Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (612)

Search Parameters:
Keywords = epigenetic dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 3160 KB  
Review
Radiation Without Borders: Unraveling Bystander and Non-Targeted Effects in Oncology
by Madhi Oli Ramamurthy, Poorvi Subramanian, Sivaroopan Aravindan, Loganayaki Periyasamy and Natarajan Aravindan
Cells 2025, 14(22), 1761; https://doi.org/10.3390/cells14221761 - 11 Nov 2025
Abstract
Radiotherapy (RT) remains a cornerstone of cancer treatment, offering spatially precise cytotoxicity against malignant cells. However, emerging evidence reveals that ionizing radiation (IR) exerts biological effects beyond the targeted tumor volume, manifesting as radiation bystander effects (BEs) and other non-targeted effects (NTEs). These [...] Read more.
Radiotherapy (RT) remains a cornerstone of cancer treatment, offering spatially precise cytotoxicity against malignant cells. However, emerging evidence reveals that ionizing radiation (IR) exerts biological effects beyond the targeted tumor volume, manifesting as radiation bystander effects (BEs) and other non-targeted effects (NTEs). These phenomena challenge the traditional paradigm of RT as a localized intervention, highlighting systemic and long-term consequences in non-irradiated tissues. This comprehensive review synthesizes molecular, cellular, and clinical insights about BEs, elucidating the complex intercellular signaling networks gap junctions, cytokines, extracellular vesicles, and oxidative stress that propagate damage, genomic instability, and inflammation. We explore the role of mitochondrial dysfunction, epigenetic reprogramming, immune modulation, and stem cell niche disruption in shaping BEs outcomes. Clinically, BEs contribute to neurocognitive decline, cardiovascular disease, pulmonary fibrosis, gastrointestinal toxicity, and secondary malignancies, particularly in pediatric and long-term cancer survivors. The review also evaluates countermeasures including antioxidants, COX-2 inhibitors, exosome blockers, and FLASH RT, alongside emerging strategies targeting cfCh, inflammasomes, and senescence-associated secretory phenotypes. We discuss the dual nature of BEs: their potential to both harm and heal, underscoring adaptive responses and immune priming in specific contexts. By integrating mechanistic depth with translational relevance, this work posits that radiation BEs are a modifiable axis of RT biology. Recognizing and mitigating BEs is imperative for optimizing therapeutic efficacy, minimizing collateral damage, and enhancing survivorship outcomes. This review advocates for a paradigm shift in RT planning and post-treatment care, emphasizing precision, personalization, and systemic awareness in modern oncology. Full article
(This article belongs to the Special Issue New Advances in Anticancer Therapy)
Show Figures

Figure 1

20 pages, 848 KB  
Review
Atopic Dermatitis: Pathophysiology and Emerging Treatments
by Ernestina B. Hansen-Sackey and Stella Hartono
Allergies 2025, 5(4), 40; https://doi.org/10.3390/allergies5040040 - 10 Nov 2025
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by pruritus and eczematous lesions that significantly impacts patient quality of life. This review covers the intricate interplay of barrier dysfunction, immune dysregulation, and microbial dysbiosis in the complex pathophysiology of AD. The [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by pruritus and eczematous lesions that significantly impacts patient quality of life. This review covers the intricate interplay of barrier dysfunction, immune dysregulation, and microbial dysbiosis in the complex pathophysiology of AD. The roles of epigenetic factors and environmental exposures are also examined. The evolving understanding of these factors has revolutionized AD treatment. Beyond foundational topical agents, the landscape for moderate-to-severe AD treatment is now dominated by highly targeted immunotherapies, such as biologics and Janus Kinase (JAK) inhibitors, that precisely block specific inflammatory pathways. Emerging strategies explore microbiome modulation and vitamin D supplementation. This paradigm shift from broad immunosuppression to precision medicine offers improved disease control and reduced systemic toxicities and enables more personalized AD management, significantly benefiting patients. Full article
Show Figures

