Atopic Dermatitis: Pathophysiology and Emerging Treatments
Abstract
1. Introduction
AD Phenotypes and Endotypes
2. Skin Barrier Dysfunction in AD
2.1. Mutations in the Filaggrin (FLG) Gene
2.2. Lipid Abnormalities
2.3. Protease Activation and pH Imbalance
3. Immune Dysregulation in AD
3.1. Innate Immune Dysregulation
3.2. Type 2 (Th2) Pathway
3.3. Type 1 (Th1) and Type 3 (Th17/22) Pathways
3.4. Neuroimmune Dysregulation
3.5. Biomarkers in AD
4. Microbial Dysbiosis in AD
4.1. Skin Microbiome Alterations
4.2. Gut Microbiome Dysbiosis and the Gut–Skin Axis
4.3. Factors Influencing Early-Life Microbiome and AD Risk
- Vaginal delivery promotes the initial colonization of diverse beneficial microbiota in newborns [32].
- Breastfeeding provides human milk oligosaccharides (HMOs), which are prebiotics that nourish beneficial gut bacteria. HMOs contribute to the maturation of gut immunity by promoting SCFA production, fostering IgA secretion (a key mucosal antibody), and supporting the growth of beneficial microbes [33].
- A rural upbringing has also been associated with a more diverse microbiome and reduced AD risk, likely due to increased environmental microbial exposure [34].
5. Role of Epigenetic Factors and the Exposome in the Development of AD
5.1. Epigenetics
5.2. Exposome
6. Pathophysiology of the Atopic March and Age-Related Differences in AD
6.1. Pathophysiology of the Atopic March
6.2. Differences Between Pediatric and Adult AD
7. Targeted Therapeutic Approaches for AD
7.1. Topical Agents
7.2. Systemic Biologics
7.2.1. Dupilumab: Cornerstone of AD Treatment and Implications for Th-17
7.2.2. Other Systemic Therapies
7.2.3. Emerging Systemic Therapies and Ongoing Trials
7.3. Emerging Treatments in Microbiome-Targeted Approaches and Nutritional Supplementation
7.4. Doubtful Role of Antibiotics
7.5. Comparison of International Guidelines on AD Management
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AD | Atopic dermatitis |
| TEWL | Transepidermal water loss |
| IL-4 | Interleukin-4 |
| IL-13 | Interleukin-13 |
| TSLP | Thymic Stromal Lymphopoietin |
| IL-33 | Interleukin-33 |
| IL-25 | Interleukin-25 |
| ILC | Innate Lymphoid Cell |
| JAK | Janus Kinase |
| SCFA | Short-chain fatty acid |
| HMO | Human milk oligosaccharide |
| ILA | indole-3-lactic acid |
| I3C | indole-3-carbaldehyde |
| LPS | Lipopolysaccharide |
| SCORAD | Scoring Atopic Dermatitis |
| EASI | Eczema Area and Severity Index |
References
- Silverberg, J.I. Public Health Burden and Epidemiology of Atopic Dermatitis. Dermatol. Clin. 2017, 35, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Primers. 2018, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M. Current Understanding of Pathophysiological Mechanisms of Atopic Dermatitis: Interactions among Skin Barrier Dysfunction, Immune Abnormalities and Pruritus. Biol. Pharm. Bull. 2020, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Kido-Nakahara, M.; Tsuji, G.; Furue, M. Basics and recent advances in the pathophysiology of atopic dermatitis. J. Dermatol. 2021, 48, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, N.; Irvine, A.D. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann. Allergy Asthma Immunol. 2024, 132, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Kabashima, K. Advances in atopic dermatitis in 2019–2020: Endotypes from skin barrier, ethnicity, properties of antigen, cytokine profiles, microbiome, and engagement of immune cells. J. Allergy Clin. Immunol. 2021, 148, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Hayano, S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2022, 71, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Möbus, L.; Rodriguez, E.; Harder, I.; Boraczynski, N.; Szymczak, S.; Hübenthal, M.; Stölzl, D.; Gerdes, S.; Kleinheinz, A.; Abraham, S.; et al. Blood transcriptome profiling identifies 2 candidate endotypes of atopic dermatitis. J. Allergy Clin. Immunol. 2022, 150, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Hansen-Sackey, T. Pathophysiology of atopic dermatitis and its targeted treatment. Created in BioRender. 2025. Available online: https://BioRender.com/um1kk7z (accessed on 6 August 2025).
