Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,597)

Search Parameters:
Keywords = fast dynamic performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5521 KiB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

20 pages, 1848 KiB  
Article
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a [...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length θ=[q,r,Tp] tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient σ(t) is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and H performance under average dwell-time constraints. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

17 pages, 1494 KiB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

12 pages, 3174 KiB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

24 pages, 11175 KiB  
Article
AI-Enabled Condition Monitoring Framework for Autonomous Pavement-Sweeping Robots
by Sathian Pookkuttath, Aung Kyaw Zin, Akhil Jayadeep, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2306; https://doi.org/10.3390/math13142306 - 18 Jul 2025
Viewed by 123
Abstract
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, [...] Read more.
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, and pose safety risks. This study introduces an AI-driven condition monitoring (CM) framework designed to detect terrain unevenness and slope gradients in real time, distinguishing between safe and unsafe conditions. As system vibration levels and energy consumption vary with terrain unevenness and slope gradients, vibration and current data are collected for five CM classes identified: safe, moderately safe terrain, moderately safe slope, unsafe terrain, and unsafe slope. A simple-structured one-dimensional convolutional neural network (1D CNN) model is developed for fast and accurate prediction of the safe to unsafe classes for real-time application. An in-house developed large-scale autonomous pavement-sweeping robot, PANTHERA 2.0, is used for data collection and real-time experiments. The training dataset is generated by extracting representative vibration and heterogeneous slope data using three types of interoceptive sensors mounted in different zones of the robot. These sensors complement each other to enable accurate class prediction. The dataset includes angular velocity data from an IMU, vibration acceleration data from three vibration sensors, and current consumption data from three current sensors attached to the key motors. A CM-map framework is developed for real-time monitoring of the robot by fusing the predicted anomalous classes onto a 3D occupancy map of the workspace. The performance of the trained CM framework is evaluated through offline and real-time field trials using statistical measurement metrics, achieving an average class prediction accuracy of 92% and 90.8%, respectively. This demonstrates that the proposed CM framework enables maintenance teams to take timely and appropriate actions, including the adoption of suitable maintenance strategies. Full article
Show Figures

Figure 1

19 pages, 2875 KiB  
Review
Streamlining ICI Transformed as a Nonnegative System
by David Hyland
Photonics 2025, 12(7), 733; https://doi.org/10.3390/photonics12070733 - 18 Jul 2025
Viewed by 55
Abstract
More than seventy-five years ago, R. Hanbury Brown and R. Q. Twiss performed the first experiments in quantum optics. At the outset, their results showed great promise for the field of astronomical science, featuring inexpensive hardware, immunity to atmospheric turbulence, and enormous interferometry [...] Read more.
More than seventy-five years ago, R. Hanbury Brown and R. Q. Twiss performed the first experiments in quantum optics. At the outset, their results showed great promise for the field of astronomical science, featuring inexpensive hardware, immunity to atmospheric turbulence, and enormous interferometry baselines. This was put to good use for the determination of stellar diameters up to the present time. However, for two-dimensional imaging with faint objects, the integration times are prohibitive. Recently, in a sequence of papers, the present author developed a stochastic search algorithm to remove this roadblock, reducing millions of hours to minutes or seconds. Also, the author’s paper entitled “The Rise of the Brown-Twiss Effect” summarized the search algorithm and emphasized the mathematical proofs of the algorithm. The current algorithm is a sequence of six lines of code. The goal of the present article is to streamline the algorithm in the form of a discrete-time dynamic system and to reduce the size of the state space. The previous algorithm used initial conditions that were randomly assorted pixel intensities. The intensities were mutually statistically independent and uniformly distributed over the range 0,δ, where δ is a (very small) positive constant. The present formulation employs a transformation requiring the uniformly distributed phase of the fast Fourier transform of the cross correlations of the data as initial conditions. We shall see that this strategy results in the simplest discrete-time dynamic system capable for exploring the alternate features and benefits of compartmental nonnegative dynamic systems. Full article
(This article belongs to the Special Issue Optical Imaging and Measurements: 2nd Edition)
Show Figures

