Analysis of an Aerospace Friction Clutch Based on Thermal–Fluid–Solid Coupling
by Jianeng Bian, Hongmei Wu, Xinyuan Yang, Guang Ye, Xiang Zhu and Yu Dai
Lubricants 2025, 13(11), 469; https://doi.org/10.3390/lubricants13110469 - 23 Oct 2025
Cited by 1 | Viewed by 738
Abstract
This study investigates the flow field and temperature field characteristics of a certain type of aerospace tail-thrust clutch friction plate under engagement conditions. A thermo–fluid–solid coupled convective heat transfer model was established based on the velocity distribution of lubricating oil within the groove [...] Read more.
This study investigates the flow field and temperature field characteristics of a certain type of aerospace tail-thrust clutch friction plate under engagement conditions. A thermo–fluid–solid coupled convective heat transfer model was established based on the velocity distribution of lubricating oil within the groove cavities. The model was applied to analyze the surface temperature distribution of a single friction pair (friction plate and steel plate) under different operating parameters. The results reveal that both the inlet temperature and flow rate of the lubricating oil have a mitigating effect on temperature rise. However, due to the geometric constraints of the groove structure, the maximum wetted area and the actual inflow are inherently limited. Consequently, the temperature evolution during engagement is more significantly influenced by rotational speed and applied pressure. In particular, once these parameters exceed certain critical values, the surface temperature exhibits a sharp increase. Furthermore, the optimization of lubricating flow is constrained by friction materials. A higher flow rate does not necessarily yield greater lubrication benefits; instead, the optimal flow rate solution tailored to the friction pair should be pursued. This work provides theoretical insights into parameter control for aerospace tail-thrust clutches in practical operation. Full article
(This article belongs to the Special Issue Thermal Hydrodynamic Lubrication)
Show Figures

Figure 1

26 pages, 16140 KB  
Article
A Multiphysics Framework for Fatigue Life Prediction and Optimization of Rocker Arm Gears in a Large-Mining-Height Shearer
by Chunxiang Shi, Xiangkun Song, Weipeng Xu, Ying Tian, Jinchuan Zhang, Xiangwei Dong and Qiang Zhang
Computation 2025, 13(10), 242; https://doi.org/10.3390/computation13100242 - 15 Oct 2025
Viewed by 863
Abstract
This study investigates premature fatigue failure in rocker arm gears of large-mining-height shearers operating at alternating ±45° working angles, where insufficient lubrication generates non-uniform thermal -stress fields. In this study, an integrated multiphysics framework combining transient thermal–fluid–structure coupling simulations with fatigue life prediction [...] Read more.
This study investigates premature fatigue failure in rocker arm gears of large-mining-height shearers operating at alternating ±45° working angles, where insufficient lubrication generates non-uniform thermal -stress fields. In this study, an integrated multiphysics framework combining transient thermal–fluid–structure coupling simulations with fatigue life prediction is proposed. Transient thermo-mechanical coupling analysis simulated dry friction conditions, capturing temperature and stress fields under varying speeds. Fluid–thermal–solid coupling analysis modeled wet lubrication scenarios, incorporating multiphase flow to track oil distribution, and calculated convective heat transfer coefficients at different immersion depths (25%, 50%, 75%). These coupled simulations provided the critical time-varying temperature and thermal stress distributions acting on the gears (Z6 and Z7). Subsequently, these simulated thermo-mechanical loads were directly imported into ANSYS 2024R1 nCode DesignLife to perform fatigue life prediction. Simulations demonstrate that dry friction induces extreme operating conditions, with Z6 gear temperatures reaching over 800 °C and thermal stresses peaking at 803.86 MPa under 900 rpm, both escalating linearly with rotational speed. Lubrication depth critically regulates heat dissipation, where 50% oil immersion optimizes convective heat transfer at 8880 W/m2·K for Z6 and 11,300 W/m2·K for Z7, while 25% immersion exacerbates thermal gradients. Fatigue life exhibits an inverse relationship with speed but improves significantly with cooling. Z6 sustains a lower lifespan, exemplified by 25+ days at 900 rpm without cooling versus 50+ days for Z7, attributable to higher stress concentrations. Based on the multiphysics analysis results, two physics-informed engineering optimizations are proposed to reduce thermal stress and extend gear fatigue life: a staged cooling system using spiral copper tubes and an intelligent lubrication strategy with gear-pump-driven dynamic oil supply and thermal feedback control. These strategies collectively enhance gear longevity, validated via multiphysics-driven topology optimization. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