- Hatano, Y.; Katagiri, K.; Arakawa, S.; Fujiwara, S. Interleukin-4 depresses levels of transcripts for acid-sphingomyelinase and glucocerebrosidase and the amount of ceramide in acetone-wounded epidermis, as demonstrated in a living skin equivalent. J. Dermatol. Sci. 2007, 47, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, P.R.; Seminario-Vidal, L.; Abe, B.; Ghobadi, C.; Sims, J.T. Cytokines and Epidermal Lipid Abnormalities in Atopic Dermatitis: A Systematic Review. Cells 2023, 12, 2793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simpson, E.L.; Chalmers, J.R.; Hanifin, J.M.; Thomas, K.S.; Cork, M.J.; McLean, W.H.I.; Brown, S.J.; Chen, Z.; Chen, Y.; Williams, H.C. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. JAMA Pediatr. 2014, 168, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Cork, M.J.; Danby, S.G.; Vasilopoulos, Y.; Hadgraft, J.; Lane, M.E.; Moustafa, M.; Guy, R.H.; MacGowan, A.; Tazi-Ahnini, R.; Ward, S.J. Epidermal barrier dysfunction in atopic dermatitis. J. Investig. Dermatol. 2009, 129, 1892–1908. [Google Scholar] [CrossRef] [PubMed]
- Morizane, S.; Sunagawa, K.; Nomura, H.; Ouchida, M. Aberrant serine protease activities in atopic dermatitis. J. Dermatol. Sci. 2022, 107, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Jeong, S.K.; Lee, S.H. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med. J. 2010, 51, 808–822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nomura, H.; Suganuma, M.; Takeichi, T.; Kono, M.; Isokane, Y.; Sunagawa, K.; Kobashi, M.; Sugihara, S.; Kajita, A.; Miyake, T.; et al. Multifaceted Analyses of Epidermal Serine Protease Activity in Patients with Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chieosilapatham, P.; Kiatsurayanon, C.; Umehara, Y.; Trujillo-Paez, J.V.; Peng, G.; Yue, H.; Nguyen, L.T.H.; Niyonsaba, F. Keratinocytes: Innate immune cells in atopic dermatitis. Clin. Exp. Immunol. 2021, 204, 296–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meesters, L.D.; Roubroeks, J.A.Y.; Gerritsen, A.; Velthuijs, N.; Klijnhout, J.A.; Laberthonnière, C.; van Vlijmen-Willems, I.M.; Hübenthal, M.; Rodijk-Olthuis, D.; Peters, R.H.W.; et al. Dissecting key contributions of TH2 and TH17 cytokines to atopic dermatitis pathophysiology. J. Allergy Clin. Immunol. 2025, 156, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, Y.; Nakashima, C.; Otsuka, A. Interplay of cytokines in the pathophysiology of atopic dermatitis: Insights from Murin models and human. Front. Med. 2024, 11, 1342176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vafaeian, A.; Rajabi, F.; Rezaei, N. Toll-like receptors in atopic dermatitis: Pathogenesis and therapeutic implications. Heliyon 2025, 11, e42226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suárez-Fariñas, M.; Dhingra, N.; Gittler, J.; Shemer, A.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; Guttman-Yassky, E. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J. Allergy Clin. Immunol. 2013, 132, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Esaki, H.; Brunner, P.M.; Renert-Yuval, Y.; Czarnowicki, T.; Huynh, T.; Tran, G.; Lyon, S.; Rodriguez, G.; Immaneni, S.; Johnson, D.B.; et al. Early-onset pediatric atopic dermatitis is T2 but also T17 polarized in skin. J. Allergy Clin. Immunol. 2016, 138, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Czarnowicki, T. The pathogenetic role of Th17 immune response in atopic dermatitis. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.O. Targeting cytokines and signaling molecules related to immune pathways in atopic dermatitis: Therapeutic implications and challenges. Arch. Pharm. Res. 2022, 45, 894–908. [Google Scholar] [CrossRef] [PubMed]
