Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,697)

Search Parameters:
Keywords = ferrous

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4752 KB  
Article
The Microstructure and Properties of Hard Anodic Oxide Coatings on 5754 Aluminium Alloy Modified with Al2O3, PTFE and CaCO3 Nanoparticles
by Anna Kozik, Marek Nowak, Kamila Limanówka and Anna Góral
Materials 2026, 19(2), 378; https://doi.org/10.3390/ma19020378 (registering DOI) - 17 Jan 2026
Abstract
Hard anodic oxide coatings on aluminium have long been used to enhance surface functionality. However, increasing industrial demands are driving the need for coatings with superior hardness, wear resistance, corrosion resistance and self-lubricating properties. Due to their porous structure, anodic oxide coatings can [...] Read more.
Hard anodic oxide coatings on aluminium have long been used to enhance surface functionality. However, increasing industrial demands are driving the need for coatings with superior hardness, wear resistance, corrosion resistance and self-lubricating properties. Due to their porous structure, anodic oxide coatings can be modified by incorporating various nanoparticles. The properties of the modified coatings depend on both the type of nanoparticles used and the method employed to incorporate them. In this study, anodic oxide coatings were produced using direct and duplex methods on a semi-industrial scale to enable process control and potential industrial implementation. The coatings were modified with hard (Al2O3) and soft (CaCO3, PTFE) nanoparticles in order to customise their functional properties. Their microstructure and chemical composition were characterised by SEM and TEM. Their microhardness, abrasion resistance and electrochemical behaviour were also evaluated. Among the tested production methods and methods for modifying nanoparticles, the duplex process incorporating Al2O3 particles proved to be the most promising. Its optimisation resulted in coatings with a microhardness of 430 HV0.05 and a mass loss of 9.4 mg after the Taber abrasion test, demonstrating the potential of this approach for industrial applications. Full article
(This article belongs to the Special Issue Advances in Electrodeposition of Thin Films and Alloys)
Show Figures

Graphical abstract

17 pages, 1978 KB  
Article
Challenging the Circular Economy: Hidden Hazards of Disposable E-Cigarette Waste
by Iwona Pasiecznik, Kamil Banaszkiewicz, Mateusz Koczkodaj and Aleksandra Ciesielska
Sustainability 2026, 18(2), 961; https://doi.org/10.3390/su18020961 (registering DOI) - 17 Jan 2026
Abstract
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite [...] Read more.
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite growing research interest, integrated analyses linking material composition with user disposal behavior remain limited. This study is the first to incorporate device-level mass balance, material contamination assessment, battery residual charge measurements, and user behavior to evaluate the waste management challenges of disposable e-cigarettes. A mass balance of twelve types of devices on the Polish market was performed. Plastics dominated in five devices, while non-ferrous metals prevailed in the others, depending on casing design. Materials contaminated with e-liquid residues accounted for 4.4–10.7% of device mass. Battery voltage measurements revealed that 25.6% of recovered LIBs retained a residual charge (greater than 2.5 V), posing a direct fire hazard during waste handling and treatment. Moreover, it was estimated that 7 to 12 tons of lithium are introduced annually into the Polish market via disposable e-cigarettes, highlighting substantial resource potential. Survey results showed that 46% of users disposed of devices in mixed municipal waste, revealing a knowledge–practice gap largely independent of gender or education. Integrating technical and social findings demonstrates that improper handling is a systemic issue. The findings support the relevance of eco-design requirements, such as modular casings for battery removal, alongside the enforcement of Extended Producer Responsibility (EPR) schemes. Current product fees (0.01–0.03 EUR/unit) remain insufficient to establish an effective collection infrastructure, highlighting a key systemic barrier. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

