High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate Material
2.2. The Preparation Process of Coatings
2.3. Oxidation Test
2.4. Microstructure Characterization
3. Results
3.1. Microstructure of TiAlCrSiNbY Coating
3.2. High-Temperature Oxidation Kinetics of Substrate and Coating
3.3. Microstructure and Composition of the Oxide Layer
4. Discussion
4.1. Oxidation Mechanism of γ-TiAl Alloy
4.2. Oxidation Mechanism of TiAlCrSiNbY Coating
- (1)
- The roles of alloy elements in TiAlCrSiNbY coatings
- (2)
- Chemical compatibility between TiAlCrSiNbY coating and γ-TiAl substrate
5. Conclusions
- (1)
- The TiAlCrSiNbY coating of approximately 5 μm thickness was successfully fabricated on the surface of γ-TiAl alloy. The coating exhibited a dense and crack-free microstructure and had a sound bonding with the substrate.
- (2)
- The oxidation kinetics curve of the TiAlCrSiNbY-coated sample at 850 °C was approximately parabolic. After oxidation for 200 h, the mass gain of the coated sample was 1/9 times that of the uncoated sample.
- (3)
- The oxidized γ-TiAl alloy exhibited a three-layer structure after oxidation at 850 °C for 200 h, consisting of a TiO2 outer layer, Al2O3 interlayer, and mixed TiO2 and Al2O3 inner layer, which resulted in poor oxidation resistance.
- (4)
- The addition of Cr and Nb in the TiAlCrSiNbY coating can increase the activity of Al and promote the formation of stable and dense Al2O3 oxide films, the presence of a strong high-temperature stability Ti5Si3 phase inhibited the affinity of Ti and O, maintaining structural integrity and enhancing high-temperature oxidation resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usategui, L.; López-Ferreño, I.; Echániz, T.; Sainz-Menchón, M.; Musi, M.; Clemens, H.; López, G.A. Emissivity measurements conducted on intermetallic γ-TiAl-based alloys for aeronautical applications. J. Mater. Res. Technol. 2023, 27, 3170–3179. [Google Scholar] [CrossRef]
- Duan, B.H.; Yang, Y.C.; He, S.Y.; Feng, Q.S.; Mao, L.; Zhang, X.X.; Jiao, L.N.; Lu, X.G.; Chen, G.Y.; Li, C.H. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations. J. Alloys Compd. 2022, 909, 164811. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, M.H.; Guan, H.H.; Gao, C.L.; Jin, X.Y.; Du, J.C.; Xue, W.B. Improvement of steam oxidation resistance of the γ-TiAl alloy with microarc oxidation coatings at 900–1200 °C. Corros. Sci. 2022, 209, 110711. [Google Scholar] [CrossRef]
- Liang, J.Y.; Yan, H.J.; Ye, X.Y.; Fan, T.; Gui, Y.; Xie, B.; Li, X.B.; Wu, L.K.; Cao, F.H. A novel and facile solvothermal fluorination approach for boosting oxidation resistance of TiAl alloy. Corros. Sci. 2025, 253, 113017. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Zheng, Z.; Wang, J.; Zheng, K.; Gao, P.; Zhang, X.; Luo, T. Effect of Yb on the microstructure and oxidation behavior of TiAl alloy. Intermetallics 2025, 182, 108787. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, R.; Zou, H.; Zhou, M.; Luo, X. Insight into the ta alloying effects on the oxidation behavior and mechanism of cast TiAl alloy. Mater. Des. 2024, 241, 112941. [Google Scholar] [CrossRef]
- Yan, H.J.; Li, Y.Y.; Yin, R.Z.; Sun, Q.Q.; Liu, H.J.; Zeng, C.L.; Wu, L.K.; Cao, F.H. High temperature oxidation behavior of TiAl alloy with electrodeposited SiOC coating. Corros. Sci. 2023, 224, 111491. [Google Scholar] [CrossRef]