Figure 1

38 pages, 7399 KB  
Review
The Converging Roles of Nucleases and Helicases in Genome Maintenance and the Aging Process
by Aikaterini Margariti, Persefoni Daniil and Theodoros Rampias
Life 2025, 15(11), 1729; https://doi.org/10.3390/life15111729 - 10 Nov 2025
Viewed by 1
Abstract
The process of aging is fundamentally driven by genomic instability and the accumulation of DNA damage, which progressively impair cellular and tissue function. In order to counteract these challenges, cells rely on the DNA damage response (DDR), a multilayered signaling and repair network [...] Read more.
The process of aging is fundamentally driven by genomic instability and the accumulation of DNA damage, which progressively impair cellular and tissue function. In order to counteract these challenges, cells rely on the DNA damage response (DDR), a multilayered signaling and repair network that preserves genomic integrity and sustains homeostasis. Within this framework, nucleases and helicases have pivotal and complementary roles by remodeling aberrant DNA structures, generating accessible repair intermediates, and determining whether a cell achieves faithful repair, undergoes apoptosis, or enters senescence. Defects in these enzymes are exemplified in human progeroid syndromes, where inherited mutations lead to premature aging phenotypes. This phenomenon is also replicated in genetically engineered mouse models that exhibit tissue degeneration, stem cell exhaustion, and metabolic dysfunction. Beyond their canonical repair functions, helicases and nucleases also interface with the epigenome, as DNA damage-induced chromatin remodeling alters enzyme accessibility, disrupts transcriptional regulation, and drives progressive epigenetic drift and chronic inflammatory signaling. Moreover, their dysfunction accelerates the exhaustion of adult stem cell populations, such as hematopoietic, neural, and mesenchymal stem cells. As a result, tissue regeneration is undermined, establishing a self-perpetuating cycle of senescence, impaired repair, and organismal aging. Current research is focused on developing therapeutic strategies that target the DDR–aging axis on several fronts: by directly modulating repair pathways, by regulating the downstream consequences of senescence, or by preventing DNA damage from accumulating upstream. Taken together, evidence from human disease, animal models, molecular studies, and pharmacological interventions demonstrates that nucleases and helicases are not only essential for genome maintenance but also decisive in shaping aging trajectories. This provides valuable knowledge into how molecular repair pathways influence organismal longevity and age-related diseases. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 1180 KB  
Review
The Role of Nuclear and Mitochondrial DNA in Myalgic Encephalomyelitis: Molecular Insights into Susceptibility and Dysfunction
by Wesam Elremaly, Mohamed Elbakry, Yasaman Vahdani, Anita Franco and Alain Moreau
DNA 2025, 5(4), 53; https://doi.org/10.3390/dna5040053 - 7 Nov 2025
Viewed by 254
Abstract
Myalgic Encephalomyelitis (ME), also known as chronic fatigue syndrome (CFS), is a debilitating and heterogeneous disorder marked by persistent fatigue, post-exertional malaise, cognitive impairment, and multisystem dysfunction. Despite its prevalence and impact, the molecular mechanisms underlying ME remain poorly understood. This review synthesizes [...] Read more.
Myalgic Encephalomyelitis (ME), also known as chronic fatigue syndrome (CFS), is a debilitating and heterogeneous disorder marked by persistent fatigue, post-exertional malaise, cognitive impairment, and multisystem dysfunction. Despite its prevalence and impact, the molecular mechanisms underlying ME remain poorly understood. This review synthesizes current evidence on the role of DNA, both nuclear and mitochondrial, in the susceptibility and pathophysiology of ME. We examined genetic predispositions, including familial clustering and candidate gene associations, and highlighted emerging insights from genome-wide and multi-omics studies. Mitochondrial DNA variants and oxidative stress-related damage are discussed in relation to impaired bioenergetics and symptom severity. Epigenetic modifications, particularly DNA methylation dynamics and transposable element activation, are explored as mediators of gene–environment interactions and immune dysregulation. Finally, we explored the translational potential of DNA-based biomarkers and therapeutic targets, emphasizing the need for integrative molecular approaches to advance diagnosis and treatment. Understanding the DNA-associated mechanisms in ME offers a promising path toward precision medicine in post-viral chronic diseases. Full article
Show Figures