19 pages, 9647 KB  
Article
Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications
by Zeynep Tutku Ozen, Necip Unlu, Irem Yaren Siyah, Sonia Boczkal, Gorkem Ozcelik and Salim Aslanlar
Materials 2026, 19(2), 377; https://doi.org/10.3390/ma19020377 (registering DOI) - 17 Jan 2026
Abstract
Recycling of 6xxx aluminum alloys, which are used extensively in the automotive industry, is important for ensuring a carbon-neutral future and the efficient use of resources on Earth. The sustainability of recycling in aluminum alloys is directly proportional to the correct classification of [...] Read more.
Recycling of 6xxx aluminum alloys, which are used extensively in the automotive industry, is important for ensuring a carbon-neutral future and the efficient use of resources on Earth. The sustainability of recycling in aluminum alloys is directly proportional to the correct classification of the scrap to be used. In this study, scrap stream from a novel scrap-sorting technology called MULTI-PICK has been used to validate. The 6063 and 6082 alloys produced with scrap stream, which are commonly used for structural parts in the automotive sector, are analyzed with hydrogen analysis and PREFIL. Cast billets are evaluated considering extrusion. After extrusion, microstructures of the profiles are investigated with scanning electron microscopy (SE), transmission electron microscopy (TE) and electron backscatter diffraction (EBSD). Their mechanical properties and anisotropic behaviors are investigated with tensile testing in different orientations. Additionally, an alternative alloy called 6111 has been studied to replace the target alloys with low critical raw material (CRM) content. According to the findings, highly recycled 6xxx alloys can be used in the automotive industry without losing their existing properties. Furthermore, using alternative feedstock and retrofitted systems can decrease carbon footprint below 4 kgCeq/kgAl. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Graphical abstract

23 pages, 2246 KB  
Article
Bulb-Priming Followed by Foliar Magnetite Nanoparticle Applications Improve Growth, Bulb Yield, Antioxidant Activities, and Iron Fortification in Shallot in Semi-Arid Regions
by Soroush Moguee, Sina Fallah, Lok R. Pokhrel and Zohrab Adavi
Plants 2026, 15(2), 279; https://doi.org/10.3390/plants15020279 (registering DOI) - 16 Jan 2026
Abstract
Shallot (Allium hirtifolium Boiss.) is of considerable nutritional and medical significance due to its strong antioxidant properties; however, no nanophytotoxicity studies have assessed whether the use of nanofertilizers would improve shallot performance, micronutrient iron (Fe) enrichment, and yield in semi-arid regions. Herein, [...] Read more.
Shallot (Allium hirtifolium Boiss.) is of considerable nutritional and medical significance due to its strong antioxidant properties; however, no nanophytotoxicity studies have assessed whether the use of nanofertilizers would improve shallot performance, micronutrient iron (Fe) enrichment, and yield in semi-arid regions. Herein, we evaluated the effects of magnetite nanoparticles (nFe3O4) on shallot grown for a full lifecycle in two semi-arid regions through bulb-priming followed by foliar application and compared them with conventional ferrous sulfate (FeSO4) fertilizer and untreated control. Our results showed remarkable cellular adaptations to semi-arid climate upon nFe3O4 treatment as leaves displayed thickened cell walls, distinct chloroplasts featuring organized thylakoid grana and stroma, normal mitochondria, abundant starch grains, and plastoglobuli around chloroplasts compared to FeSO4 or untreated control. At 900 mg/L nFe3O4, chlorophyll-a, chlorophyll-b, and carotenoid increased by 27–55%, 108–126%, and 77–97%, respectively, compared to FeSO4 applied at recommended field rate (1800 mg/L). Significant increments in bulb diameter (38–39%) and sister bulb number (300–500%) were observed upon 900 mg/L nFe3O4 treatment compared to FeSO4 (1800 mg/L) and control. Furthermore, with 900 mg/L nFe3O4 treatment, total phenol, flavonoids, and Fe in bulbs increased by 27–46%, 29–73%, and 486–549%, respectively, compared to FeSO4 (1800 mg/L). These findings demonstrate that bulb-priming followed by foliar application of 900 mg/L of nFe3O4 could significantly promote cellular adaptation, thereby improving photosynthetic efficiency, bulb yield, antioxidant activities, and Fe biofortification in shallot, and may serve as a novel approach for improving shallot production in semi-arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