- Wu, X.H.; Huang, A.; Hu, D.; Loretto, M.H. Oxidation-induced embrittlement of TiAl alloys. Intermetallics 2009, 17, 540–552. [Google Scholar] [CrossRef]
- Mu, Y.X.; Liang, Y.F.; Sheng, J.Q.; Zhang, C.Y.; Guo, Z.; Yang, G.; Sun, T.L.; Wang, Y.S.; Lin, J.P. A novel approach to coating for improving the comprehensive high-temperature service performance of TiAl alloys. Acta Mater. 2025, 283, 120500. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Miao, Q.; Liang, W.P.; Gupta, M.; Jia, F.L.; Xu, J.Y.; Yu, H.Y.; Zang, K. High temperature oxidation-resistant AlCoCrFeNi high entropy alloy coating on TiAl alloy: Role of pre-diffusion on oxidation resistance. Appl. Surf. Sci. 2025, 689, 162501. [Google Scholar] [CrossRef]
- Zhou, C.G.; Xu, H.B.; Gong, S.K.; Kim, K.Y. A study of aluminide coatings on TiAl alloys by the pack cementation method. Mater. Sci. Eng. A 2003, 341, 169–173. [Google Scholar] [CrossRef]
- Reinhold, B.; Klemens, K.; Maik, F.; Christoph, L. Oxidation resistance of γ-TiAl based alloy Ti–45Al–8Nb coated with intermetallic Ti–Al–Cr–Y layers and EB-PVD zirconia topcoats at 950 °C in air. Surf. Coat. Technol. 2013, 222, 128–134. [Google Scholar] [CrossRef]
- Reinhold, B.; Maik, F.; Wolfgang, B.; Christoph, L. Oxidation behaviour of gamma titanium aluminides with EB-PVD thermal barrier coatings exposed to air at 900 °C. Surf. Coat. Technol. 2007, 202, 676–680. [Google Scholar] [CrossRef]
- Wang, Q.M.; Mykhaylonka, R.; Renteria, A.F.; Zhang, J.L.; Leyens, C.; Kim, K.H. Improving the high-temperature oxidation resistance of a β-γ TiAl alloy by a Cr2AlC coating. Corros. Sci. 2010, 52, 3793–3802. [Google Scholar] [CrossRef]
- Kuang, J.J.; Jiang, Y.C.; Liu, H.B. Applications of arc plating technology in aviation industry. Plat. Finish. 2016, 38, 23–26. [Google Scholar]
- Zhao, P.X.; Li, X.B.; Xing, W.W.; Chen, B.; Ma, Y.C.; Liu, K. Cyclic oxidation behavior of Nb/Mn/Si alloying beta-gamma TiAl alloys. T. Nonferr. Metal. Soc. 2023, 33, 128–140. [Google Scholar] [CrossRef]
- Lin, J.P.; Zhao, L.L.; Li, G.Y.; Zhang, L.Q.; Song, X.P.; Ye, F.; Chen, G.L. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 2010, 19, 131–136. [Google Scholar] [CrossRef]
- Chen, Y.I.; Gao, Y.X.; Chang, L.H. Mechanical properties, bonding characteristics, and oxidation behaviors of Nb–Si–N coatings. Surf. Coat. Technol. 2018, 350, 831–840. [Google Scholar] [CrossRef]
- Swadźba, R.; Bauer, P.P. Microstructure formation and high temperature oxidation behavior of Ti-Al-Cr-Y-Si coatings on TiAl. Appl. Surf. Sci. 2021, 562, 150191. [Google Scholar] [CrossRef]
- Jia, Z.H.; Song, X.L.; Su, Z.T.; Duan, Z.X. Enhancing the high-temperature oxidation resistance of TiAl alloy via a novel Al2O3/Ti5Si3 composite coating prepared through a modified pack cementation technique. Appl. Surf. Sci. 2025, 692, 162717. [Google Scholar] [CrossRef]
- Xiang, J.X.; Xie, F.Q.; Wu, X.Q. Aluminization of a Si–Y co-deposition coating to protect a Ti2AlNb based alloy from high temperature oxidation. Vacuum 2020, 174, 109190. [Google Scholar] [CrossRef]
- Swadźba, R.; Marugi, K.; Pyclik, Ł. STEM investigations of γ-TiAl produced by additive manufacturing after isothermal oxidation. Corros. Sci. 2020, 169, 108617. [Google Scholar] [CrossRef]