- Bieber, T.; Paller, A.S.; Kabashima, K.; Feely, M.; Rueda, M.J.; Terres, J.A.R.; Wollenberg, A. Atopic dermatitis: Pathomechanisms and lessons learned from novel systemic therapeutic options. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1432–1449. [Google Scholar] [CrossRef] [PubMed]
- Ständer, S. Atopic dermatitis. N. Engl. J. Med. 2021, 384, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Trier, A.M.; Li, F.; Kim, S.; Chen, Z.; Chai, J.N.; Mack, M.R.; Morrison, S.A.; Hamilton, J.D.; Baek, J.; et al. A basophil-neuronal axis promotes itch. Cell 2021, 184, 422–440.e17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Misery, L.; Pierre, O.; Le Gall-Ianotto, C.; Lebonvallet, N.; Chernyshov, P.V.; Le Garrec, R.; Talagas, M. Basic mechanisms of itch. J. Allergy Clin. Immunol. 2023, 152, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Renert-Yuval, Y.; Pavel, A.B.; Bose, S.; Gómez-Arias, P.J.; Rangel, S.M.; Estrada, Y.D.; Paller, A.S.; Guttman-Yassky, E. Tape strips capture atopic dermatitis-related changes in nonlesional skin throughout maturation. Allergy 2022, 77, 3445–3447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Libon, F.; Caron, J.; Nikkels, A.F. Biomarkers in Atopic Dermatitis. Dermatol. Ther. 2024, 14, 1729–1738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, H.; Li, W.; Xu, Y.; Zhou, Y.; Hamblin, M.R.; Wen, X. Gut microbiota modulation: A key determinant of atopic dermatitis susceptibility in children. Front. Microbiol. 2025, 16, 1549895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henrick, B.M.; Rodriguez, L.; Lakshmikanth, T.; Pou, C.; Henckel, E.; Arzoomand, A.; Olin, A.; Wang, J.; Mikes, J.; Tan, Z.; et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021, 184, 3884–3898.e11. [Google Scholar] [CrossRef] [PubMed]
- Laursen, M.F.; Sakanaka, M.; von Burg, N.; Mörbe, U.; Andersen, D.; Moll, J.M.; Pekmez, C.T.; Rivollier, A.; Michaelsen, K.F.; Mølgaard, C.; et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 2021, 6, 1367–1382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hülpüsch, C.; Rohayem, R.; Reiger, M.; Traidl-Hoffmann, C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J. Allergy Clin. Immunol. 2024, 154, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Hoskinson, C.; Medeleanu, M.V.; Reyna, M.E.; Dai, D.L.Y.; Chowdhury, B.; Moraes, T.J.; Mandhane, P.J.; Simons, E.; Kozyrskyj, A.L.; Azad, M.B.; et al. Antibiotics taken within the first year of life are linked to infant gut microbiome disruption and elevated atopic dermatitis risk. J. Allergy Clin. Immunol. 2024, 154, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.D.; de Guzman Strong, C. Current understanding of epigenetics in atopic dermatitis. Exp. Dermatol. 2021, 30, 1150–1155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- da Silva Duarte, A.J.; Sanabani, S.S. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci. 2024, 348, 122713. [Google Scholar] [CrossRef] [PubMed]
- Traisaeng, S.; Herr, D.R.; Kao, H.J.; Chuang, T.H.; Huang, C.M. A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. Toxins 2019, 11, 311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liew, W.C.; Sundaram, G.M.; Quah, S.; Lum, G.G.; Tan, J.S.L.; Ramalingam, R.; Common, J.E.A.; Tang, M.B.Y.; Lane, E.B.; Thng, S.T.G.; et al. Belinostat resolves skin barrier defects in atopic dermatitis by targeting the dysregulated miR-335:SOX6 axis. J. Allergy Clin. Immunol. 2020, 146, 606–620.e12. [Google Scholar] [CrossRef] [PubMed]