26 pages, 11938 KB  
Article
Spatiotemporal Analysis of Progressive Rock Slope Landslide Destabilization and Multi-Parameter Reliability Analysis
by Ibrahim Haruna Umar, Jubril Izge Hassan, Chaoyi Yang and Hang Lin
Appl. Sci. 2026, 16(2), 939; https://doi.org/10.3390/app16020939 - 16 Jan 2026
Abstract
Progressive rock slope destabilization poses significant geohazard risks, necessitating advanced monitoring frameworks to detect precursory failure signals. This study presents a comprehensive time-dependent evaluation of the displacement probability (CTEDP) model, which integrates GNSS-derived spatiotemporal data with multi-parameter reliability indices to enhance landslide risk [...] Read more.
Progressive rock slope destabilization poses significant geohazard risks, necessitating advanced monitoring frameworks to detect precursory failure signals. This study presents a comprehensive time-dependent evaluation of the displacement probability (CTEDP) model, which integrates GNSS-derived spatiotemporal data with multi-parameter reliability indices to enhance landslide risk assessment. Five monitoring points on a destabilizing rock slope were analyzed from mid-November 2024 to early January 2025 using kinematic metrics (velocity, acceleration, and jerk), statistical measures (e.g., moving averages), and reliability indices (RI0, RI1, RI2, and RIcombined). Point 1 exhibited the most critical behavior, with a cumulative displacement of ~60 mm, peak velocities of 34.5 mm/day, and accelerations up to 1.15 mm/day2. The CTEDP for active points converged to 0.56–0.61, indicating sustained high risk. The 90th percentile displacement threshold was 58.48 mm for Point 1. Sensitivity analysis demonstrated that the GNSS-derived reliability indices dominated the RIcombined variance (r = 0.999, explaining 99.8% of variance). The first- and second-order reliability indices (RI1, RI2) at Point 1 exceeded the 60-index threshold, indicating a transition to Class B (“Low Risk—Trend Surveillance Required”) status, while other points showed coherent deformation of 37–45 mm. Results underscore the framework’s ability to integrate spatiotemporal displacement, kinematic precursors, and statistical variability for early-warning systems. This approach bridges gaps in landslide prediction by accounting for spatial heterogeneity and nonlinear geomechanical responses. Full article
Show Figures

Figure 1

17 pages, 6454 KB  
Article
High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy
by Jing Qu, Faqin Xie, Xiangqing Wu, Guangrui Gao and Dong Han
Coatings 2026, 16(1), 116; https://doi.org/10.3390/coatings16010116 - 15 Jan 2026
Viewed by 126
Abstract
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and [...] Read more.
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and oxidation time were obtained for the uncoated and the coated samples at 850 °C with rate exponents of 2.38 and 2.14, respectively. After oxidation at 850 °C for 200 h, a continuous and dense oxide layer primarily composed of α-Al2O3 with a low oxidation reaction rate was formed, and the mass gain of the coated sample was 1/9 times that of the uncoated sample. Additionally, the addition of Cr and Nb in the TiAlCrSiNbY coating can increase the activity of Al and promoted the formation of stable and dense Al2O3 oxide films, the presence of a strong high-temperature stability Ti5Si3 phase inhibited the affinity of Ti and O, which maintained structural integrity and enhanced high-temperature oxidation resistance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 8724 KB  
Article
Microstructure and Property of the Weld Heat-Affected Zone of T4003 Ferritic Stainless Steel with Different Mo Contents
by Yunlong Duan, Yang Hui, Xuefeng Lu, Jie Sheng and Xingchang Tang
Metals 2026, 16(1), 90; https://doi.org/10.3390/met16010090 - 14 Jan 2026
Viewed by 72
Abstract
In the present contribution, Hot-rolled and annealed ferritic stainless steel T4003 with three distinct Mo contents (0%, 0.1%, and 0.2%) served as the research subject. Weldability tests were implemented by means of gas metal arc welding. Coupled with microstructural characterization, mechanical property assessments, [...] Read more.
In the present contribution, Hot-rolled and annealed ferritic stainless steel T4003 with three distinct Mo contents (0%, 0.1%, and 0.2%) served as the research subject. Weldability tests were implemented by means of gas metal arc welding. Coupled with microstructural characterization, mechanical property assessments, and electrochemical corrosion tests, the regulatory mechanism of Mo on the microstructure and properties of the HAZ was systematically elucidated. Results demonstrate that the influence of Mo content on the evolution of the coarse-grained region structure of heat affected zone becomes significant. The addition of 0.1% Mo refines the grains, increasing the fraction of lath martensite to 70–75% while limiting the maximum width of the coarse-grained zone to 0.64 mm. Meantime, the addition promotes the precipitation of (Nb, Ti, Mo) (C, N) composite carbonitrides, enhancing overall performance through synergistic grain refinement and second-phase strengthening. The sample with 0.1% Mo exhibits an average low-temperature impact energy of 16.3 J at −40 °C, with the highest Vickers hardness in the HAZ, favorable strength–plasticity synergy of the welded joint, and optimal corrosion resistance. The coarse-grained zone of the 0.2% Mo sample is dominated by coarse δ-ferrite and features a larger width, and the HAZ shows inferior mechanical properties and corrosion resistance. The precipitated phases in the 0.2% Mo segregate along the grain boundaries and distribute in a chain-like distribution, exacerbating the deterioration of material properties. These findings provide a technical reference for optimizing the composition design of T4003 ferritic stainless steel and ensuring its safe application in railway freight vehicles. Full article
Show Figures