- Chaia, N.; Cury, P.L.; Rodrigues, G.; Coelho, G.C.; Nunes, C.A. Aluminide and silicide diffusion coatings by pack cementation for Nb-Ti-Al alloy. Surf. Coat. Technol. 2020, 389, 125675. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, W.Y.; Jiang, M.Y.; Cao, F.H.; Wu, H.X.; Sun, D.B.; Yu, H.Y.; Wu, L.K. Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating. Surf. Coat. Technol. 2020, 381, 125–126. [Google Scholar] [CrossRef]
- Braun, R.; Lange, A.; Hovsepian, P.E.; Ehiasarian, A.P.; Tietema, R.; Leyens, C. Oxidation behaviour of TiAlYN/CrN and CrAlYN/CrN nanoscale multilayer coatings with Al2O3 topcoat deposited on γ-TiAl alloys. Mater. High Temp. 2014, 24, 324–335. [Google Scholar] [CrossRef]
- Yoshiaki, S.; Hiroyuki, A. Oxidation behavior of binary Ti–Al alloys in high temperature air environment. Mater. Trans. 1993, 34, 236–242. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Jiang, X. Isothermal oxidation behaviour of TiAl alloys prepared by spark plasma sintering with the addition of Gd under water vapour at 900 °C. Intermetallics 2023, 153, 107796. [Google Scholar] [CrossRef]
- Han, J.; Cheng, Y.; Tu, W.; Zhan, T.Y.; Cheng, Y. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte. Appl. Surf. Sci. 2018, 428, 684–697. [Google Scholar] [CrossRef]
- Lin, C.J.; Suo, G.Q.; Li, J.R.; Mu, R.R.; Habib, L.; Hou, X.J.; Ding, S.K.; Zhu, J.F. Enhanced weathering resistance of sandstone cultural relics using a composite coating of F-modified TiO2 nanoplates and SiO2 nanoparticles. Surf. Interfaces 2025, 72, 107182. [Google Scholar] [CrossRef]
- Kumar, S.; Patnaik, A.; Pradhan, A.K.; Kumar, V. Room temperature wear study of Al0.4 FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions. J. Mater. Res. 2019, 34, 841–853. [Google Scholar] [CrossRef]
- Malinovschi, V.; Marin, A.; Negrea, D.; Andrei, V.; Coaca, E.; Mihailescu, C.N.; Cristian, P.L. Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation. Appl. Surf. Sci. 2018, 451, 169–179. [Google Scholar] [CrossRef]
- Sheetal, K.D.; Saurav, K.; Ornov, M.; Gokul, M.P.; Vinod, K.; Byungmin, A. XPS study on passivation behavior of naturally formed oxide on AlFeCuCrMg1.5 high-entropy alloy. Chem. Phys. Lett. 2024, 841, 141171. [Google Scholar] [CrossRef]
- Wei, L.X.; Zhu, Y.W.; Jiang, K.D.; Zhao, C.Q. Preparation and characterization of jet electrodeposited Ni-W-Al2O3 coatings. J. Indian Chem. Soc. 2025, 102, 102079. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, S.Y.; Ma, T.F.; Wang, X.H.; Dong, D. Improving high temperature oxidation resistance of TiAl alloy via hierarchical Ti5Si3-Ti2AlC precipitation strategy. Corros. Sci. 2024, 228, 111834. [Google Scholar] [CrossRef]
- Maurice, V.; Despert, G.; Zanna, S. XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys. Acta Mater. 2007, 55, 3315–3325. [Google Scholar] [CrossRef]
- Zhou, C.G.; Yang, Y.; Gong, S.K.; Xu, H.B. Effect of Ti-Al-Cr coatings on the high temperature oxidation behavior of TiAl alloys. Mater. Sci. Eng. A 2001, 307, 182. [Google Scholar] [CrossRef]
- Nathan, S.J.; Michael, P.B.; Gopal, M.M. Thermodynamics of selected Ti-Al and Ti-Al-Cr alloys. Oxid. Met. 1999, 52, 537–556. [Google Scholar] [CrossRef]
- Ouyang, S.H.; Liu, B.; Li, J.B.; Xu, L.Y.; Liu, Y. Effect of Nb on high temperature oxidation behavior of powder metallurgy TiAl based alloy. Mater. Sci. Eng. Powder Metall. 2015, 20, 616–622. [Google Scholar]