- Zeldin, J.; Ratley, G.; Shobnam, N.; Myles, I.A. The clinical, mechanistic, and social impacts of air pollution on atopic dermatitis. J. Allergy Clin. Immunol. 2024, 154, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Ratley, G.; Zeldin, J.; Sun, A.A.; Yadav, M.; Chaudhary, P.P.; Myles, I.A. Spatial modeling connecting childhood atopic dermatitis prevalence with household exposure to pollutants. Commun. Med. 2024, 4, 74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, B.E.; Kim, J.; Goleva, E.; Berdyshev, E.; Lee, J.; Vang, K.A.; Lee, U.H.; Han, S.; Leung, S.; Hall, C.F.; et al. Particulate matter causes skin barrier dysfunction. JCI Insight 2021, 6, e145185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.Y.; Jin, H.; Lu, Q. Effect of polycyclic aromatic hydrocarbons on immunity. J. Transl. Autoimmun. 2022, 5, 100177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grafanaki, K.; Bania, A.; Kaliatsi, E.G.; Vryzaki, E.; Vasilopoulos, Y.; Georgiou, S. The Imprint of Exposome on the Development of Atopic Dermatitis across the Lifespan: A Narrative Review. J. Clin. Med. 2023, 12, 2180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, S.I.; Lee, H.; Lee, D.H.; Kim, K.H. Association of frequent intake of fast foods, energy drinks, or convenience food with atopic dermatitis in adolescents. Eur. J. Nutr. 2020, 59, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Strachan, D.; Asher, I.; Ellwood, P.; Pearce, N.; Garcia-Marcos, L.; ISAAC Phase III Study Group; ISAAC Phase Three Study Group. Combined impact of healthy lifestyle factors on risk of asthma, rhinoconjunctivitis and eczema in school children: ISAAC phase III. Thorax 2019, 74, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Jaffary, F.; Faghihi, G.; Mokhtarian, A.; Hosseini, S.M. Effects of oral vitamin E on treatment of atopic dermatitis: A randomized controlled trial. J. Res. Med. Sci. 2015, 20, 1053–1057. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, J.; Kim, Y.J.; Kwon, O.; Kim, N.I.; Cho, Y. Associations among plasma vitamin C, epidermal ceramide and clinical severity of atopic dermatitis. Nutr. Res. Pract. 2016, 10, 398–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nielsen, A.Y.; Høj, S.; Thomsen, S.F.; Meteran, H. Vitamin D supplementation for treating atopic dermatitis in children and adults: A systematic review and meta-analysis. Nutrients 2024, 16, 4128. [Google Scholar] [CrossRef]
- Davidson, W.F.; Leung, D.Y.M.; Beck, L.A.; Berin, C.M.; Boguniewicz, M.; Busse, W.W.; Chatila, T.A.; Geha, R.S.; Gern, J.E.; Guttman-Yassky, E.; et al. Report from the National Institute of Allergy and Infectious Diseases Workshop on “Atopic Dermatitis and the Atopic March: Mechanisms and Interventions”. J. Allergy Clin. Immunol. 2019, 143, 894–913. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Spergel, J.M.; Mina-Osorio, P.; Irvine, A.D. The Atopic March and Atopic Multimorbidity: Many Trajectories, Many Pathways. J. Allergy Clin. Immunol. 2019, 143, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M.; Du Toit, G.; Davis, C.M. Might Biologics Serve to Interrupt the Atopic March? J. Allergy Clin. Immunol. 2023, 151, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Roan, F.; Ziegler, S.F. The Atopic March: Current Insights Into Skin Barrier Dysfunction and Epithelial Cell-Derived Cytokines. Immunol. Rev. 2017, 278, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Czarnowicki, T.; Krueger, J.G.; Guttman-Yassky, E. Novel Concepts of Prevention and Treatment of Atopic Dermatitis Through Barrier and Immune Manipulations with Implications for the Atopic March. J. Allergy Clin. Immunol. 2017, 139, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, S.F. Thymic Stromal Lymphopoietin, Skin Barrier Dysfunction, and the Atopic March. Ann. Allergy Asthma Immunol. 2021, 127, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Marín, H.A.; Silverberg, J.I. Differences Between Pediatric and Adult Atopic Dermatitis. Pediatr. Dermatol. 