Graphical abstract

16 pages, 1666 KB  
Article
Epigenetic Drugs Splitomicin, Suberohydroxamic Acid, CPTH6, BVT-948, and PBIT Moderate Fibro-Fatty Development in Arrhythmogenic Cardiomyopathy
by Melania Lippi, Silvia Moimas, Luca Braga, Yohan Santin, Arianna Galotta, Mauro Giacca, Giulio Pompilio and Elena Sommariva
Biomolecules 2025, 15(11), 1565; https://doi.org/10.3390/biom15111565 - 6 Nov 2025
Viewed by 304
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a cardiac disorder manifesting through electrical and contractile dysfunction of the ventricles, characterized by fibro-fatty substitution of the myocardium. Cardiac mesenchymal stromal cells (CMSCs) are key contributors to this remodeling. In clinical management, several pharmacological approaches address ACM arrhythmias [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is a cardiac disorder manifesting through electrical and contractile dysfunction of the ventricles, characterized by fibro-fatty substitution of the myocardium. Cardiac mesenchymal stromal cells (CMSCs) are key contributors to this remodeling. In clinical management, several pharmacological approaches address ACM arrhythmias and heart failure, but, to date, none specifically target fibro-adipose replacement. Despite genetic origin, several studies have reported that non-genetic aspects influence ACM phenotype, including epigenetic factors. Little is known about their mechanisms in ACM and their potential therapeutic applications. In this work, we aimed to test whether, by perturbing the epigenetic landscape of ACM CMSCs, we could influence their propensity to fibro-fatty differentiation. We conducted a hypothesis-free screening of 157 epigenetic drugs on CMSCs, isolated from ACM patients. Through fluorescence assays, we evaluated lipid droplet accumulation, collagen deposition, and cell viability. Of the 157 drugs screened, five (splitomicin, suberohydroxamic acid, CPTH6, BVT-948, and PBIT) attenuated adipogenic differentiation of ACM CMSCs, with BVT-948 and CPTH6 also reducing collagen production. Overall, this study identified specific epigenetic drugs that were effective in reducing the fibro-fatty phenotype of ACM stromal cells, thus offering potential for adjunctive therapies in the clinical management of ACM patients. Full article
(This article belongs to the Special Issue Genetic Insights into Cardiomyopathy: From Mechanisms to Medicine)
Show Figures

Figure 1

29 pages, 2571 KB  
Review
Stress-Induced Transcriptional and Epigenetic Plasticity of Astrocytes, Microglia and Oligodendrocytes in the Pathophysiology of Depression
by Shashikant Patel, Roli Kushwaha, Debiprasad Sinha, Arvind Kumar and Sumana Chakravarty
Neuroglia 2025, 6(4), 42; https://doi.org/10.3390/neuroglia6040042 - 6 Nov 2025
Viewed by 369
Abstract
Major Depressive Disorder (MDD) remains a leading cause of disability worldwide, perpetuated by an incomplete understanding of its pathophysiology and the limited efficacy of conventional antidepressants. Historically, research has focused on neuron-centric models, particularly the monoamine hypothesis. However, the field is now recognizing [...] Read more.
Major Depressive Disorder (MDD) remains a leading cause of disability worldwide, perpetuated by an incomplete understanding of its pathophysiology and the limited efficacy of conventional antidepressants. Historically, research has focused on neuron-centric models, particularly the monoamine hypothesis. However, the field is now recognizing the critical role of glial cells such as astrocytes, microglia, and oligodendrocytes, establishing them as key contributors to the molecular basis of depression. Rather than serving solely supportive roles, these cells actively modulate neuroinflammation, synaptic plasticity, neurotransmitter homeostasis, and metabolic regulation, processes disrupted in MDD. We discuss how stress-induced epigenetic modifications such as histone acetylation, methylation, and DNA methylation are linked to alterations in astrocytic glutamate transport, microglial inflammatory states, and oligodendrocyte-mediated myelination. Special emphasis is placed on the concept of glial transcriptional plasticity, whereby environmental adversity induces durable and cell type specific gene expression changes that underlie neuroinflammation, excitatory–inhibitory imbalance, and white matter deficits observed in MDD. By integrating findings from postmortem human tissue, single-cell omics, and stress-based animal models, this review highlights converging molecular mechanisms linking stress to glial dysfunction. We further outline how targeting glial transcriptional regulators may provide new therapeutic avenues beyond conventional monoaminergic approaches. Full article
Show Figures

