Quantitative Source Identification of Heavy Metals in Soil via Integrated Data Mining and GIS Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Laboratory Analysis
2.3. Potential Ecological Risk Assessment (PERA)
2.4. APCS-MLR Model
3. Results and Discussion
3.1. Descriptive Statistics of Heavy Metal Concentrations and Risk Assessment
3.2. Spatial Distribution of Heavy Metals Using Kriging Interpolation
3.3. Source Apportionment of Soil Heavy Metals
3.3.1. Principal Component Analysis
3.3.2. Further Quantitative Analysis Based on APCS-MLR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Han, Q.; Liu, Y.; Feng, X.; Mao, P.; Sun, A.; Wang, M.; Wang, M. Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China. Sci. Total Environ. 2021, 759, 144023. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Shi, Z. Current status, spatial features, health risks, andpotential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Hu, B.; Xu, J.; Liu, X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Peng, W.; Huang, X.; Lin, M. Health risk assessment of soil heavy metals in the urban-rural area of lanzhou city, Gansu province, China. Pol. J. Environ. Stud. 2025, 34, 917–927. [Google Scholar] [CrossRef]
- Hong, N.; Yang, B.; Tsang, D.C.; Liu, A. Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study. Environ. Pollut. 2020, 266, 115253. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Yu, F.; Tao, X.; Guo, J.; Yu, Y. Contamination, spatial distribution and source analysis of heavy metals in surface soil of Anhui Chaohu economic development zone, China. Sustainability 2020, 12, 8117. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Sushkova, T.; Konstantinov, A.; Rajput, V.D.; Sherstnev, A. Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen. Russia. J. Environ. Manag. 2019, 239, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, Q.; Niu, Y.; Wang, Z. Soil heavy metal source apportionment and environmental differentiation study in Dulan County, Qinghai Province, using geodetector analysis. Environ. Monit. Assess. 2024, 196, 70. [Google Scholar] [CrossRef]
- Song, H.; Hu, K.; An, Y.; Chen, C.; Li, G. Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale. J. Soils Sediments 2018, 18, 852–862. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, R.; Wang, H.; Dong, X.; Zheng, S.; Chang, Q. Source governance-oriented zoning for heavy metal pollution in farmland soil: A case study of an industrial park in mid-western Shaanxi province, China. Water Air Soil Pollut. 2024, 235, 330. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Zhang, W.; Wang, L.; Shi, X.; Lu, X.; Li, X. Pollution assessment and source apportionment of trace metals in urban topsoil of Xi’an City in northwest China. Arch. Environ. Contam. Toxicol. 2019, 77, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hong, N.; Chen, Y.; Cheng, G.; Liu, A.; Huang, X.; Tan, Q. Systematic evaluations of receptor models in source apportionment of particulate solids in road deposited sediments: A practical application for tracking heavy metal sources on urban road surfaces. J. Hazard. Mater. 2025, 485, 136912. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Q.; Wang, W.; Hua, J.; Li, H. The multi-media environmental behavior of heavy metals around tailings under the influence of precipitation. Ecotoxicol. Environ. Saf. 2023, 266, 115541. [Google Scholar] [CrossRef]
- Habib, M.A.; Islam, A.M.T.; Varol, M.; Phoungthong, K.; Khan, R.; Islam, M.S.; Hasanuzzaman, M.; Mia, M.Y.; Costache, R.; Pal, S.C. Receptor model-based source-specific health risks of toxic metal(loid)s in coal basin-induced agricultural soil in northwest Bangladesh. Environ. Geochem. Health 2023, 45, 8539–8564. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, S.; Xiao, J.; Zhao, S.; Wang, Y.; Luo, M.; Uddin, M.; Zhang, Y. Using PCA-APCS-MLR and Monte-Carlo models to quantify the source and ecological-health risk of soil potentially toxic elements in a typical agricultural area. Stoch. Environ. Res. Risk Assess. 2025, 39, 3313–3332. [Google Scholar] [CrossRef]
- Wang, M. Source analysis of heavy metals in typical farmland soils based on PCA-APCS-MLR and geostatistics. Environ. Sci. 2023, 44, 3509–3519. (In Chinese) [Google Scholar]
- Zhang, W.; Yan, Y.; Yu, R.; Hu, G. The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from south Fujian Province, China. Catena 2021, 203, 105306. [Google Scholar] [CrossRef]
- Guo, B.; Su, Y.; Pei, L.; Wang, X.; Zhang, B.; Zhang, D.; Wang, X. Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: A case study in Xi’an, Shaanxi Province, a northwest city of China. Environ. Sci. Pollut. Res. 2020, 27, 24400–24412. [Google Scholar] [CrossRef]
- Jahan, I.; Reza, A.H.M.S.; Haque, M.M.; Reza, M.S.; Hasan, M.I. Soil pollution and elemental sources along Barapukuria coal mine, Bangladesh: Implications for eco-environmental and health risk assessment. Heliyon 2024, 10, e32620. [Google Scholar] [CrossRef]
- NY/T 1613-2008; Soil Quality-Analysis of Soil Heavy Metals-Atomic Absorption Spectrometry with Aqua Regia Digestion. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2008.