2022, 39, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Renert-Yuval, Y.; Del Duca, E.; Pavel, A.B.; Fang, M.; Lefferdink, R.; Wu, J.; Diaz, A.; Estrada, Y.D.; Canter, T.; Zhang, N.; et al. The Molecular Features of Normal and Atopic Dermatitis Skin in Infants, Children, Adolescents, and Adults. J. Allergy Clin. Immunol. 2021, 148, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Munayco Maldonado, G.; Foy, V.; Tai, H.; Chiesa Fuxench, Z.C. Variation in Clinical Presentation of Pediatric-Onset and Adult-Onset Atopic Dermatitis: A Retrospective, Single-Center, Chart Review of Adults with Atopic Dermatitis from the United States. Arch. Dermatol. Res. 2024, 316, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Facheris, P.; Da Rosa, J.C.; Pagan, A.D.; Angelov, M.; Del Duca, E.; Rabinowitz, G.; Gómez-Arias, P.J.; Rothenberg-Lausell, C.; Estrada, Y.D.; Bose, S.; et al. Age of Onset Defines Two Distinct Profiles of Atopic Dermatitis in Adults. Allergy 2023, 78, 2202–2214. [Google Scholar] [CrossRef] [PubMed]
- Sala-Cunill, A.; Lazaro, M.; Herráez, L.; Quiñones, M.D.; Moro-Moro, M.; Sanchez, I.; Skin Allergy Committee of Spanish Society of Allergy and Clinical Immunology (SEAIC). Basic Skin Care and Topical Therapies for Atopic Dermatitis: Essential Approaches and Beyond. J. Investig. Allergol. Clin. Immunol. 2018, 28, 379–391. [Google Scholar] [CrossRef] [PubMed]
- AAAAI/ACAAI JTF Atopic Dermatitis Guideline Panel; Chu, D.K.; Schneider, L.; Asiniwasis, R.N.; Boguniewicz, M.; De Benedetto, A.; Ellison, K.; Frazier, W.T.; Greenhawt, M.; Huynh, J.; et al. Atopic dermatitis (eczema) guidelines: 2023 American Academy of Allergy, Asthma and Immunology/American College of Allergy, Asthma and Immunology Joint Task Force on Practice Parameters GRADE- and Institute of Medicine-based recommendations. Ann. Allergy Asthma Immunol. 2024, 132, 274–312. [Google Scholar] [CrossRef] [PubMed]
- Mastraftsi, S.; Vrioni, G.; Bakakis, M.; Nicolaidou, E.; Rigopoulos, D.; Stratigos, A.J.; Gregoriou, S. Atopic Dermatitis: Striving for Reliable Biomarkers. J. Clin. Med. 2022, 11, 4639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goleva, E.; Berdyshev, E.; Kreimer, S.; Reisz, J.A.; D’Alessandro, A.; Bronova, I.; Lyubchenko, T.; Richers, B.N.; Hall, C.F.; Xiao, O.; et al. Longitudinal integrated proteomic and metabolomic skin changes in patients with atopic dermatitis treated with dupilumab. J. Allergy Clin. Immunol. 2025, 155, 1536–1546. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, L. Potential biomarkers of atopic dermatitis. Front. Med. 2022, 9, 1028694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, N.; Ye, Y.; Shao, J.; Wu, H.; Xu, Q.; Zhu, J.; Liu, J.; Li, Z. Efficacy of Dupilumab in Children 6 Months to 11 Years Old with Atopic Dermatitis: A Retrospective Real-World Study in China. Dermatitis 2024, 35 (Suppl. S1), S39–S46. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, B.; Wang, W. Effectiveness and safety of dupilumab in the treatment of pediatric atopic dermatitis: A real-world study from China. Front. Immunol. 2025, 16, 1644875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boesjes, C.M.; Kamphuis, E.; de Graaf, M.; Spekhorst, L.S.; Haeck, I.; van der Gang, L.F.; Loman, L.; Zuithoff, N.P.A.; Dekkers, C.; van der Rijst, L.P.; et al. Long-Term Effectiveness and Reasons for Discontinuation of Dupilumab in Patients with Atopic Dermatitis. JAMA Dermatol. 2024, 160, 1044–1055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grolleau, C.; Calugareanu, A.; Demouche, S.; Nosbaum, A.; Staumont-Sallé, D.; Aubert, H.; Cassius, C.; Jachiet, M.; Saussine, A.; Bagot, M.; et al. IL-4/IL-13 inhibitors for atopic dermatitis induce psoriatic rash transcriptionally close to pustular psoriasis. J. Invest. Dermatol. 2023, 143, 711–721.e7. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Wu, L.; Qiu, Y.; Li, M. Case report: Clinical and histopathological characteristics of psoriasiform erythema and IL-17A cytokines expression on lesioned skin in atopic dermatitis children treated with dupilumab. Front. Med. 2022, 9, 932766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bridgewood, C.; Wittmann, M.; Macleod, T.; Watad, A.; Newton, D.; Bhan, K.; Amital, H.; Damiani, G.; Giryes, S.; Bragazzi, N.L.; et al. T helper 2 IL-4/IL-13 dual blockade with dupilumab is linked to some emergent T helper 17–type diseases, including seronegative arthritis and enthesitis/enthesopathy, but not to humoral autoimmune diseases. J. Invest. Dermatol. 2022, 142, 2660–2667. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suárez-Fariñas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng, X.; et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, G.; Napolitano, M.; Quaranta, M.; Picone, V.; Fabbrocini, G.; Patruno, C. Phenotype-endotype relationship in elderly atopic dermatitis and effects of dupilumab therapy: Prospective study. Arch. Dermatol. Res. 2025, 317, 575. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Valido, K.; Swallow, M.; Okifo, K.O.; Wang, A.; Cohen, J.M.; Damsky, W. Baseline skin cytokine profiles determined by RNA in situ hybridization correlate with response to dupilumab in patients with eczematous dermatitis. J. Am. Acad. Dermatol. 2023, 88, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Camela, E.; Giampetruzzi, A.R.; De Pità, O.; Pallotta, S.; Russo, F. Dupilumab in real-life settings: A review of adverse events and their pathogenesis. Expert. Opin. Drug Saf. 2024, 23, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Thormann, K.; Lüthi, A.S.; Deniau, F.; Heider, A.; Cazzaniga, S.; Radonjic-Hoesli, S.; Lehmann, M.; Schlapbach, C.; Herzog, E.L.; Kreuzer, M.; et al. Dupilumab-associated ocular surface disease is characterized by a shift from Th2/Th17 toward Th1/Th17 inflammation. Allergy 2024, 79, 937–948. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/search?cond=atopic%20dermatitis (accessed on 2 August 2025).
- ClinicalTrials.gov. A Study of Jaktinib in Patients with Moderate-to-Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/study/NCT05526222 (accessed on 13 September 2025).
- ClinicalTrials.gov. A Study of CM310 (Stapokibart) in Patients with Moderate-to-Severe Atopic Dermatitis. Available online: https://clinicaltrials.gov/study/NCT05265923 (accessed on 13 September 2025).
- Yang, X.; Li, Z.; Ding, Y.; Li, J.; Ding, Y.; Wu, L.; Zhang, L.; Wang, J.; Zhu, X.; Zhang, F.; et al. Efficacy and safety of CM310, a novel IL-4Rα antagonist, in adults with moderate-to-severe atopic dermatitis: A randomized, double-blind, placebo-controlled, phase 2b trial. Lancet Reg. Health West. Pac. 2023, 39, 100796. [Google Scholar] [CrossRef]
- Chu, C.Y. Treatments for childhood atopic dermatitis: An update on emerging therapies. Clin. Rev. Allergy Immunol. 2021, 61, 114–127. [Google Scholar] [CrossRef]
- Wrześniewska, M.; Wołoszczak, J.; Świrkosz, G.; Szyller, H.; Gomułka, K. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review. Int. J. Mol. Sci. 2024, 25, 6539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, J.; Fang, Y.; Hu, J.; Li, S.; Zeng, L.; Chen, S.; Li, Z.; Meng, R.; Yang, X.; Zhang, F.; et al. Innovative microbial strategies in atopic dermatitis. Front. Immunol. 2025, 16, 1605434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borzutzky, A.; Iturriaga, C.; Pérez-Mateluna, G.; Cristi, F.; Cifuentes, L.; Silva-Valenzuela, S.; Vera-Kellet, C.; Cabalín, C.; Hoyos-Bachiloglu, R.; Navarrete-Dechent, C.; et al. Effect of weekly vitamin D supplementation on the severity of atopic dermatitis and type 2 immunity biomarkers in children: A randomized controlled trial. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1760–1768. [Google Scholar] [CrossRef] [PubMed]