Figure 1

16 pages, 1933 KB  
Article
The Combined Expression Profiles of Epigenetic Biomarkers Reveal Heterogeneity in Normospermic Human Sperm Samples
by Nino-Guy Cassuto, Florence Boitrelle, Lea Ruoso, Omar Bouattane, Marion Bendayan, Lina Abdiche, Lionel Larue, Gwenola Keromnes, Nathalie Lédée, Laura Prat-Ellenberg, Geraldine Dray, Alexandre Rouen, John De Vos and Said Assou
Genes 2025, 16(11), 1314; https://doi.org/10.3390/genes16111314 - 2 Nov 2025
Viewed by 389
Abstract
Background: Male infertility is evaluated using standard semen parameters. However, these criteria offer limited insight into sperm functionality and poorly predict natural fertility or assisted reproductive technology (ART) outcomes. Methods: In this study, the expression levels of three genes (AURKA, HDAC4 [...] Read more.
Background: Male infertility is evaluated using standard semen parameters. However, these criteria offer limited insight into sperm functionality and poorly predict natural fertility or assisted reproductive technology (ART) outcomes. Methods: In this study, the expression levels of three genes (AURKA, HDAC4, and CARHSP1) involved in mitosis regulation, epigenetic modulation and early embryonic development, were measured by RT-qPCR in sperm samples (training dataset). For each gene, thresholds of normal and reduced expression were established by biostatistical modeling and combined with the number of motile spermatozoa to develop the Spermatozoa Function Index (SFI). Results: The ROC analysis was used to interpret the SFI values: SFI > 320 (normal), 290–320 (intermediate), and <290 (low). Then, this index was validated using 627 fresh semen samples from 25- to 60-year-old men at our ART center. Based on the World Health Organization criteria, 54.5% of the 627 sperm samples were normospermic, 8.8% showed oligo-astheno-teratospermia, and 36.6% had one or two abnormal parameters. According to the SFI values, 41% of sperm samples displayed normal expression, 55.9% low expression, and 4.1% intermediate expression. Only 57% of the 342 normospermic samples had normal SFI values and 37% had low SFI values. Among the 81 samples with stringent normal criteria (≥50 million/mL, ≥50% total motility, ≥14% normal morphology), 67.9% displayed normal SFI and 22.2% low SFI values. These findings suggest that even sperm with normal parameters may harbor dysfunctions. Conclusions: Our data highlight a gene signature with strong discriminatory power and promising diagnostic value for detecting subclinical sperm defects and improving male infertility assessment. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

18 pages, 1329 KB  
Review
Genomics and Multi-Omics Perspectives on the Pathogenesis of Cardiorenal Syndrome
by Song Peng Ang, Jia Ee Chia, Eunseuk Lee, Madison Laezzo, Riddhi Machchhar, Sakhi Patel, George Davidson, Vikash Jaiswal and Jose Iglesias
Genes 2025, 16(11), 1303; https://doi.org/10.3390/genes16111303 - 1 Nov 2025
Viewed by 375
Abstract
Background: Cardiorenal syndrome (CRS) reflects bidirectional heart–kidney injury whose mechanisms extend far beyond hemodynamics. High-throughput genomics and multi-omics now illuminate the molecular circuits that couple cardiac and renal dysfunction. Methods: We narratively synthesize animal and human studies leveraging transcriptomics, proteomics, peptidomics, metabolomics, and [...] Read more.
Background: Cardiorenal syndrome (CRS) reflects bidirectional heart–kidney injury whose mechanisms extend far beyond hemodynamics. High-throughput genomics and multi-omics now illuminate the molecular circuits that couple cardiac and renal dysfunction. Methods: We narratively synthesize animal and human studies leveraging transcriptomics, proteomics, peptidomics, metabolomics, and non-coding RNA profiling to map convergent pathways in CRS and to highlight biomarker and therapeutic implications. Results: Across acute and chronic CRS models, omics consistently converge on extracellular matrix (ECM) remodeling and fibrosis (e.g., FN1, POSTN, collagens), immune–inflammatory activation (IL-6 axis, macrophage/complement signatures), renin–angiotensin–aldosterone system hyperactivity, oxidative stress, and metabolic/mitochondrial derangements in both organs. Single-nucleus and bulk transcriptomes reveal tubular dedifferentiation after cardiac arrest-induced AKI and myocardial reprogramming with early CKD, while quantitative renal proteomics in heart failure demonstrates marked upregulation of ACE/Ang II and pro-fibrotic matricellular proteins despite near-normal filtration. Human translational data corroborate these signals: urinary peptidomics detects CRS-specific collagen fragments and protease activity, and circulating FN1/POSTN and selected microRNAs (notably miR-21) show diagnostic potential. Epigenetic and microRNA networks appear to integrate these axes, nominating targets such as anti-miR-21 and anti-fibrotic strategies; pathway-directed repurposing exemplifies dual-organ benefit. Conclusions: Genomics and multi-omics recast CRS as a systems disease driven by intertwined fibrosis, inflammation, neurohormonal and metabolic programs. We propose a translational framework that advances (i) composite biomarker panels combining injury, fibrosis, and regulatory RNAs; (ii) precision, pathway-guided therapies; and (iii) integrated, longitudinal multi-omics of well-phenotyped CRS cohorts to enable prediction and personalized intervention. Full article
(This article belongs to the Special Issue Genes and Gene Therapies in Chronic Renal Disease)
Show Figures