Graphical abstract

22 pages, 14195 KB  
Article
Study of Phase Transformations of Iron Minerals During Electrochemical Reduction of Unmilled Bauxite Particles in an Alkaline Media and Subsequent High-Pressure Bayer Process Leaching
by Andrei Shoppert, Dmitrii Valeev, Irina Loginova and Denis Pankratov
Minerals 2026, 16(1), 74; https://doi.org/10.3390/min16010074 - 13 Jan 2026
Viewed by 179
Abstract
This article focuses on studying the phase transformation of bauxite iron minerals during electrolytic reduction processes in alkaline solutions (400 g/L Na2O), with the aim of improving aluminum extraction in the subsequent Bayer process. The research employs electrolytic reduction to convert [...] Read more.
This article focuses on studying the phase transformation of bauxite iron minerals during electrolytic reduction processes in alkaline solutions (400 g/L Na2O), with the aim of improving aluminum extraction in the subsequent Bayer process. The research employs electrolytic reduction to convert the refractory minerals in unmilled bauxite (alumogoethite (Fe,Al)OOH, alumohematite (Fe,Al)2O3, chamosite (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8) into magnetite, elemental iron (Fe) and to minimize aluminum (Al) extraction during electrolysis. Preliminary thermodynamic research suggests that the presence of hematite (α-Fe2O3) and chamosite in boehmitic bauxite increases the iron concentration in the solution. Cyclic voltammetry revealed that, in the initial stage of electrolysis, overvoltage at the cathode decreases as metallic iron deposited and conductive magnetite form on the surface of the particles. After 60 min, the reduction efficiency begins to decrease. The proportion of the current used for magnetization and iron deposition on the cathode decreased from 89.5% after 30 min to 67.5% after 120 min. After 120 min of electrolytic reduction, the magnetization rate exceeded 65%; however, more than 60% of the Al was extracted simultaneously. Al extraction after electrolysis and subsequent Bayer leaching exceeded 91.5%. Studying the electrolysis product using SEM-EDS revealed the formation of a dense, iron-containing reaction product on the particles’ surface, preventing diffusion of the reaction products (sodium ferrite and sodium aluminate). Mössbauer spectroscopy of the high-pressure leaching product revealed that the primary iron-containing phases of bauxite residue are maghemite (γ-Fe2O3), formed during the hydrolysis of sodium ferrite. Full article
(This article belongs to the Special Issue Advances in Process Mineralogy)
Show Figures