Figure 1

20 pages, 6787 KiB  
Article
Fast Calculation of Thermal-Fluid Coupled Transient Multi-Physics Field in Transformer Based on Extended Dynamic Mode Decomposition
by Yanming Cao, Kanghang He, Wenyuan Shangguan, Yuqi Wang and Chunjia Gao
Processes 2025, 13(7), 2282; https://doi.org/10.3390/pr13072282 - 17 Jul 2025
Viewed by 156
Abstract
With the development of digital power systems, the establishment of digital twin models for transformers is of great significance in enhancing power system stability. Consequently, greater demands are placed on the real-time performance and accuracy of thermal-fluid-coupled transient multi-physics field calculations for transformers. [...] Read more.
With the development of digital power systems, the establishment of digital twin models for transformers is of great significance in enhancing power system stability. Consequently, greater demands are placed on the real-time performance and accuracy of thermal-fluid-coupled transient multi-physics field calculations for transformers. However, traditional numerical methods, such as finite element or computational fluid dynamics techniques, often require days or even weeks to simulate full-scale high-fidelity transformer models containing millions of grid nodes. The high computational cost and long runtime make them impractical for real-time simulations in digital twin applications. To address this, this paper employs the dynamic mode decomposition (DMD) method in conjunction with Koopman operator theory to perform data-driven reduced-order modeling of the transformer’s thermal–fluid-coupled multi-physics field. A fast computational approach based on extended dynamic mode decomposition (EDMD) is proposed to enhance the modal decomposition capability of nonlinear systems and improve prediction accuracy. The results show that this method greatly improves computational efficiency while preserving accuracy in high-fidelity models with millions of grids. The errors in the thermal and flow field calculations remain below 3.06% and 3.01%, respectively. Furthermore, the computation time is reduced from hours to minutes, with the thermal field achieving a 97-fold speed-up and the flow field an 83-fold speed-up, yielding an average speed-up factor of 90. This enables fast computation of the transformer’s thermal–fluid-coupled field and provides effective support for the application of digital twin technology in multi-physics field simulations of power equipment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

37 pages, 3624 KiB  
Article
Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up
by Melissa Siney, Reza Salehi, Mohamed G. Hassan, Rania Hamza and Ihab M. T. A. Shigidi
Water 2025, 17(14), 2131; https://doi.org/10.3390/w17142131 - 17 Jul 2025
Viewed by 401
Abstract
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, [...] Read more.
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor’s inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

24 pages, 1991 KiB  
Article
A Multi-Feature Semantic Fusion Machine Learning Architecture for Detecting Encrypted Malicious Traffic
by Shiyu Tang, Fei Du, Zulong Diao and Wenjun Fan
J. Cybersecur. Priv. 2025, 5(3), 47; https://doi.org/10.3390/jcp5030047 - 17 Jul 2025
Viewed by 252
Abstract
With the increasing sophistication of network attacks, machine learning (ML)-based methods have showcased promising performance in attack detection. However, ML-based methods often suffer from high false rates when tackling encrypted malicious traffic. To break through these bottlenecks, we propose EFTransformer, an encrypted flow [...] Read more.
With the increasing sophistication of network attacks, machine learning (ML)-based methods have showcased promising performance in attack detection. However, ML-based methods often suffer from high false rates when tackling encrypted malicious traffic. To break through these bottlenecks, we propose EFTransformer, an encrypted flow transformer framework which inherits semantic perception and multi-scale feature fusion, can robustly and efficiently detect encrypted malicious traffic, and make up for the shortcomings of ML in the context of modeling ability and feature adequacy. EFTransformer introduces a channel-level extraction mechanism based on quintuples and a noise-aware clustering strategy to enhance the recognition ability of traffic patterns; adopts a dual-channel embedding method, using Word2Vec and FastText to capture global semantics and subword-level changes; and uses a Transformer-based classifier and attention pooling module to achieve dynamic feature-weighted fusion, thereby improving the robustness and accuracy of malicious traffic detection. Our systematic experiments on the ISCX2012 dataset demonstrate that EFTransformer achieves the best detection performance, with an accuracy of up to 95.26%, a false positive rate (FPR) of 6.19%, and a false negative rate (FNR) of only 5.85%. These results show that EFTransformer achieves high detection performance against encrypted malicious traffic. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