Figure 1

50 pages, 6193 KB  
Review
Pharmacokinetics and Pharmacodynamics of Perfluorooctane Sulfonate (PFOS) and Its Role in the Development and Progression of Prostate, Ovarian and Breast Cancers
by Uche Okuu Arunsi, Daniel Chukwuebuka Ezirim, Chinonye Courage Arunsi, Ahmad Altayyar, Eke Godswill Uche, Favour Chidera Jonathan, Aluba Kalu Opieh, Ifeoma Vivian Anadi, Clinton Ositadinma Ofoegbu, Victor Chukwubuike Nwankwo, Eziuche Amadike Ugbogu, Paschal Emeka Etusim and Solomon Owumi
Cancers 2025, 17(21), 3507; https://doi.org/10.3390/cancers17213507 - 31 Oct 2025
Viewed by 1133
Abstract
Environmental pollution, driven by industrialization, urbanization, and agricultural practices, has intensified global ecological degradation. Among the most concerning pollutants is PFOS, a synthetic compound known for its chemical stability, environmental persistence, and bioaccumulative potential. Widely utilised in industrial and consumer products, PFOS infiltrates [...] Read more.
Environmental pollution, driven by industrialization, urbanization, and agricultural practices, has intensified global ecological degradation. Among the most concerning pollutants is PFOS, a synthetic compound known for its chemical stability, environmental persistence, and bioaccumulative potential. Widely utilised in industrial and consumer products, PFOS infiltrates ecosystems and food chains, posing substantial risks to human and animal health. Upon exposure, PFOS disrupts lipid metabolism, damages cellular membranes, and alters signaling pathways through partial metabolism by cytochrome P450 enzymes. Accumulating evidence links PFOS to oxidative stress, mitochondrial dysfunction, endocrine disruption, neurotoxicity, and immunotoxicity. Critically, PFOS contributes to the development and progression of prostate, breast, and ovarian cancers via mechanisms such as hormonal interference, chronic inflammation, and epigenetic modifications. Epidemiological studies further associate elevated PFOS serum levels with increased cancer risk, particularly in occupationally and environmentally exposed populations. This review brings together the latest knowledge on PFOS emissions, mechanistic toxicity, and cancer-causing potential, highlighting the urgent need for focused research and improved regulatory measures to safeguard public health. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

15 pages, 1584 KB  
Article
Placental Volume, Vascularization, and Epigenetic Modifications in Obesity and Gestational Diabetes: A 3-D Ultrasound and Molecular Analysis
by Balint Kolcsar, Kata Kira Kemeny, Zoltan Kozinszky, Eszter Ducza and Andrea Suranyi
Life 2025, 15(11), 1691; https://doi.org/10.3390/life15111691 - 30 Oct 2025
Viewed by 442
Abstract
Background: Obesity and gestational diabetes mellitus (GDM) are the most common metabolic conditions that have an unfavorable impact on maternal and fetal health. Maternal obesity and GDM are often associated with placental dysfunction and structural alterations. The apelin receptor (APLNR), vascular endothelial growth [...] Read more.
Background: Obesity and gestational diabetes mellitus (GDM) are the most common metabolic conditions that have an unfavorable impact on maternal and fetal health. Maternal obesity and GDM are often associated with placental dysfunction and structural alterations. The apelin receptor (APLNR), vascular endothelial growth factor (VEGF), leptin, and DNA methylation play crucial roles in placental function. We aimed to investigate the placental volume and vascularization, and to determine the changes in these markers in obese and GDM mothers. Material and Methods: In our study, we investigated the human placenta (n = 48) at term. The placental structural analyses on volume and vascularization were conducted using three-dimensional ultrasound before labor. Placental APLNR expression was determined using RT-PCR, and leptin and VEGF concentrations using ELISA in placental tissues. Global DNA methylation was measured using colometric assay. Results: The age of GDM mothers was significantly higher than that of normal and obese mothers. The gestation length of GDM mothers was significantly shorter than that of normal and obese mothers. The placental volume was significantly higher in obese and GDM cases compared with normal cases. Vascularization indices (VI, FI, VFI) were significantly depressed in GDM and obesity. In the case of biomarker studies, APLNR, leptin, and VEGF showed similar decreases in obese and GDM placentas. Based on our results, the effect of GDM, not obesity, was more pronounced for these biomarkers. VEGF reduction correlates with three-dimensional placental vascularity studies. The DNA methylation was significantly elevated in both GDM and obese placental samples, while the GDM effect was more pronounced. Conclusions: This study is the first to demonstrate structural alterations of the placenta using placental tissue biomarkers in obesity and gestational diabetes mellitus (GDM). We found that both GDM and obesity affect placental volume and vascularity, as indicated by reduced leptin and VEGF levels, presumably mediated by epigenetic effects. Our findings may provide a novel therapeutic target for improving abnormal placental function caused by GDM and obesity. Full article
(This article belongs to the Special Issue Prevention, Diagnosis, and Treatment of Gestational Diseases)
Show Figures