Graphical abstract

19 pages, 7369 KB  
Article
Risk Visualization in Mining Processes Based on 3Dmine-3DEC Data Interoperability
by Ai-Bing Jin, Cong Ma, Yi-Qing Zhao, Hu-Kun Wang and Ze-Hao Li
Appl. Sci. 2026, 16(2), 816; https://doi.org/10.3390/app16020816 - 13 Jan 2026
Viewed by 113
Abstract
The use of geological models for mine production scheduling, planning, and design is a common aspect of current digital mine construction. Establishing a mapping relationship from digital geological resources to mining process simulation and then to risk early warning, enabling real-time interaction between [...] Read more.
The use of geological models for mine production scheduling, planning, and design is a common aspect of current digital mine construction. Establishing a mapping relationship from digital geological resources to mining process simulation and then to risk early warning, enabling real-time interaction between digital models and physical mines, is an essential component of mining digital twins and an important direction for future development. This study is based on a non-ferrous metal mine and involves the development of data interaction functionality between 3Dmine (enterprise edition) and 3DEC7.0 software. This enables data mapping between geological models and numerical models, as well as real-time 3D visualization of risk points in the geological model. The main research findings are as follows: (1) Based on UAV photogrammetry and geological exploration data, a refined 3D geological model incorporating the surface, subsidence zones, goaf groups, and roadway systems was constructed using 3Dmine. The mine numerical model was then generated through 3Dmine-3DEC coupling technology. (2) A 3DEC-3Dmine data interaction interface based on Python was developed. Intelligent extraction and format conversion of mechanical parameters, such as stress and displacement, were achieved through secondary development, and a multi-software collaboration platform was built using an SQL database. A three-dimensional visual characterization script for risk points was developed. (3) Based on the strength–stress ratio and the nearest distance attribute assignment method, the three-dimensional visualization of blocks with different risk levels in 3Dmine is realized. (4) When the adjacent mine rooms are excavated in turn, the range of grade II risk area will be obviously expanded and a more serious grade III risk area will appear. The research findings offer a direction for the future development of mining digital twin technology, as well as technical support and theoretical guidance for analyzing and predicting safety risks during the mining process. Full article
Show Figures

Figure 1

13 pages, 3418 KB  
Article
Environmental Compliance of Ferrous Waste Moulding Sand and Best Foundry Practices for Hazardous Metals (Mn, Ni, and Cr)
by Kolela Joseph Nyembwe, Martina Petranikova, Kasongo Didier Nyembwe, Thabo T. I. Nkambule and Mukuna Patrick Mubiayi
Processes 2026, 14(2), 273; https://doi.org/10.3390/pr14020273 - 13 Jan 2026
Viewed by 112
Abstract
The circular economy approach aims to reduce raw material use and limit landfill disposal of industrial by-products. In the metal casting industry, waste foundry sand (WFS) disposal is a persistent financial and environmental challenge due to hazardous metal contamination. This study assessed three [...] Read more.
The circular economy approach aims to reduce raw material use and limit landfill disposal of industrial by-products. In the metal casting industry, waste foundry sand (WFS) disposal is a persistent financial and environmental challenge due to hazardous metal contamination. This study assessed three South African ferrous foundries’ sand streams—virgin, fettling/shot blast, and moulding/shakeout—using the toxicity characteristic leach procedure (TCLP) under the South African Waste Management Act. Results showed that while virgin sand was inert, fettling/shot blast and shakeout sands contained elevated Cr (0.024–1.02 mg/L), Mn (62–97 mg/L), and Ni (0.14–3.26 mg/L), exceeding inert waste thresholds (Cr: 0.05 mg/L; Mn: 0.5 mg/L; Ni: 0.07 mg/L). The shakeout sand, which accounts for 50–70% of total foundry waste, was the most critical stream. Particle size analysis revealed that the majority of sand (70%) falls between 600 and 75 µm, with hazardous metals concentrated in fine fractions (<150 µm). These fines contained up to 94–97% magnetic metallic debris, primarily Cr, Mn, and Ni, and exhibited TCLP leachability above inert classification limits. By contrast, coarser fractions (>150 µm) had low leachability and characteristics comparable to virgin sand. A simple size segregation treatment reduced hazardous metal content by up to 93–97%, rendering 75–85% of shakeout sand inert, while only 10–15% (fine portion) required hazardous waste disposal. These findings highlight that targeted removal of fines can substantially reduce disposal costs and environmental risk, supporting greener and more sustainable foundry operations. Full article
(This article belongs to the Special Issue Advanced Methods of Metal Recycling)
Show Figures