- Svensson, D.; Nebel, D.; Voss, U.; Ekblad, E.; Nilsson, B.O. Vitamin D-induced up-regulation of human keratinocyte cathelicidin anti-microbial peptide expression involves retinoid X receptor α. Cell Tissue Res. 2016, 366, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Li, Y.; Huang, H.; Wang, D. Serum Vitamin D Level and Efficacy of Vitamin D Supplementation in Children with Atopic Dermatitis: A Systematic Review and Meta-analysis. Comput. Math. Methods Med. 2022, 2022, 9407888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sidbury, R.; Davis, D.M.; Cohen, D.E.; Cordoro, K.M.; Berger, T.G.; Bergman, J.N.; Chamlin, S.L.; Cooper, K.D.; Feldman, S.R.; Hanifin, J.M.; et al. Guidelines of care for the management of atopic dermatitis: Section 3. Management and treatment with phototherapy and systemic agents. J. Am. Acad. Dermatol. 2014, 71, 327–349. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; Tom, W.L.; Berger, T.G.; Krol, A.; Paller, A.S.; Schwarzenberger, K.; Bergman, J.N.; Chamlin, S.L.; Cohen, D.E.; Cooper, K.D.; et al. Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment with topical therapies. J. Am. Acad. Dermatol. 2014, 71, 116–132. [Google Scholar] [CrossRef]
- Elizalde-Jiménez, I.G.; Ruiz-Hernández, F.G.; Carmona-Cruz, S.A.; Pastrana-Arellano, E.; Aquino-Andrade, A.; Romo-González, C.; la Garza, E.A.-D.; Álvarez-Villalobos, N.A.; García-Romero, M.T. Global antimicrobial susceptibility patterns of Staphylococcus aureus in atopic dermatitis: A systematic review and meta-analysis. JAMA Dermatol. 2024, 160, 1171–1181. [Google Scholar] [CrossRef]
- George, S.M.; Karanovic, S.; Harrison, D.A.; Rani, A.; Birnie, A.J.; Bath-Hextall, F.J.; Ravenscroft, J.C.; Williams, H.C. Interventions to reduce Staphylococcus aureus in the management of eczema. Cochrane Database Syst Rev. 2019, 10, CD003871. [Google Scholar] [CrossRef]
- Schoch, J.J.; Anderson, K.R.; Jones, A.E.; Tollefson, M.M. Atopic dermatitis: Update on skin-directed management. Pediatrics 2025, 155, e2025071812. [Google Scholar] [CrossRef]
- Faye, O.; Flohr, C.; Kabashima, K.; Ma, L.; Paller, A.S.; Rapelanoro, F.R.; Steinhoff, M.; Su, J.C.; Takaoka, R.; Wollenberg, A.; et al. Atopic Dermatitis: A Global Health Perspective. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Christen-Zäch, S.; Taieb, A.; Paul, C.; Thyssen, J.P.; de Bruin-Weller, M.; Vestergaard, C.; Seneschal, J.; Werfel, T.; Cork, M.J.; et al. ETFAD/EADV Eczema Task Force 2020 Position Paper on Diagnosis and Treatment of Atopic Dermatitis in Adults and Children. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2717–2744. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Werfel, T.; Ring, J.; Ott, H.; Gieler, U.; Weidinger, S. Atopic Dermatitis in Children and Adults—Diagnosis and Treatment. Dtsch. Arztebl. Int. 2023, 120, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Maintz, L.; Bieber, T. Treatment of Atopic Dermatitis: Recently Approved Drugs and Advanced Clinical Development Programs. Allergy 2024, 79, 1501–1515. [Google Scholar] [CrossRef] [PubMed]

| Phenotypes in AD | ||
| Subtype | Key Features | Clinical Implications |
| Extrinsic (IgE high) |
| More severe course |
| Overlap with type 2 endotypes | |
| ||
| Intrinsic AD (IgE normal) |
| Distinct immunologic profile Not always Th2-dominant |
| Endotypes in AD | ||
| Subtype | Key Features | Clinical Implications |
| Type 2 cytokines (IL-4, IL-13, IL-31) |
| Respond well to IL-4/IL-13 biologics (dupilumab, tralokinumab) |
| Type1/Type 3 cytokines (IFN-γ, IL-17, IL-22) |