- HJ 1315-2023; Determination of Total 19 Metal Elements in Soil and Sediment by Inductively Coupled Plasma Mass Spectrometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2023.
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, M.; Zhang, M.; Zhang, X.; Tian, F.; Liu, B.; Zhou, Q.; Weng, B.; Jiang, H. Source analysis and ecological risk assessment of heavy metals in soil of the Yifeng County, Jiangxi Province based on APCS-MLR model. Environ. Sci. 2025, 46, 4674–4683. (In Chinese) [Google Scholar]
- Deng, S.; Luo, S.; Lin, Q.; Shen, L.; Gao, L.; Zhang, W.; Chen, J.; Li, C. Analysis of Heavy Metal and Arsenic Sources in Mangrove Surface Sediments at Wulishan Port on Leizhou Peninsula, China, Using the APCS-MLR Model. Ecotoxicol. Environ. Saf. 2024, 283, 116788. [Google Scholar] [CrossRef]
- Wei, F.; Chen, J.; Wu, Y.; Zhen, C. Study on the background contents on 61 Elements of Soils in China. China J. Environ. Sci. 1991, 12, 12–19. (In Chinese) [Google Scholar]
- Chen, X.; Chen, F.; Jia, S.; Chen, Y. Soil geochemical baseline and background in Yangtze River-Huai River basin of Anhui Province. Geol. China 2012, 39, 302–310. (In Chinese) [Google Scholar]
- GB15618-2018; Soil environmental quality risk control standard for soil contamination of agricultural land. Ministry of Ecology and Environment of the People’s Republic of China & State Administration for Market Regulation: Beijing, China, 2018.
- Li, Y.; Feng, D.; Ji, M.; Li, Z.; Zhang, R.; Gu, C. The risk characteristics of heavy metals in urban soil of typical developed cities in China. Environ. Monit. Assess. 2022, 194, 132. [Google Scholar] [CrossRef]
- Shen, C.; Huang, S.; Wang, M.; Wu, J.; Su, J.; Lin, K.; Chen, X.; He, T.; Li, Y.; Sha, C.; et al. Source-oriented health risk assessment and priority control factor analysis of heavy metals in urban soil of shanghai. J. Hazard. Mater. 2024, 480, 135859. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J.; Yang, Y.; Liu, X.; Wang, D.; Wu, C.; Dai, H. Geochemical baseline, pollution evaluation, and source apportionment of topsoil heavy metals in eastern Yongqiao District of Suzhou City, China. Sustainability 2025, 17, 9128. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, M.; Li, X.; Luo, X.; Pan, R.; Ouyang, T. Spatial distribution, pollution, and health risk assessment of heavy metal in agricultural surface soil for the Guangzhou-Foshan urban zone, South China. PLoS ONE 2020, 15, e0239563. [Google Scholar] [CrossRef]
- Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
- Sonkar, V.; Jaswal, V.; Chenlak, S.; Nandabalan, Y.K. Pollution status and health risk assessment of heavy metals in the soil of Sahibzada Ajit Singh (SAS) Nagar district of Punjab, India and its source apportionment. J. Geochem. Explor. 2024, 261, 107453. [Google Scholar] [CrossRef]
- Tran, T.; Dinh, V.; Nguyen, T.; Kim, K. Soil contamination and health risk assessment from heavy metals exposure near mining area in Bac Kan province, Vietnam. Environ. Geochem. Health 2022, 44, 1189–1202. [Google Scholar] [CrossRef]
- Kang, X.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L. Historical trends of anthropogenic metals in sediments of Jiaozhou Bay over the last century. Mar. Pollut. Bull. 2018, 135, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huajian Chi, H.J.; Tan, Z.Q.; Yang, X.F.; Sun, Y.P.; Li, Z.T.; Hu, K.; Hu, F.F.; Liu, Y.; Yang, S.C.; et al. Heavy metals distribution characteristics, source analysis, and risk evaluation of soils around mines, quarries, and other special areas in a region of northwestern Yunnan, China. J. Hazard. Mater. 2023, 458, 132050. [Google Scholar] [CrossRef]
