New Advances in Anticancer Therapy

A special issue of Cells (ISSN 2073-4409). This special issue belongs to the section "Cellular Pathology".

Deadline for manuscript submissions: 20 April 2026 | Viewed by 2706

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Republic of Korea
Interests: anti-cancer drug resistance; cancer testis antigen; micro RNAs; exosomes; signaling pathways; allergic inflammation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer remains one of the leading causes of death worldwide. The existing cancer therapies suffer from severe side effects and drug resistance. Therefore, it is crucial to develop novel therapeutic strategies that can offer more effective and less toxic treatment options for cancer patients. Recent advances in anticancer therapy include RNA vaccines, CAR-T/NK cell therapy, gene editing, immune checkpoint inhibitors, gut microbiome, and antibody-drug conjugates, offering targeted and personalized treatments with improved efficacy and reduced side effects. In this Special Issue of Cells, I invite you to contribute, either in the form of original research articles, reviews, or perspective articles on all aspects related to the theme of “New Advances in Anticancer Therapy”. Expert articles describing functional, biochemical, or general aspects of anticancer therapy are highly welcome. Relevant topics include, but are not limited to:

  • Anticancer drug resistance;
  • Chemoimmunotherapy;
  • Nanotechnology;
  • RNA vaccines;
  • Screening of novel anticancer drugs;
  • Personalized anticancer therapy;
  • Antibody-based immune-stimulating drugs;
  • Combination of epigenetic drugs and immune checkpoint inhibitors.    

Prof. Dr. Dooil Jeoung
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antibody-based immunotherapy
  • cell therapy
  • personalized anticancer therapy
  • RNA vaccines
  • nanotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

60 pages, 3160 KB  
Review
Radiation Without Borders: Unraveling Bystander and Non-Targeted Effects in Oncology
by Madhi Oli Ramamurthy, Poorvi Subramanian, Sivaroopan Aravindan, Loganayaki Periyasamy and Natarajan Aravindan
Cells 2025, 14(22), 1761; https://doi.org/10.3390/cells14221761 - 11 Nov 2025
Viewed by 172
Abstract
Radiotherapy (RT) remains a cornerstone of cancer treatment, offering spatially precise cytotoxicity against malignant cells. However, emerging evidence reveals that ionizing radiation (IR) exerts biological effects beyond the targeted tumor volume, manifesting as radiation bystander effects (BEs) and other non-targeted effects (NTEs). These [...] Read more.
Radiotherapy (RT) remains a cornerstone of cancer treatment, offering spatially precise cytotoxicity against malignant cells. However, emerging evidence reveals that ionizing radiation (IR) exerts biological effects beyond the targeted tumor volume, manifesting as radiation bystander effects (BEs) and other non-targeted effects (NTEs). These phenomena challenge the traditional paradigm of RT as a localized intervention, highlighting systemic and long-term consequences in non-irradiated tissues. This comprehensive review synthesizes molecular, cellular, and clinical insights about BEs, elucidating the complex intercellular signaling networks gap junctions, cytokines, extracellular vesicles, and oxidative stress that propagate damage, genomic instability, and inflammation. We explore the role of mitochondrial dysfunction, epigenetic reprogramming, immune modulation, and stem cell niche disruption in shaping BEs outcomes. Clinically, BEs contribute to neurocognitive decline, cardiovascular disease, pulmonary fibrosis, gastrointestinal toxicity, and secondary malignancies, particularly in pediatric and long-term cancer survivors. The review also evaluates countermeasures including antioxidants, COX-2 inhibitors, exosome blockers, and FLASH RT, alongside emerging strategies targeting cfCh, inflammasomes, and senescence-associated secretory phenotypes. We discuss the dual nature of BEs: their potential to both harm and heal, underscoring adaptive responses and immune priming in specific contexts. By integrating mechanistic depth with translational relevance, this work posits that radiation BEs are a modifiable axis of RT biology. Recognizing and mitigating BEs is imperative for optimizing therapeutic efficacy, minimizing collateral damage, and enhancing survivorship outcomes. This review advocates for a paradigm shift in RT planning and post-treatment care, emphasizing precision, personalization, and systemic awareness in modern oncology. Full article
(This article belongs to the Special Issue New Advances in Anticancer Therapy)
Show Figures

Graphical abstract

58 pages, 5867 KB  
Review
Carbon Nanotubes as Excellent Adjuvants for Anticancer Therapeutics and Cancer Diagnosis: A Plethora of Laboratory Studies Versus Few Clinical Trials
by Silvana Alfei, Caterina Reggio and Guendalina Zuccari
Cells 2025, 14(14), 1052; https://doi.org/10.3390/cells14141052 - 9 Jul 2025
Cited by 4 | Viewed by 2222
Abstract
Encouraging discoveries and excellent advances in the fight against cancer have led to innovative therapies such as photothermal therapy (PTT), photodynamic therapy (PDT), drug targeting (DT), gene therapy (GT), immunotherapy (IT), and therapies that combine these treatments with conventional chemotherapy (CT). Furthermore, 2,041,910 [...] Read more.
Encouraging discoveries and excellent advances in the fight against cancer have led to innovative therapies such as photothermal therapy (PTT), photodynamic therapy (PDT), drug targeting (DT), gene therapy (GT), immunotherapy (IT), and therapies that combine these treatments with conventional chemotherapy (CT). Furthermore, 2,041,910 new cancer cases and 618,120 cancer deaths have been estimated in the United States for the year 2025. The low survival rate (<50%) and poor prognosis of several cancers, despite aggressive treatments, are due to therapy-induced secondary tumorigenesis and the emergence of drug resistance. Moreover, serious adverse effects and/or great pain usually arise during treatments and/or in survivors, thus lowering the overall effectiveness of these cures. Although prevention is of paramount importance, novel anticancer approaches are urgently needed to address these issues. In the field of anticancer nanomedicine, carbon nanotubes (CNTs) could be of exceptional help due to their intrinsic, unprecedented features, easy functionalization, and large surface area, allowing excellent drug loading. CNTs can serve as drug carriers and as ingredients to engineer multifunctional platforms associated with diverse treatments for both anticancer therapy and diagnosis. The present review debates the most relevant advancements about the adjuvant role that CNTs could have in cancer diagnosis and therapy if associated with PTT, PDT, DT, GT, CT, and IT. Numerous sensing strategies utilising various CNT-based sensors for cancer diagnosis have been discussed in detail, never forgetting the still not fully clarified toxicological aspects that may derive from their extensive use. The unsolved challenges that still hamper the possible translation of CNT-based material in clinics, including regulatory hurdles, have been discussed to push scientists to focus on the development of advanced synthetic and purification work-up procedures, thus achieving more perfect CNTs for their safer real-life clinical use. Full article
(This article belongs to the Special Issue New Advances in Anticancer Therapy)
Show Figures

Figure 1

Back to TopTop