Figure 1

22 pages, 8601 KB  
Article
Influence of Twist Channel Angular Pressing Process on Microhardness and Microstructural Behavior of Explosively Welded Al/Cu Plates
by Krzysztof Żaba, Łukasz Kuczek, Ilona Różycka, Ondřej Hilšer, Tomasz Trzepieciński and Kinga Ortyl
Materials 2026, 19(2), 302; https://doi.org/10.3390/ma19020302 - 12 Jan 2026
Viewed by 127
Abstract
Due to their unique properties resulting from the combination of metals with different properties, bimetallic sheets are desirable in the energy, petrochemical, and shipbuilding industries. In this article, explosively welded EN AW-1050/Cu-ETP (Al/Cu) plates were used as the test material. One of the [...] Read more.
Due to their unique properties resulting from the combination of metals with different properties, bimetallic sheets are desirable in the energy, petrochemical, and shipbuilding industries. In this article, explosively welded EN AW-1050/Cu-ETP (Al/Cu) plates were used as the test material. One of the greatest advantages of Al/Cu bimetallic plates is their high deformability, which allows for easy plastic forming. The aim of this study was to determine the effect of severe plastic deformation on the microstructure and microhardness of explosively welded EN AW-1050/Cu-ETP plates. Bimetallic samples were processed using the Twist Channel Angular Pressing (TCAP) process. This process consisted of varying the number of passes and the sample orientation relative to the helical exit channel of the TCAP die. For comparative purposes, a microstructural analysis and the microhardness testing of the as-welded samples were also carried out. Microstructural analysis of TCAP-processed samples showed that the sample deformed along route Bc exhibited the most deformed weld interface profile. No cracking or delamination was observed in the Al/Cu interfacial transition layer of TCAP-processed samples. The number of passes and orientation of the bimetallic material relative to the die exit channel affected the final microhardness in the individual layers of explosively welded EN AW-1050/Cu-ETP bimetallic plate. Full article
Show Figures

Figure 1

16 pages, 1407 KB  
Article
Quantitative Source Identification of Heavy Metals in Soil via Integrated Data Mining and GIS Techniques
by Li Ma, Jing Wang and Xu Liu
Processes 2026, 14(2), 248; https://doi.org/10.3390/pr14020248 - 10 Jan 2026
Viewed by 179
Abstract
Soil heavy metal contamination poses significant risks to ecological safety and human health, particularly in rapidly industrializing cities. Effectively identifying pollution sources is crucial for risk management and remediation. GIS coupled with data mining techniques, provide a powerful tool for quantifying and visualizing [...] Read more.
Soil heavy metal contamination poses significant risks to ecological safety and human health, particularly in rapidly industrializing cities. Effectively identifying pollution sources is crucial for risk management and remediation. GIS coupled with data mining techniques, provide a powerful tool for quantifying and visualizing these sources. This study investigates the concentration, spatial distribution, and sources of heavy metals in urban soils of Bengbu City, an industrial and transportation hub in eastern China. A total of 139 surface soil samples from the urban core were analyzed for nine heavy metals. Using integrated GIS and PCA-APCS-MLR data mining techniques, we systematically determined their contamination characteristics and apportioned sources. The results identified widespread Hg enrichment, with concentrations exceeding background levels at all sampling sites, and a Cd exceedance rate of 28.06%, leading to a moderate ecological risk level overall. Spatial patterns revealed significant heterogeneity. Quantitative source apportionment identified four primary sources: industrial source (37.1%), which was the dominant origin of Cr, Cu, and Ni, primarily associated with precision manufacturing and metallurgical activities; mixed source (26.7%) governing the distribution of Mn, As, and Hg, mainly from coal combustion and the natural geological background; traffic source (22.3%) significantly contributing to Pb and Zn; and a specific cadmium source (13.9%) potentially originating from non-ferrous metal smelting, electroplating, and agricultural activities. These findings provide a critical scientific basis for targeted pollution control and sustainable land-use management in analogous industrial cities. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

26 pages, 6395 KB  
Review
In Situ Characterization of Anode Materials for Rechargeable Li-, Na- and K-Ion Batteries: A Review
by Jinqi Gui, Shuaiju Meng, Xijun Liu and Zhifeng Wang
Materials 2026, 19(2), 280; https://doi.org/10.3390/ma19020280 - 9 Jan 2026
Viewed by 214
Abstract
Rechargeable lithium-, sodium-, and potassium-ion batteries are utilized as essential energy storage devices for portable electronics, electric vehicles, and large-scale energy storage systems. In these systems, anode materials play a vital role in determining energy density, cycling stability, and safety of various batteries. [...] Read more.
Rechargeable lithium-, sodium-, and potassium-ion batteries are utilized as essential energy storage devices for portable electronics, electric vehicles, and large-scale energy storage systems. In these systems, anode materials play a vital role in determining energy density, cycling stability, and safety of various batteries. However, the complex electrochemical reactions and dynamic changes that occur in anode materials during charge–discharge cycles generate major challenges for performance optimization and understanding failure mechanisms. In situ characterization techniques, capable of real-time tracking of microstructures, composition, and interface dynamics under operating conditions, provide critical insights that bridge macroscopic performance and microscopic mechanisms of anodes. This review systematically summarizes the applications of such techniques in studying anodes for lithium-, sodium-, and potassium-ion batteries, with a focus on their contributions across different anode types. It also indicates current challenges and future directions of these techniques, aiming to offer valuable references for relevant applications and the design of high-performance anodes. Full article
(This article belongs to the Special Issue Technology in Lithium-Ion Batteries: Prospects and Challenges)
Show Figures

