Abstract
In recent years, honeycomb sandwich structures have seen continuous development due to their excellent structural performance and design flexibility in heat dissipation. However, their complex heat transfer mechanisms and diverse modes of thermal exchange necessitate research on the air flow behavior and temperature distribution characteristics of micro-channels and lattice pores. This study investigates the internal flow field within a ventilated honeycomb sandwich structure through numerical simulation. The spatial flow characteristics and temperature distribution are analyzed, with a focus on the effects of turbulent kinetic energy, heat flux distribution on the heated surface, and varying pressure drop conditions on the thermal performance. The results indicate that the micro-channels inside the honeycomb core lead to a strong correlation between temperature distribution, flow velocity, and turbulence intensity. Regions with higher flow velocity and turbulent kinetic energy exhibit lower temperatures, confirming the critical role of flow motion in heat transfer. Heat flux analysis further verifies that heat is primarily removed by airflow, with superior heat exchange occurring inside the honeycomb cells compared to the solid regions. The intensive mixing induced by highly turbulent flow within the small cells enhances contact with the solid surface, thereby improving heat conduction from the solid to the flow. Moreover, as the inlet pressure increases, the overall temperature gradually decreases but exhibits a saturation trend. This indicates that beyond a certain pressure level, further increasing the inlet pressure yields diminishing returns in heat dissipation enhancement.