18 pages, 1539 KiB  
Article
A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach
by Yue Chen, Bingchen Wang, Kaiyue Zeng, Lifu Ding, Yingming Lin, Ying Chen and Qiuyu Lu
Energies 2025, 18(14), 3751; https://doi.org/10.3390/en18143751 - 15 Jul 2025
Viewed by 145
Abstract
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are [...] Read more.
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are both accurate and computationally efficient for real-time implementation. This paper proposes a data-driven observer to rapidly estimate the potential power gain achievable through AWC as a function of the ambient wind direction. The approach is rooted in Koopman operator theory, which allows a linear representation of nonlinear dynamics. Specifically, a model is developed using an Input–Output Extended Dynamic Mode Decomposition framework combined with Sparse Identification (IOEDMDSINDy). This method lifts the low-dimensional wind direction input into a high-dimensional space of observable functions and then employs iterative sparse regression to identify a minimal, interpretable linear model in this lifted space. By training on offline simulation data, the resulting observer serves as an ultra-fast surrogate model, capable of providing instantaneous predictions to inform online control decisions. The methodology is demonstrated and its performance is validated using two case studies: a 9-turbine and a 20-turbine wind farm. The results show that the observer accurately captures the complex, nonlinear relationship between wind direction and power gain, significantly outperforming simpler models. This work provides a key enabling technology for advanced, real-time wind farm control systems. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

19 pages, 2017 KiB  
Article
Analysis of Grid Scale Storage Effectiveness for a West African Interconnected Transmission System
by Julius Abayateye and Daniel Zimmerle
Energies 2025, 18(14), 3741; https://doi.org/10.3390/en18143741 - 15 Jul 2025
Viewed by 174
Abstract
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to [...] Read more.
The West Africa Power Pool (WAPP) Interconnected Transmission System (WAPPITS) has faced challenges with frequency control due to limited primary frequency control reserves (PFRs). Battery Energy Storage Systems (BESSs) have been identified as a possible solution to address frequency control challenges and to support growing levels of variable renewable energy in the WAPPITS. This paper uses a dynamic PSS/E grid simulation to evaluate the effectiveness of BESSs and conventional power plants for the maximum N-1 contingency scenario in WAPPITS—the loss of 400 MW of generation. BESSs outperform conventional power plants in fast frequency response; a BESS-only PFR mix produces the best technical performance for the metrics analyzed. However, this approach does not have the best marginal cost; a balanced mix of BESSs and conventional reserves achieves adequate performance on all metrics to meet grid requirements. This hybrid approach combines BESSs’ rapid power injection with the lower cost of conventional units, resulting in improved nadir frequencies (e.g., 49.70–49.76 Hz), faster settling times (1.00–2.20 s), and cost efficiency. The study indicates that an optimal approach to frequency control should include a combination of regulatory reforms and coordinated reserve procurement that includes BESS assets. Regulatory reforms should require or incentivize conventional plant to provide PFRs, possibly through creation of a (new to WAPPITS) market for ancillary services. While not a comprehensive analysis of all variables, these findings provide critical insights for policymakers and system operators. Full article
Show Figures

Figure 1

18 pages, 2200 KiB  
Article
A Self-Supervised Adversarial Deblurring Face Recognition Network for Edge Devices
by Hanwen Zhang, Myun Kim, Baitong Li and Yanping Lu
J. Imaging 2025, 11(7), 241; https://doi.org/10.3390/jimaging11070241 - 15 Jul 2025
Viewed by 241
Abstract
With the advancement of information technology, human activity recognition (HAR) has been widely applied in fields such as intelligent surveillance, health monitoring, and human–computer interaction. As a crucial component of HAR, facial recognition plays a key role, especially in vision-based activity recognition. However, [...] Read more.
With the advancement of information technology, human activity recognition (HAR) has been widely applied in fields such as intelligent surveillance, health monitoring, and human–computer interaction. As a crucial component of HAR, facial recognition plays a key role, especially in vision-based activity recognition. However, current facial recognition models on the market perform poorly in handling blurry images and dynamic scenarios, limiting their effectiveness in real-world HAR applications. This study aims to construct a fast and accurate facial recognition model based on novel adversarial learning and deblurring theory to enhance its performance in human activity recognition. The model employs a generative adversarial network (GAN) as the core algorithm, optimizing its generation and recognition modules by decomposing the global loss function and incorporating a feature pyramid, thereby solving the balance challenge in GAN training. Additionally, deblurring techniques are introduced to improve the model’s ability to handle blurry and dynamic images. Experimental results show that the proposed model achieves high accuracy and recall rates across multiple facial recognition datasets, with an average recall rate of 87.40% and accuracy rates of 81.06% and 79.77% on the YTF, IMDB-WIKI, and WiderFace datasets, respectively. These findings confirm that the model effectively addresses the challenges of recognizing faces in dynamic and blurry conditions in human activity recognition, demonstrating significant application potential. Full article
(This article belongs to the Special Issue Techniques and Applications in Face Image Analysis)
Show Figures