23 pages, 3082 KB  
Article
Horizontal Wellbore Stability in the Production of Offshore Natural Gas Hydrates via Depressurization
by Zhengfeng Shan, Zhiyuan Wang, Shipeng Wei, Peng Liu, En Li, Jianbo Zhang and Baojiang Sun
Sustainability 2025, 17(19), 8738; https://doi.org/10.3390/su17198738 - 29 Sep 2025
Viewed by 507
Abstract
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research [...] Read more.
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research on the stability of screen pipes during horizontal-well hydrate production is currently limited, its importance in sustainable energy extraction is growing. This study therefore considers the effects of hydrate phase change, gas–water seepage, energy and mass exchange, reservoir deformation, and screen pipe influence and develops a coupled thermal–fluid–solid–chemical field model for horizontal-well natural gas hydrate production. The model results were validated using experimental data and standard test cases from the literature. The results obtained by applying this model in COMSOL Multiphysics 6.1 showed that the errors in all simulations were less than 2%, with errors of 12% and 6% observed at effective stresses of 0.5 MPa and 3 MPa, respectively. The simulation results indicate that the presence of the screen pipe in the hydrate reservoir exerts little effect on the decomposition of gas hydrates, but it effectively mitigates stress concentration in the near-wellbore region, redistributing the effective stress and significantly reducing the instability risk of the hydrate reservoir. Furthermore, the distribution of mechanical parameters around the screen pipe is uneven, with maximum values of equivalent Mises stress, volumetric strain, and displacement generally occurring on the inner side of the screen pipe in the horizontal crustal stress direction, making plastic instability most likely to occur in this area. With other basic parameters held constant, the maximum equivalent Mises stress and the instability area within the screen increase with the rise in the production pressure drop and wellbore size, and the decrease in screen pipe thickness. The results of this study lay the foundation for wellbore instability control in the production of offshore natural gas hydrates via depressurization. The study provides new insights into sustainable energy extraction, as improving wellbore stability during the extraction process can enhance resource utilization, reduce environmental impact, and promote sustainable development in energy exploitation. Full article
Show Figures

Figure 1

15 pages, 3832 KB  
Article
The Mechanism of a High Fluid Pressure Differential on the Sealing Performance of Rotary Lip Seals
by Bo He, Xia Li, Wenhao He, Zhiyu Dong, Kang Yang, Zhibin Lu and Qihua Wang
Lubricants 2025, 13(9), 413; https://doi.org/10.3390/lubricants13090413 - 15 Sep 2025
Viewed by 1188
Abstract
Rotary lip seals serve as critical sealing components in industrial equipment, traditionally relying on the reverse pumping theory for their sealing mechanism. However, increasing operational demands characterized by high fluid pressure differentials, elevated speeds, and multi-physics coupling environments have revealed limitations in the [...] Read more.
Rotary lip seals serve as critical sealing components in industrial equipment, traditionally relying on the reverse pumping theory for their sealing mechanism. However, increasing operational demands characterized by high fluid pressure differentials, elevated speeds, and multi-physics coupling environments have revealed limitations in the applicability of the classical theory. This study aims to develop a comprehensive model to quantitatively characterize rotary lip seal performance, specifically frictional torque and reverse pumping rate, and to elucidate underlying mechanisms beyond classical theory. We developed a Mixed Thermo-Hydrodynamic Lubrication (MTHL) model that explicitly integrates fluid–solid–thermal coupling effects to simulate seal behavior under complex operating parameters. The simulations reveal that reverse pumping rate increases near-linearly with rotational speed from −8.54 mm3/s (0 m/s) to 122.82 mm3/s (3 m/s) and 220.27 mm3/s (6 m/s), validating classical theory, while under elevated fluid pressure differentials, a distinct non-monotonic trend emerges: rates evolve from 122.82 mm3/s (0.10 MPa) to 172.93 mm3/s (0.12 MPa), then decline to 52.67 mm3/s (0.18 MPa), and recover to 69.87 mm3/s (0.22 MPa), a phenomenon that cannot be explained by classical sealing mechanisms. Mechanistic analysis indicates that this anomaly stems from a competitive interaction between pressure-driven and shear-driven flow. This discovery not only enhances the reverse pumping theoretical system but also provides a theoretical foundation for optimizing sealing performance under diverse operational conditions. Full article
Show Figures

Figure 1

Back to TopTop