Figure 1

23 pages, 885 KB  
Review
Polycystic Ovary Syndrome (PCOS)-Specific Risk Appraisal of the Sunscreen Ultraviolet (UV) Filters (Oxybenzone/Octinoxate)
by Sulagna Dutta, Pallav Sengupta, Bhupender S. Chhikara, Grzegorz Formicki, Israel Maldonado Rosas and Shubhadeep Roychoudhury
Toxics 2025, 13(11), 927; https://doi.org/10.3390/toxics13110927 - 29 Oct 2025
Viewed by 373
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder affecting 6–20% of women of reproductive age, manifesting through hyperandrogenism, ovulatory dysfunction, insulin resistance, and diverse metabolic derangements. Increasing evidence highlights the contribution of environmental factors, particularly endocrine-disrupting chemicals (EDCs), to PCOS susceptibility and [...] Read more.
Polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder affecting 6–20% of women of reproductive age, manifesting through hyperandrogenism, ovulatory dysfunction, insulin resistance, and diverse metabolic derangements. Increasing evidence highlights the contribution of environmental factors, particularly endocrine-disrupting chemicals (EDCs), to PCOS susceptibility and severity. Sunscreen ultraviolet (UV) filters such as oxybenzone (benzophenone-3) and octinoxate (ethylhexyl methoxycinnamate) are widely used EDCs with established systemic absorption and biomonitoring evidence in human populations. Their endocrine-disrupting potential encompasses estrogenic and anti-androgenic activity, interference with steroidogenic enzymes, modulation of thyroid hormone, induction of oxidative stress, and epigenetic reprogramming, all of which are mechanistic pathways that overlap with PCOS pathophysiology. This evidence-based study critically appraises the evidence linking oxybenzone and octinoxate exposures to ovarian endocrinology, with a PCOS-specific focus. Human exposure patterns, pharmacokinetics, and regulatory perspectives are summarized alongside preclinical and in vitro data implicating these filters in ovarian dysfunction. Mechanistic intersections with PCOS include hyperandrogenism, disrupted folliculogenesis, oxidative stress-adipokine imbalance, and potential impairment of vitamin D signaling. Although epidemiological studies directly addressing PCOS outcomes remain sparse, the convergence of toxicological evidence with known endocrine vulnerabilities in PCOS underscores a need for targeted investigation. By mapping exposure pathways and mechanistic disruptions, this appraisal emphasizes the translational relevance of UV filter toxicity in the context of PCOS. It advocates for PCOS-specific biomonitoring cohorts, mechanistic studies, and regulatory consideration of reproductive endpoints while balancing the dermatological benefits of photoprotection against reproductive risks. Full article
(This article belongs to the Special Issue Identification of Emerging Pollutants and Human Exposure)
Show Figures