- Wei, R.; Meng, Z.; Zerizghi, T.; Luo, J.; Guo, Q. A comprehensive method of source apportionment and ecological risk assessment of soil heavy metals: A case study in Qingyuan city, China. Sci. Total Environ. 2023, 882, 163555. [Google Scholar] [CrossRef]
- Gao, F.; Zhou, J.; Jiang, J.; Sun, G. Heavy Metals Research in the Black Soil Region of Liaoning Province, China: Spatial Patterns, Risk Assessment, and Sources Apportionment. Processes 2025, 13, 57. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, W.; Zhou, M. The spatial and temporal characteristics of mercury emission from coal combustion in China during the year 2015. Atmos. Pollut. Res. 2019, 10, 776–783. [Google Scholar] [CrossRef]
- Dong, W.; Niu, B.; Li, H.; Yan, D.; Li, J.; Xu, Z.; Wang, D.; Yang, X.; Zhang, Y.; Chen, Y.; et al. Sources, Contamination and Risk Assessment of Heavy Metals in Riparian Soils of the Weihe River Based on a Receptor Model and Monte Carlo Simulation. Sustainability 2024, 16, 10779. [Google Scholar] [CrossRef]
- Pan, L.; Ma, J.; Wang, X.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Yan, M.; Ma, B.; Cao, R. Source apportionment of soil heavy metals based on multivariate statistical analysis and the PMF model: A case study of the Nanyang Basin, China. Environ. Technol. Innov. 2024, 33, 103537. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, Q.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, W.; Zhang, Q.; Yu, X.; Zheng, X.; Zhao, J.; Lv, M. Spatial distribution, sources apportionment and health risk of metals in Topsoil in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 727. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Lei, M.; Chen, T.; Song, B.; Li, X. Effect of road traffic on heavy metals in road dusts and roadside soil. Int. J. Acta Sci. Circumstantiae 2018, 10, 1937–1945. (In Chinese) [Google Scholar]
- Kang, J.; Liu, X.; Dai, B.; Liu, T.; Haider, F.U.; Zhang, P.; Habiba; Cai, J. Tyre wear particles in the environment: Sources, toxicity, and remediation Approaches. Sustainability 2025, 17, 5433. [Google Scholar] [CrossRef]
- Gong, M.; Wu, L.; Bi, X.; Ren, L.; Wang, L.; Ma, Z.; Bao, Z.; Li, Z. Assessing heavy-metal contamination and sourcesby GIS-based approach and multivariate analysisof urban–rural topsoils in Wuhan, central China. Environ. Geochem. Health 2010, 32, 59–72. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, Z.; Liu, J.; Zhong, S.; Wei, C. Distribution characteristics of soil heavy metals, their source identiffcation and their changes inffuenced by anthropogenic cultivation activities in purple hilly regions of Sichuan Basin, China. J. Soil Sci. Plant Nutr. 2020, 20, 1080–1091. [Google Scholar] [CrossRef]





| Range | Risk Level | RI Range | Risk Level |
|---|---|---|---|
| < 40 | low risk | RI < 150 | low risk |
| 40 ≤ < 80 | moderate risk | 150 ≤ RI < 300 | moderate risk |
| 80 ≤ < 160 | high risk | 300 ≤ RI < 600 | high risk |
| 160 ≤ < 320 | very high risk | RI ≥ 600 | very high risk |
| ≥ 320 | catastrophic risk | - | - |
| Cr | Cu | Mn | Ni | Pb | Zn | As | Hg | Cd | |
|---|---|---|---|---|---|---|---|---|---|
| Minium | 14.65 | 19.17 | 109.7 | 14.91 | 3.67 | 29.2 | 0.045 | 0.044 | 0.015 |
| Q1 | 36.36 | 27.755 | 371.355 | 27.44 | 24 | 46.275 | 0.963 | 0.095 | 0.062 |