| May explain variability in treatment response. Age and genetics need to be further considered in formulating treatment |
| Characteristic | Pediatric AD | Adult AD |
|---|---|---|
| Typical Lesion | Exudative, erythematous, perifollicular accentuation | Chronic, lichenified plaques; hand/nummular eczema |
| Distribution | Face, scalp, extensor surfaces in infancy; flexural later | Extensor, hand, or nummular; less flexural in adult-onset disease |
| Immune Endotype | Th2/Th22 with Th17 activity; (increased IL-13, IL-22, IL-33, IL-9) | Persistent Th2 with Th1 polarization (increased IFN-γ, CXCL9/10/11) |
| Barrier Function | Dysfunction present even in non-lesional skin | More pronounced filaggrin deficiency, epidermal hyperplasia |
| Associations | Food allergy, asthma, allergic rhinitis (atopic march) | Cardiovascular/metabolic risk markers in adult-onset disease |
| Category | WHO | EAACI (ETFAD/EADV Task Force) | AAAAI |
|---|---|---|---|
| Diagnosis | Clinical diagnosis; adapted for low-resource settings; emphasizes history + exam | Clinical diagnosis using Hanifin–Rajka or UK Working Party; emphasizes endotypes/phenotypes | Clinical diagnosis; supports validated tools (SCORAD, EASI, POEM) for monitoring |
| First-line therapy | Emollients, basic skin care; TCSs (if available) | Emollients, avoidance of triggers, TCSs or calcineurin inhibitors | Regular emollient use, trigger avoidance, topical corticosteroids as mainstay; topical calcineurin inhibitors as steroid-sparing |
| Flare management | Step-up TCSs; practical education focus | Short-term intensified topical therapy; wet wraps in moderate–severe | Reactive flare treatment with appropriate potency TCS; proactive twice-weekly TCS/TCI in recurrent disease |
| Systemic/advanced therapy | Rarely available; emphasis on access to basics | Stepwise escalation: cyclosporine (short-term), biologics (dupilumab, tralokinumab), JAK inhibitors | Stepwise escalation: systemic immunosuppressants (cyclosporine, methotrexate, mycophenolate), biologics (dupilumab, tralokinumab), JAK inhibitors |
| Special populations | Strong emphasis on pediatrics and maternal/child health in resource-limited settings | Specific pediatric guidance; pregnancy safety emphasized |
| Mechanism | Key Pathologic Features | Targeted Therapies |
|---|---|---|
| Skin Barrier Dysfunction | Decreased Filaggrin | Emollient |
| Decreased ceramides | Ceramide creams | |
| Increased proteases, increased pH | Protease inhibitors, pH -restoring moisturizers | |
| Type 2 Immune Response | Increased IL-4, IL-13, IL-31 leading to inflammation, itch, barrier dysfunction | Dupilumab Tralokinumab JAK inhibitors Calcineurin inhibitors, topical steroids |
| Innate Immunity Defects | Decreased LL-37 Increased TSLP/IL-33 with poor microbial defense | Vitamin D Experimental topical and synthetic AMPs |
| Microbial Dysbiosis | Increased S. aureus burden Decreased commensals Gut dysbiosis | Bleach baths, antiseptics, probiotics (oral/topical) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen-Sackey, E.B.; Hartono, S. Atopic Dermatitis: Pathophysiology and Emerging Treatments. Allergies 2025, 5, 40. https://doi.org/10.3390/allergies5040040
Hansen-Sackey EB, Hartono S. Atopic Dermatitis: Pathophysiology and Emerging Treatments. Allergies. 2025; 5(4):40. https://doi.org/10.3390/allergies5040040
Chicago/Turabian StyleHansen-Sackey, Ernestina B., and Stella Hartono. 2025. "Atopic Dermatitis: Pathophysiology and Emerging Treatments" Allergies 5, no. 4: 40. https://doi.org/10.3390/allergies5040040
APA StyleHansen-Sackey, E. B., & Hartono, S. (2025). Atopic Dermatitis: Pathophysiology and Emerging Treatments. Allergies, 5(4), 40. https://doi.org/10.3390/allergies5040040