Figure 1

19 pages, 340 KB  
Review
Mechanisms of Resistance to Novel Immunotherapies in B-Cell Lymphomas: Focus on CAR T and Bispecific Antibodies
by Gloria Arena and Roberto Chiarle
Cancers 2025, 17(21), 3453; https://doi.org/10.3390/cancers17213453 - 28 Oct 2025
Viewed by 620
Abstract
Treatment paradigms for B-cell lymphomas have evolved significantly in the last decades. Nevertheless, the widespread clinical use of immunotherapy has demonstrated that it invariably leads to the development of resistance. This review outlines the underlying molecular mechanisms of resistance associated with emerging immunotherapeutic [...] Read more.
Treatment paradigms for B-cell lymphomas have evolved significantly in the last decades. Nevertheless, the widespread clinical use of immunotherapy has demonstrated that it invariably leads to the development of resistance. This review outlines the underlying molecular mechanisms of resistance associated with emerging immunotherapeutic strategies, including Chimeric Antigen Receptor (CAR) T cell therapy and bispecific antibodies (BsAbs). In high-grade B-cell lymphomas, nearly 50% of patients progress following CAR T treatment due to host-related factors affecting CAR T cell proliferation and persistence, as well as tumor-intrinsic factors, such as loss of CD19 epitope expression, trogocytosis, and other genomic alterations (e.g., CD19 mutations, chromothripsis, APOBEC mutational activity, and deletions of RHOA). Additional genomic and epigenetic events, including mutations, alternative splicing of CD19, and aberrant promoter methylation, further contribute to resistance. BsAbs, representing an off-the-shelf T-cell-redirecting strategy, have recently shown promising single-agent efficacy with a manageable toxicity profile, predominantly characterized by T cell overactivation syndromes. Similarly to CAR T cell therapy, BsAb resistance arises through diverse mechanisms, such as antigen loss, T cell dysfunction (exhaustion and regulatory T cell activation), tumor-intrinsic alterations (e.g., TP53 mutations and MYC amplifications), and immunosuppressive influences from the tumor microenvironment. These findings underscore the complexity of immune evasion in B-cell lymphomas and highlight the ongoing need to optimize immunotherapeutic strategies and develop combination approaches to overcome resistance. Full article
(This article belongs to the Special Issue Advances in B-Cell Lymphoma: From Diagnostics to Cure)
Show Figures

Graphical abstract

56 pages, 2536 KB  
Review
Metaflammation’s Role in Systemic Dysfunction in Obesity: A Comprehensive Review
by Ioana-Maria Crasan, Matei Tanase, Corina Elena Delia, Gratiela Gradisteanu-Pircalabioru, Anisoara Cimpean and Elena Ionica
Int. J. Mol. Sci. 2025, 26(21), 10445; https://doi.org/10.3390/ijms262110445 - 27 Oct 2025
Viewed by 3374
Abstract
Obesity is redefined as a complex systemic disease, transcending mere caloric imbalance, driven by intricate dysregulation across metabolic, neuroendocrine, immunological, and epigenetic axes. Central to its pathology is adipose tissue, which is considered a dynamic endocrine and immune organ. Its dysfunctional expansion fuels [...] Read more.
Obesity is redefined as a complex systemic disease, transcending mere caloric imbalance, driven by intricate dysregulation across metabolic, neuroendocrine, immunological, and epigenetic axes. Central to its pathology is adipose tissue, which is considered a dynamic endocrine and immune organ. Its dysfunctional expansion fuels chronic, low-grade systemic inflammation, termed “metaflammation”, characterised by pathways such as NF-kB and NLRP3 inflammasome activation, as well as pervasive immune cell infiltration. This inflammatory state could profoundly impair insulin signalling and contribute to major complications, including insulin resistance, type 2 diabetes, and cardiovascular disease. Further exacerbating this systemic dysfunction is gut microbiota dysbiosis, which promotes metabolic endotoxemia and neuroendocrine dysregulation, impacting hypothalamic function, central hormone resistance, and reproductive health. Epigenetic modifications also serve as crucial mediators, translating environmental exposures into altered gene expression that perpetuates susceptibility across generations. This review summarises the current understanding of obesity by integrating molecular, neuroendocrine, and immunometabolic underpinnings, reinterpreting it as a comprehensive expression of systemic dysfunction. Through this integrated perspective our hope is to highlight the necessity of a paradigm shift towards personalised, multi-targeted interventions that extend beyond conventional weight management. An integrative, translational approach modulating the immunometabolic network, microbiota, and epigenetics is essential to effectively address the global obesity epidemic and its far-reaching health implications. Full article
Show Figures