Figure 1

14 pages, 2232 KiB  
Article
Dual-Closed-Loop Control System for Polysilicon Reduction Furnace Power Supply Based on Hysteresis PID and Predictive Control
by Shihao Li, Tiejun Zeng, Shan Jian, Guiping Cui, Ziwen Che, Genghong Lin and Zeyu Yan
Energies 2025, 18(14), 3707; https://doi.org/10.3390/en18143707 - 14 Jul 2025
Viewed by 113
Abstract
In the power system of a polysilicon reduction furnace, especially during the silicon rod growth process, the issue of insufficient temperature control accuracy arises due to the system’s nonlinear and time-varying characteristics. To address this challenge, a dual-loop control system is proposed, combining [...] Read more.
In the power system of a polysilicon reduction furnace, especially during the silicon rod growth process, the issue of insufficient temperature control accuracy arises due to the system’s nonlinear and time-varying characteristics. To address this challenge, a dual-loop control system is proposed, combining model-free adaptive control (MFAC) with an improved PID controller. The inner loop utilizes a hysteresis PID controller for dynamic current regulation, ensuring fast and accurate current adjustments. Meanwhile, the outer loop employs a hybrid MFAC-based improved PID algorithm to optimize the temperature tracking performance, achieving precise temperature control even in the presence of system uncertainties. The MFAC component is adaptive and does not require a system model, while the improved PID enhances stability and reduces the response time. Simulation results demonstrate that this hybrid control strategy significantly improves the system’s performance, achieving faster response times, smaller steady-state errors, and notable improvements in the uniformity of polysilicon deposition, which is critical for high-quality silicon rod growth. The proposed system enhances both efficiency and accuracy in industrial applications. Furthermore, applying the dual-loop model to actual industrial products further validated its effectiveness. The experimental results show that the dual-loop model closely approximates the polysilicon production model, confirming that dual-loop control can allow the system to rapidly and accurately reach the set values. Full article
Show Figures

Figure 1

39 pages, 16838 KiB  
Article
Control of Nonlinear Systems Using Fuzzy Techniques Based on Incremental State Models of the Variable Type Employing the “Extremum Seeking” Optimizer
by Basil Mohammed Al-Hadithi and Gilberth André Loja Acuña
Appl. Sci. 2025, 15(14), 7791; https://doi.org/10.3390/app15147791 - 11 Jul 2025
Viewed by 141
Abstract
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator [...] Read more.
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator (LQR) design, and state observer implementation. To optimize controller performance, the Extremum Seeking Control (ESC) technique is employed for the automatic tuning of LQR gains, minimizing a predefined cost function. The control strategy is formulated within a generalized framework that evolves from conventional discrete fuzzy models to a higher-order incremental-N state-space representation. The simulation results on a nonlinear multivariable thermal mixing tank system validate the effectiveness of the proposed approach under reference tracking and various disturbance scenarios, including ramp, parabolic, and higher-order polynomial signals. The main contribution of this work is that the proposed scheme achieves zero steady-state error for reference inputs and disturbances up to order N−1 by employing the incremental-N formulation. Furthermore, the system exhibits robustness against input and load disturbances, as well as measurement noise. Remarkably, the ESC algorithm maintains its effectiveness even when noise is present in the system output. Additionally, the proposed incremental-N model is applicable to fast dynamic systems, provided that the system dynamics are accurately identified and the model is discretized using a suitable sampling rate. This makes the approach particularly relevant for control applications in electrical systems, where handling high-order reference signals and disturbances is critical. The incremental formulation, thus, offers a practical and effective framework for achieving high-performance control in both slow and fast nonlinear multivariable processes. Full article
Show Figures

Figure 1

26 pages, 4555 KiB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 171
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

Back to TopTop