Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications
Highlights
- MULTI-PICK–sorted aluminum scrap enables high melt cleanliness suitable for extrusion.
- Detailed OM, SEM/EDS, TEM, and EBSD analyses reveal that 6063 and 6082 alloys with high recycled content develop stable and uniform microstructures.
- The high-recycled 6063 and 6082 alloys, as well as the CRM-lean 6111 alloy, meet the mechanical requirements for automotive applications.
- High post-consumer scrap content can be safely integrated into 6xxx aluminum alloys without compromising performance.
- Advanced sorting and controlled processing enable reliable industrial use of recycled aluminum for structural automotive components.
- The results support scalable, circular-economy aluminum production aligned with sustainability targets.
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Molten Metal Analysis Results
3.1.1. Hydrogen Content Analysis Results
3.1.2. Inclusion Analysis via PREFIL Results
3.2. Extrusion Feasibility Analysis Results
3.2.1. Ultrasonic Testing Results
3.2.2. Microstructure Investigation via Optical Microscopy Results
3.3. Microstructure and Performance Analysis Results of the Aluminum Profiles
3.3.1. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) Results
3.3.2. Transmission Electron Microscopy (TEM) and Electron Dispersive Spectrometer (EDS) Results
3.3.3. Electron Backscatter Diffraction (EBSD) Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brough, D.; Jouhara, H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids 2020, 1–2, 100007. [Google Scholar] [CrossRef]
- Haraldsson, J.; Johansson, M. Energy efficiency in the supply chains of the aluminium industry: The cases of five products made in Sweden. Energies 2019, 12, 245. [Google Scholar] [CrossRef]
- Prach, O.; Horník, J.; Mykhalenkov, K. Effect of the addition of Li on the structure and mechanical properties of hypoeutectic al-Mg2Si alloys. Acta Polytech. 2015, 55, 253. [Google Scholar] [CrossRef]
- Rechberger, H.; Cossu, R.; Olsson, O. Recovery of metals and minerals from urban waste: Proposal for a harmonized methodology and assessment of recovery potential at global scale. Resour. Conserv. Recycl. 2018, 129, 190–198. [Google Scholar]
- Hagelüken, C.; Bloemhof-Ruwaard, J.M.; Brezet, H. Sustainable metals management: Securing our future—Steps towards a closed loop economy. Resour. Conserv. Recycl. 2017, 120, 1–11. [Google Scholar]
- Maes, N.; Dewulf, W.; Heyde, M.; Huygens, D. The recyclability of aluminum cans and the aluminum industry’s perspective. Resour. Conserv. Recycl. 2018, 132, 37–44. [Google Scholar]
- Deng, Y.; Cao, Z.; Hunt, R.; Sun, W.; Zeng, G.; Shuai, S.; Robson, J.D.; Yan, K. Effects of increased Fe content on local damage in recycled 6xxx aluminium alloy. Mater. Sci. Eng. A 2025, 943, 148756. [Google Scholar] [CrossRef]
- De Caro, D.; Tedesco, M.M.; Pujante, J.; Bongiovanni, A.; Sbrega, G.; Baricco, M.; Rizzi, P. Effect of recycling on the mechanical properties of 6000 series aluminum-alloy sheet. Materials 2023, 16, 6778. [Google Scholar] [CrossRef]
- Du, S.; Zhang, S.; Wang, J.; Wang, M.; Lv, Z.; Xu, Z.; Ma, L.; Liu, C.; Wang, J.; Liu, J.; et al. Sustainable recycling of aluminum scraps to recycled aerospace-grade 7075 aluminum alloy sheets. Sustain. Mater. Technol. 2024, 41, e01100. [Google Scholar] [CrossRef]
- Vrw. Multipick—A Robotic Sorting Solution for the Vehicle Recycling İndustry. Auto Recycling World. Available online: https://autorecyclingworld.com/multipick-a-robotic-sorting-solution-for-the-vehicle-recycling-industry/ (accessed on 2 July 2021).
- EN 573-3:2013; Aluminium and Aluminium Alloys—Chemical Composition and Form of Wrought Products—Part 3: Chemical Composition and Form of Products. European Committee for Standardization (CEN): Brussels, Belgium, 2013.
- EN 583:2016; Non-Destructive Testing—Ultrasonic Examination—General Principles. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- EN 12680-1:2018; Founding—Ultrasonic Examination—Part 1: Steel Castings. European Committee for Standardization (CEN): Brussels, Belgium, 2018.
- ASTM B594-21; Standard Practice for Ultrasonic İnspection of Aluminum-Alloy Wrought Products. ASTM International: Conshohocken, PA, USA, 2021.
- EN ISO 6892-1:2020; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2020.
- Samuel, A.M.; Samuel, E.; Songmene, V.; Samuel, F.H. A review on porosity formation in aluminum-based alloys. Materials 2023, 16, 2047. [Google Scholar] [CrossRef]
- Stanica, C.; Moldovan, P. Aluminium melt cleanliness performance evaluation using PoDFA (Porous Disk Filtration Apparatus) technology. UPB Sci. Bull. Ser. B 2009, 71, 107–114. [Google Scholar]
- Demirpolat, H.; Akdı, S.; Alkan, B. The effect of homogenization and chemical compositions of 6005 and 6082 aluminium alloys on the cold forming process. Eur. J. Sci. Technol. 2021, 28, 16–20. [Google Scholar] [CrossRef]
- Chen, B. A comprehensive review of θ-series precipitates in aluminum alloys. Materials 2025, 18, 5406. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Tang, M.; Chen, W.; Huang, C.; Du, J. Microstructure evolution and mechanical properties of AS-cast Al–Mg–Si alloy induced by Fe addition. J. Mater. Res. Technol. 2025, 39, 202–212. [Google Scholar] [CrossRef]
- Que, Z.; Wang, Y.; Mendis, C.L.; Fang, C.; Xia, J.; Zhou, X.; Fan, Z. Understanding fe-containing intermetallic compounds in al alloys: An overview of recent advances from the Lime Research Hub. Metals 2022, 12, 1677. [Google Scholar] [CrossRef]
- Liu, T.; Hu, G.; Wang, Y.; Zeng, J.; Dong, Q.; Bian, F.; Cao, Z.; Meng, N.; Zhang, J.; Sun, B. Investigation of precipitation strengthening behavior of Al-mg-si alloy using SAXS. Trans. Nonferrous Met. Soc. China 2023, 33, 1305–1317. [Google Scholar] [CrossRef]
- Wei, P.; Yang, L.; Hu, Z.; Lin, H. Comparative analysis of deformation behavior in aluminum alloy under different precipitation state. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2025, 947, 149218. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Z.; Xu, L.; Ni, H.; Hu, X.; Zhou, H.; Zou, Y.; Wang, J. Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu (-Ag) alloys. J. Mater. Sci. Technol. 2023, 138, 157–170. [Google Scholar] [CrossRef]
- Xiang, K.; Qin, L.; Zhao, Y.; Huang, S.; Du, W.; Boller, E.; Rack, A.; Li, M.; Mi, J. Operando study of the dynamic evolution of multiple Fe-rich intermetallics of a recycled Al alloy during solidification by fast synchrotron X-ray tomography. Acta Mater. 2024, 279, 120267. [Google Scholar] [CrossRef]
- Österreicher, J.A.; Arnoldt, A.R.; Gneiger, S.; Kunschert, G. Tolerance of al–mg–si wrought alloys for high fe contents: The role of effective si. Metall. Mater. Trans. A 2023, 54, 4472–4480. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.J.; Poole, W.J. A yield strength model for the al-mg-si-cu alloy AA6111. Acta Mater. 2003, 51, 2243–2257. [Google Scholar] [CrossRef]
- Raabe, D.; Ponge, D.; Uggowitzer, P.J.; Roscher, M.; Paolantonio, M.; Liu, C.; Antrekowitsch, H.; Kozeschnik, E.; Seidmann, D.; Gault, B.; et al. Making sustainable aluminum by recycling scrap: The science of “Dirty” alloys. Prog. Mater. Sci. 2022, 128, 100947. [Google Scholar] [CrossRef]
- Pot, C.; Yazdani, M.; Boyadjian, Q.; Bocher, P.; Béland, J.-F. Texture and mechanical properties of extruded AA6063 aluminum alloy. Eng. Proc. 2023, 2023, 25. [Google Scholar] [CrossRef]













| 6063 | 6082 | 6111 | |
|---|---|---|---|
| MULTI-PICK Scrap | 16% | 34% | 0 |
| 6063 Post Consumer Scrap | 54% | 12% | 0 |
| 6082 Post Consumer Scrap | 0 | 54% | 0 |
| 6063 Pre-Consumer Scrap | 30% | 0% | 0 |
| Primary Feedstock | 0 | 0 | 100% |
| Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | |
|---|---|---|---|---|---|---|---|---|