Figure 1

18 pages, 1632 KB  
Review
Hematopoietic Stem Cell Aging: Mechanisms, Microenvironment Influences, and Rejuvenation Strategies
by Jiaqi Cui, Xincan Li, Bin Liu, Cheng Dong and Yun Chang
Bioengineering 2025, 12(11), 1166; https://doi.org/10.3390/bioengineering12111166 - 27 Oct 2025
Viewed by 727
Abstract
Hematopoietic stem cells (HSCs) are essential for lifelong blood production and immune homeostasis. However, aging induces functional declines in HSCs, leading to hematological disorders, immune dysfunction, and increased susceptibility to malignancies. This review explores the biological underpinnings of HSC aging, highlighting the intrinsic [...] Read more.
Hematopoietic stem cells (HSCs) are essential for lifelong blood production and immune homeostasis. However, aging induces functional declines in HSCs, leading to hematological disorders, immune dysfunction, and increased susceptibility to malignancies. This review explores the biological underpinnings of HSC aging, highlighting the intrinsic and extrinsic factors that drive this process. We discuss the molecular and cellular mechanisms contributing to HSC aging, including genetic instability, epigenetic alterations, metabolic shifts, and inflammation signaling. Additionally, we examine the role of the bone marrow microenvironment in modulating HSC aging, emphasizing the impact of niche interactions, stromal cell dysfunction, and extracellular matrix remodeling. To advance our understanding of HSC aging, pluripotent stem cell differentiation platforms provide a valuable tool for modeling aged HSC phenotypes and identifying potential therapeutic targets. We review current strategies for HSC rejuvenation, including metabolic reprogramming, epigenetic modifications, pharmacological interventions, and niche-targeted approaches, aiming to restore HSC function and improve regenerative potential. Finally, we present emerging perspectives on the clinical implications of HSC aging, discussing potential translational strategies for combating age-associated hematopoietic decline. By integrating insights from stem cell biology, aging research, and regenerative medicine, this review provides a comprehensive overview of HSC aging and its therapeutic potential. Addressing these challenges will be critical for developing interventions that promote hematopoietic health and improve outcomes in aging populations. Full article
(This article belongs to the Special Issue Stem Cell Immunoengineering)
Show Figures

Graphical abstract

21 pages, 4067 KB  
Article
HDAC5 Inhibition as a Therapeutic Strategy for Titin Deficiency-Induced Cardiac Remodeling: Insights from Human iPSC Models
by Arif Ul Hasan, Sachiko Sato, Mami Obara, Yukiko Kondo and Eiichi Taira
Medicines 2025, 12(4), 26; https://doi.org/10.3390/medicines12040026 - 27 Oct 2025
Viewed by 334
Abstract
Background/Objectives: Dilated cardiomyopathy (DCM) is a prevalent and life-threatening heart muscle disease often caused by titin (TTN) truncating variants (TTNtv). While TTNtvs are the most common genetic cause of heritable DCM, the precise downstream regulatory mechanisms linking TTN [...] Read more.
Background/Objectives: Dilated cardiomyopathy (DCM) is a prevalent and life-threatening heart muscle disease often caused by titin (TTN) truncating variants (TTNtv). While TTNtvs are the most common genetic cause of heritable DCM, the precise downstream regulatory mechanisms linking TTN deficiency to cardiac dysfunction and maladaptive fibrotic remodeling remain incompletely understood. This study aimed to identify key epigenetic regulators of TTN-mediated gene expression and explore their potential as therapeutic targets, utilizing human patient data and in vitro models. Methods: We analyzed RNA sequencing (RNA-seq) data from left ventricles of non-failing donors and cardiomyopathy patients (DCM, HCM, PPCM) (GSE141910). To model TTN deficiency, we silenced TTN in human iPSC-derived cardiomyocytes (iPSC-CMs) and evaluated changes in cardiac function genes (MYH6, NPPA) and fibrosis-associated genes (COL1A1, COL3A1, COL14A1). We further tested the effects of TMP-195, a class IIa histone deacetylase (HDAC) inhibitor, and individual knockdowns of HDAC4/5/7/9. Results: In both human patient data and the TTN knockdown iPSC-CM model, TTN deficiency suppressed MYH6 and NPPA while upregulating fibrosis-associated genes. Treatment with TMP-195 restored NPPA and MYH6 expression and suppressed collagen genes, without altering TTN expression. Among the HDACs tested, HDAC5 knockdown was most consistently associated with improved cardiac markers and reduced fibrotic gene expression. Co-silencing TTN and HDAC5 replicated these beneficial effects. Furthermore, the administration of TMP-195 enhanced the modulation of NPPA and COL1A1, though its impact on COL3A1 and COL14A1 was not similarly enhanced. Conclusions: Our findings identify HDAC5 as a key epigenetic regulator of maladaptive gene expression in TTN deficiency. Although the precise mechanisms remain to be clarified, the ability of pharmacological HDAC5 inhibition with TMP-195 to reverse TTN-deficiency-induced gene dysregulation highlights its promising translational potential for TTN-related cardiomyopathies. Full article
Show Figures

Graphical abstract

Back to TopTop