| Medium | 40.4 | 30.62 | 419.41 | 32.08 | 30.67 | 52.44 | 1.174 | 0.12 | 0.084 |
| Q3 | 45.96 | 35.62 | 475.275 | 37.28 | 34.5 | 64.29 | 1.5 | 0.174 | 0.106 |
| Maximum | 64.65 | 71.820 | 659.81 | 53.51 | 138 | 219.69 | 2.915 | 0.832 | 0.269 |
| Mean | 40.937 | 32.238 | 421.354 | 32.279 | 30.869 | 60.704 | 1.247 | 0.164 | 0.095 |
| SD | 7.586 | 7.743 | 83.315 | 6.793 | 13.734 | 27.373 | 0.474 | 0.122 | 0.050 |
| CV(%) | 18.5 | 24 | 19.8 | 21 | 44.5 | 45.1 | 38 | 74.8 | 52.8 |
| Background Value | 69.4 | 24.9 | 525.2 | 25 | 25.9 | 53.2 | 9.4 | 0.041 | 0.104 |
| Nanjing | 72.39 | 36.77 | 683.03 | 32.64 | 32.66 | 109.82 | - | - | 0.12 |
| Shanghai | - | 55.78 | - | 112.68 | 46.14 | 122.94 | 8.12 | 0.54 | 0.66 |
| Suzhou (Anhui) | 218.51 | 28.36 | 874.6 | 103.19 | 22.95 | 80.5 | 14.07 | - | 0.49 |
| Guangzhou-Foshan | 28.51 | 19.3 | - | 12.02 | 34.84 | 45.71 | 16.88 | 0.26 | 0.2 |
| Tangshan | 36.98 | 22.42 | - | 16.81 | 22.93 | 70.31 | 5.89 | 0.06 | 0.15 |
| India | 5.28 | 5.14 | - | 6.51 | 90.02 | 32.69 | 2.74 | - | 0.28 |
| Vietnam | - | 53.1 | - | 29.7 | 209 | 200 | 117 | - | 1.46 |
| Elements | Proportion of Sampling Points in Different Ecological Risk Levels (%) | |||||
|---|---|---|---|---|---|---|
| < 40 | < 80 | < 160 | < 320 | |||
| Cr | 1.18 | 100 | 0 | 0 | 0 | 0 |
| Cu | 6.47 | 100 | 0 | 0 | 0 | 0 |
| Mn | 0.80 | 100 | 0 | 0 | 0 | 0 |
| Ni | 6.46 | 100 | 0 | 0 | 0 | 0 |
| Pb | 5.96 | 100 | 0 | 0 | 0 | 0 |
| Zn | 1.14 | 100 | 0 | 0 | 0 | 0 |
| As | 1.33 | 100 | 0 | 0 | 0 | 0 |
| Hg | 159.65 | 0 | 7.19 | 64.75 | 18.71 | 9.35 |
| Cd | 27.31 | 85.61 | 14.39 | 0 | 0 | 0 |
| RI Range | RI < 150 | 150 ≤ RI < 300 | 300 ≤ RI < 600 | RI ≥ 600 |
|---|---|---|---|---|
| Sample number | 45 | 74 | 18 | 2 |
| Proportion (%) | 32.37 | 53.24 | 12.95 | 1.44 |
| Comp. | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
|---|---|---|---|---|---|---|
| Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
| 1 | 3.167 | 35.184 | 35.184 | 2.416 | 26.846 | 26.846 |
| 2 | 1.386 | 15.401 | 50.585 | 1.795 | 19.948 | 46.793 |
| 3 | 1.203 | 13.363 | 63.948 | 1.492 | 16.574 | 63.367 |
| 4 | 0.961 | 10.680 | 74.627 | 1.013 | 11.260 | 74.627 |
| Comp. | Cr | Cu | Mn | Ni | Pb | Zn | As | Hg | Cd |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.889 | 0.756 | 0.393 | 0.776 | 0.108 | 0.164 | 0.349 | −0.373 | −0.018 |
| 2 | 0.090 | 0.032 | 0.742 | 0.427 | 0.199 | 0.012 | 0.727 | 0.693 | 0.068 |
| 3 | 0.072 | 0.304 | −0.019 | 0.071 | 0.766 | 0.854 | 0.088 | 0.247 | 0.046 |
| 4 | 0.018 | −0.058 | 0.012 | 0.021 | −0.075 | 0.142 | 0.084 | 0.022 | 0.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, L.; Wang, J.; Liu, X. Quantitative Source Identification of Heavy Metals in Soil via Integrated Data Mining and GIS Techniques. Processes 2026, 14, 248. https://doi.org/10.3390/pr14020248
Ma L, Wang J, Liu X. Quantitative Source Identification of Heavy Metals in Soil via Integrated Data Mining and GIS Techniques. Processes. 2026; 14(2):248. https://doi.org/10.3390/pr14020248
Chicago/Turabian StyleMa, Li, Jing Wang, and Xu Liu. 2026. "Quantitative Source Identification of Heavy Metals in Soil via Integrated Data Mining and GIS Techniques" Processes 14, no. 2: 248. https://doi.org/10.3390/pr14020248
APA StyleMa, L., Wang, J., & Liu, X. (2026). Quantitative Source Identification of Heavy Metals in Soil via Integrated Data Mining and GIS Techniques. Processes, 14(2), 248. https://doi.org/10.3390/pr14020248