- Dai, J.J.; Li, H.Y.; Zhang, H.X.; Yu, H.J.; Chen, C.Z.; Li, Y. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying. Surf. Coat. Technol. 2018, 344, 479–488. [Google Scholar] [CrossRef]
- Lee, H.N.; Park, Z.M.; Oh, M.H.; Kim, K.Y.; Wee, D.M. Oxidation behavior and mechanical properties of yttrium-doped L12(Al,Cr)3Ti coating on TiAl alloys. Scr. Mater. 1999, 41, 1073. [Google Scholar] [CrossRef]
- Wu, Y.; Umakoshi, Y.; Li, X.W.; Narita, T. Isothermal Oxidation Behavior of Ti-50Al Alloy with Y Additions at 800 and 900 °C. Oxid. Met. 2006, 66, 321–348. [Google Scholar] [CrossRef]
- Liang, J.; Gao, Y.F.; Liu, Y.; Chen, S.Y.; Liu, C.S. Effect of different Si addition on oxidation resistance of titanium aluminum coating at 900 °C. J. Phys. Conf. Ser. 2022, 2263, 12006. [Google Scholar] [CrossRef]
- Tang, Z.L.; Wang, F.H.; Wu, W.T. Effect of MCrAIY overlay coatings on oxidation resistance of TiA1 intermetallics. Surf. Coat. Technol. 1998, 99, 248–252. [Google Scholar] [CrossRef]
- Kim, D.J.; Seo, D.Y.; Huang, X.; Yang, Q.; Kim, Y.W. Cyclic oxidation behavior of a beta gamma powder metallurgy TiAl–4Nb–3Mn alloy coated with a NiCrAlY coating. Surf. Coat. Technol. 2012, 206, 3048–3054. [Google Scholar] [CrossRef]














| Ti | Al | Cr | Si | Nb | Y | |
|---|---|---|---|---|---|---|
| at.% | 24.0 | 58.5 | 7.2 | 7.8 | 2 | 0.5 |
| Ti (at.%) | Al (at.%) | Cr (at.%) | Si (at.%) | Nb (at.%) | Y (at.%) | |
|---|---|---|---|---|---|---|
| Overall | 29.8 | 47.7 | 10.5 | 8.7 | 3.0 | 0.3 |
| Point A | 28.6 | 49.5 | 11.3 | 7.8 | 2.6 | 0.2 |
| Mass Gain (mg·cm−2) | n | k (mgn·cm−2n·h−1) | R2 | |
|---|---|---|---|---|
| γ-TiAl alloy | 1.89 | 2.38 | 2.88 × 10−2 | 0.993 |
| TiAlCrSiNbY coating | 0.22 | 2.14 | 1.47 × 10−3 | 0.956 |
| Point | Composition (at.%) | ||||||
|---|---|---|---|---|---|---|---|
| O | Al | Ti | Cr | Nb | Si | Y | |
| A | 59.5 | 2.5 | 38.0 | — | — | — | — |
| B | 51.0 | 35.7 | 6.3 | 2.6 | 2.4 | 1.7 | 0.3 |
| Point | Composition (at.%) | ||||
|---|---|---|---|---|---|
| O | Al | Ti | Cr | Nb | |
| A | 59.8 | 0.6 | 39.6 | — | — |
| B | 61.5 | 0.3 | 38.2 | — | — |
| C | 51.9 | 31.2 | 14.6 | 0.6 | 1.7 |
| D | 11.7 | 37.7 | 29.3 | 16.0 | 5.3 |
| Points | Chemical Composition (at.%) | ||||||
|---|---|---|---|---|---|---|---|
| O | Al | Ti | Cr | Nb | Si | Y | |
| A | 56.8 | 33.3 | 5.1 | 2.2 | 1.4 | 1.1 | 0.1 |
| B | 32.7 | 27.8 | 23.9 | 4.8 | 3.9 | 6.6 | 0.3 |
| C | 48.2 | 24.7 | 17.1 | 5.2 | 1.8 | 2.8 | 0.2 |
| D | 13.8 | 28.6 | 33.3 | 12.9 | 4.3 | 6.8 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qu, J.; Xie, F.; Wu, X.; Gao, G.; Han, D. High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy. Coatings 2026, 16, 116. https://doi.org/10.3390/coatings16010116
Qu J, Xie F, Wu X, Gao G, Han D. High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy. Coatings. 2026; 16(1):116. https://doi.org/10.3390/coatings16010116
Chicago/Turabian StyleQu, Jing, Faqin Xie, Xiangqing Wu, Guangrui Gao, and Dong Han. 2026. "High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy" Coatings 16, no. 1: 116. https://doi.org/10.3390/coatings16010116
APA StyleQu, J., Xie, F., Wu, X., Gao, G., & Han, D. (2026). High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy. Coatings, 16(1), 116. https://doi.org/10.3390/coatings16010116