| 6111 | 0.66 | 0.15 | 0.9 | 0.25 | 0.72 | 0.001 | 0.01 | 0.01 |
| 6063 | 0.55 | 0.23 | 0.02 | 0.06 | 0.55 | 0.01 | 0.05 | 0.02 |
| 6082 | 0.88 | 0.25 | 0.75 | 0.62 | 0.86 | 0.06 | 0.04 | 0.016 |
| 6063 Profile | 6111 Profile | 6082 Profile | ||||
|---|---|---|---|---|---|---|
| Element | Area 1 | Spot 1 | Area 1 | Spot 1 | Area 1 | Spot 1 |
| Al | 64.74 | 95.97 | 61.79 | 98.96 | 98.32 | 79.73 |
| Fe | 25.02 | 0.5 | 19.72 | 0.21 | 0.16 | 8.83 |
| Si | 8.61 | 0.82 | 5.45 | 0.01 | 0.03 | 3.33 |
| Mg | 1.26 | 0.88 | 0.5 | 0.32 | 0.49 | 0.99 |
| Mn | 0.37 | 0.27 | 9.52 | 0.31 | 0.43 | 6.62 |
| Cu | 0.89 | 3.02 | 0.32 | 0.5 | ||
| Zn | 0.66 | 0.19 | 0.25 | |||
| Weight % | Atomic % | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mg | Al | Si | Mn | Fe | Cu | Mg | Al | Si | Mn | Fe | Cu | |
| O1 | 2.93 | 84.16 | 3.65 | 4.79 | 3.42 | 1.03 | 3.41 | 88.24 | 3.67 | 2.46 | 1.73 | 0.45 |
| O2 | 4.02 | 86.44 | 2.82 | 3.05 | 2.56 | 1.08 | 4.61 | 89.27 | 2.82 | 1.54 | 1.28 | 0.47 |
| O3 | 2.1 | 95.22 | 1.5 | 1.16 | 2.34 | 95.63 | 1.45 | 0.56 | ||||
| Area 1 | 0.06 | 98.75 | 0.26 | 0.2 | 0.23 | 0.46 | 0.07 | 99.24 | 0.26 | 0.2 | 0.23 | 0.46 |
| Weight % | Atomic % | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mg | Al | Si | Mn | Fe | Cu | Mg | Al | Si | Mn | Fe | Cu | |
| Point 1 | 1.86 | 86.04 | 2.21 | 8.24 | 0.65 | 0.96 | 2.18 | 90.54 | 2.24 | 4.26 | 0.33 | 0.43 |
| Point 2 | 4.17 | 84.34 | 8.4 | 0.46 | 0.1 | 2.5 | 4.71 | 85.72 | 8.2 | 0.23 | 0.05 | 1.07 |
| Area 1 | 1.28 | 96.61 | 0.37 | 1.72 | 1.44 | 97.45 | 0.36 | 0.73 | ||||
| Weight % | Atomic % | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mg | Al | Si | Cr | Mn | Fe | Cu | Mg | Al | Si | Cr | Mn | Fe | Cu | |
| Point 1 | 0.59 | 84.65 | 4.09 | 1.26 | 8.74 | 0.64 | 0.7 | 89.57 | 4.16 | 0.69 | 4.54 | 0.32 | ||
| Point 2 | 84.31 | 3.82 | 1.74 | 9.64 | 0.46 | 89.82 | 3.91 | 0.96 | 5.04 | 0.24 | ||||
| Point 3 | 3.64 | 92.64 | 1.63 | 0.09 | 1.77 | 0.05 | 0.15 | 4.07 | 93.32 | 1.57 | 0.05 | 0.87 | 0.02 | 0.06 |
| Point 4 | 0.86 | 89.51 | 2.8 | 0.72 | 5.51 | 0.58 | 0.98 | 92.72 | 2.79 | 0.39 | 2.8 | 0.29 | ||
| Alloy | Angle | Rp0.2 [MPa] (95% CI) | Rm [MPa] (95% CI) | A (%) (95% CI) |
|---|---|---|---|---|
| 6063 | 0° | 244 ± 6 | 270 ± 3 | 13.6 ± 1.4 |
| 45° | 238 ± 5 | 257 ± 6 | 5.95 ± 1.8 | |
| 90° | 281 ± 4 | 321 ± 3 | 8.9 ± 1.3 | |
| 6111 | 0° | 306 ± 6 | 326 ± 4 | 10 ± 1.8 |
| 45° | 302 ± 5 | 325 ± 6 | 5.3 ± 1.6 | |
| 90° | 303 ± 5 | 324 ± 7 | 7.6 ± 2.0 | |
| 6082 | 0° | 267 ± 5 | 293 ± 4 | 15.3 ± 1.6 |
| 45° | 264 ± 4 | 287 ± 5 | 9.1 ± 1.9 | |
| 90° | 276 ± 3 | 300 ± 4 | 9.2 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ozen, Z.T.; Unlu, N.; Siyah, I.Y.; Boczkal, S.; Ozcelik, G.; Aslanlar, S. Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications. Materials 2026, 19, 377. https://doi.org/10.3390/ma19020377
Ozen ZT, Unlu N, Siyah IY, Boczkal S, Ozcelik G, Aslanlar S. Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications. Materials. 2026; 19(2):377. https://doi.org/10.3390/ma19020377
Chicago/Turabian StyleOzen, Zeynep Tutku, Necip Unlu, Irem Yaren Siyah, Sonia Boczkal, Gorkem Ozcelik, and Salim Aslanlar. 2026. "Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications" Materials 19, no. 2: 377. https://doi.org/10.3390/ma19020377
APA StyleOzen, Z. T., Unlu, N., Siyah, I. Y., Boczkal, S., Ozcelik, G., & Aslanlar, S. (2026). Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications. Materials, 19(2), 377. https://doi.org/10.3390/ma19020377