Graphical abstract

25 pages, 13641 KB  
Article
Microstructure Evolution and Plastic Deformation Mechanism of Cold Rolling Deformation of Micro/Nano Pure Electrolytic Nickel
by Han Zhang, Jisen Qiao, Hao Yang, Yangtao Xu and Tiandong Xia
Materials 2026, 19(2), 235; https://doi.org/10.3390/ma19020235 - 7 Jan 2026
Viewed by 130
Abstract
This paper investigates the cold rolling (CR) deformation behavior of electrolytic nickel at room temperature. While the microstructural evolution across deformation levels ranging from 5% to 98% is systematically characterized. The deposited electrolytic nickel exhibits numerous growth twins of various lengths and thicknesses, [...] Read more.
This paper investigates the cold rolling (CR) deformation behavior of electrolytic nickel at room temperature. While the microstructural evolution across deformation levels ranging from 5% to 98% is systematically characterized. The deposited electrolytic nickel exhibits numerous growth twins of various lengths and thicknesses, accounting for over 70% of the microstructure. The average grain size is 0.56 μm, and the grain size distribution is relatively broad. The plastic deformation of electrolytic nickel in the early stage is governed by the interaction between high-density dislocations and abundant twins. The primary mechanism accommodating deformation is detwinning. At 70% deformation, under high strain, complete detwinning occurs. When the CR reaches 90%, the average short-axis grain size is refined to 113 nm, indicating the deformation-induced refinement limit of electrolytic nickel. The microstructure at this stage exhibits a typical lamellar morphology. At 98% deformation, the average microhardness peaks at 240.3 HV, representing a cumulative increase of 46.88%. Dynamic recovery and recrystallization are observed at both 70% and 98% deformation levels, accompanied by the formation of Σ3 {120} type incoherent twins within recrystallized grains. Under large strain, the dominant cold plastic deformation mechanism transitions to a synergistic effect of dislocation slip and stratification. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 2122 KB  
Article
New Polycationic Arabinogalactan Derivatives with the CHPTAC System: Structure, Properties and Antioxidant Activity
by Maria V. Sereda, Yuriy N. Malyar, Valentina S. Borovkova and Alexander S. Kazachenko
Polymers 2026, 18(2), 148; https://doi.org/10.3390/polym18020148 - 6 Jan 2026
Viewed by 220
Abstract
Cationic arabinogalactan (AG) derivatives with a degree of substitution (0.02–0.19) containing quaternary ammonium groups were prepared by reaction of the etherification of (3-Chloro-2-hydroxypropyl)-trimethylammonium chloride (CHPTAC), catalyzed by an aqueous solution of sodium hydroxide. The effect of etherification was assessed by the degree of [...] Read more.
Cationic arabinogalactan (AG) derivatives with a degree of substitution (0.02–0.19) containing quaternary ammonium groups were prepared by reaction of the etherification of (3-Chloro-2-hydroxypropyl)-trimethylammonium chloride (CHPTAC), catalyzed by an aqueous solution of sodium hydroxide. The effect of etherification was assessed by the degree of substitution (DS). The DS values of the AG samples were controlled by the varied pH of the reaction mixture from 10 to 12 and the duration of the process quaternization (2, 18, 24, 30 and 72 h). In comparison, the quaternized samples of the AG were characterized by physicochemical research methods, such as elemental analysis, gel permeation chromatography (GPC), Fourier Transform Infrared (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA). Furthermore, the improved antioxidant capacity of the quaternized AGs was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. It was found that the most favorable conditions for the quaternization process were pH = 12, duration and temperature of the process of 31.6 h and 50 °C, respectively. The esterification reaction was accompanied by hydrolysis side reactions at a longer process. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop