The Combined Expression Profiles of Epigenetic Biomarkers Reveal Heterogeneity in Normospermic Human Sperm Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Semen Collection and Analysis
2.3. RNA Extraction and RT-qPCR
2.4. Data Preparation and Modeling.
2.5. Protein Localization and RNA Expression
2.6. Statistical Analysis
3. Results
3.1. Relevance of Candidate Gene Expression Patterns for Testis-Specific Biomarker Identification
3.2. Establishment of the Spermatozoa Function Index (SFI)
3.3. Comparison of WHO Semen Criteria and SFI in 627 Sperm Samples
3.4. SFI in Normal Sperm Samples According to the WHO Criteria
3.5. SFI Variations in High-Quality Sperm Samples
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ART | Assisted reproductive technology |
| AZF | Azoospermia factor |
| COFRAC | Comité français d’accréditation |
| DFI | DNA fragmentation index |
| DMCs | Differentially methylated CpGs |
| FISH | Fluorescence in situ Hybridization |
| GO | Gene ontology |
| GTEx | Genotype tissue expression |
| ICSI | Intracytoplasmic sperm injection |
| IRB | Institutional review board |
| IHC | Immunohistochemistry |
| IUI | Intra uterine insemination |
| IVF | In vitro fertilization |
| HBV | Hepatitis B virus |
| HCV | Hepatitis C virus |
| HIV | Human immunodeficiency virus |
| mHTF | modified human tubal fluid |
| nTPM | Normalized transcripts per million |
| TUNEL | Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling |
| OAT | Oligo astheno teratozoospermia |
| POHaD | Paternal origins of health and disease |
| SCSA | Sperm chromatin structure assay |
| SFI | Sperm functional index |
| WHO | World health organization |
References
- Hombach, S.; Kretz, M. Non-Coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Ozsait-Selcuk, B.; Bulgurcuoglu-Kuran, S.; Sever-Kaya, D.; Coban, N.; Aktan, G.; Kadioglu, A. Sperm RNA Quantity and PRM1, PRM2, and TH2B Transcript Levels Reflect Sperm Characteristics and Early Embryonic Development. Asian J. Androl. 2025, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Jodar, M.; Sendler, E.; Moskovtsev, S.I.; Librach, C.L.; Goodrich, R.; Swanson, S.; Hauser, R.; Diamond, M.P.; Krawetz, S.A. Absence of Sperm RNA Elements Correlates with Idiopathic Male Infertility. Sci. Transl. Med. 2015, 7, 295re6. [Google Scholar] [CrossRef] [PubMed]
- Ostermeier, G.C.; Dix, D.J.; Miller, D.; Khatri, P.; Krawetz, S.A. Spermatozoal RNA Profiles of Normal Fertile Men. Lancet 2002, 360, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Lismer, A.; Kimmins, S. Emerging Evidence That the Mammalian Sperm Epigenome Serves as a Template for Embryo Development. Nat. Commun. 2023, 14, 2142. [Google Scholar] [CrossRef]
- Teperek, M.; Simeone, A.; Gaggioli, V.; Miyamoto, K.; Allen, G.E.; Erkek, S.; Kwon, T.; Marcotte, E.M.; Zegerman, P.; Bradshaw, C.R.; et al. Sperm Is Epigenetically Programmed to Regulate Gene Transcription in Embryos. Genome Res. 2016, 26, 1034–1046. [Google Scholar] [CrossRef]
- Llavanera, M.; Delgado-Bermúdez, A.; Ribas-Maynou, J.; Salas-Huetos, A.; Yeste, M. A Systematic Review Identifying Fertility Biomarkers in Semen: A Clinical Approach through Omics to Diagnose Male Infertility. Fertil. Steril. 2022, 118, 291–313. [Google Scholar] [CrossRef]
- Priskorn, L.; Lindahl-Jacobsen, R.; Jensen, T.K.; Holmboe, S.A.; Hansen, L.S.; Kriegbaum, M.; Lind, B.S.; Siersma, V.; Andersen, C.L.; Jørgensen, N. Semen Quality and Lifespan: A Study of 78 284 Men Followed for up to 50 Years. Hum. Reprod. 2025, 40, 730–738. [Google Scholar] [CrossRef]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A Unique View on Male Infertility around the Globe. Reprod. Biol. Endocrinol. RBE 2015, 13, 37. [Google Scholar] [CrossRef]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal Trends in Sperm Count: A Systematic Review and Meta-Regression Analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef]
- Rolland, M.; Le Moal, J.; Wagner, V.; Royère, D.; De Mouzon, J. Decline in Semen Concentration and Morphology in a Sample of 26,609 Men Close to General Population between 1989 and 2005 in France. Hum. Reprod. 2013, 28, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Björndahl, L.; Barratt, C.L.R.; Mortimer, D.; Agarwal, A.; Aitken, R.J.; Alvarez, J.G.; Aneck-Hahn, N.; Arver, S.; Baldi, E.; Bassas, L.; et al. Standards in Semen Examination: Publishing Reproducible and Reliable Data Based on High-Quality Methodology. Hum. Reprod. 2022, 37, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Boitrelle, F.; Shah, R.; Saleh, R.; Henkel, R.; Kandil, H.; Chung, E.; Vogiatzi, P.; Zini, A.; Arafa, M.; Agarwal, A. The Sixth Edition of the WHO Manual for Human Semen Analysis: A Critical Review and SWOT Analysis. Life 2021, 11, 1368. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Swerdloff, R.S. Limitations of Semen Analysis as a Test of Male Fertility and Anticipated Needs from Newer Tests. Fertil. Steril. 2014, 102, 1502–1507. [Google Scholar] [CrossRef]
- Cassuto, N.G.; Bouret, D.; Plouchart, J.M.; Jellad, S.; Vanderzwalmen, P.; Balet, R.; Larue, L.; Barak, Y. A New Real-Time Morphology Classification for Human Spermatozoa: A Link for Fertilization and Improved Embryo Quality. Fertil. Steril. 2009, 92, 1616–1625. [Google Scholar] [CrossRef]
- Vanderzwalmen, P.; Hiemer, A.; Rubner, P.; Bach, M.; Neyer, A.; Stecher, A.; Uher, P.; Zintz, M.; Lejeune, B.; Vanderzwalmen, S.; et al. Blastocyst Development after Sperm Selection at High Magnification Is Associated with Size and Number of Nuclear Vacuoles. Reprod. Biomed. Online 2008, 17, 617–627. [Google Scholar] [CrossRef]
- Balaban, B.; Yakin, K.; Alatas, C.; Oktem, O.; Isiklar, A.; Urman, B. Clinical Outcome of Intracytoplasmic Injection of Spermatozoa Morphologically Selected under High Magnification: A Prospective Randomized Study. Reprod. Biomed. Online 2011, 22, 472–476. [Google Scholar] [CrossRef]
- Setti, A.S.; Braga, D.P.d.A.F.; Vingris, L.; Serzedello, T.; Figueira, R.d.C.S.; Iaconelli, A.; Borges, E. Sperm Morphological Abnormalities Visualised at High Magnification Predict Embryonic Development, from Fertilisation to the Blastocyst Stage, in Couples Undergoing ICSI. J. Assist. Reprod. Genet. 2014, 31, 1533–1539. [Google Scholar] [CrossRef]
- Cassuto, N.G.; Piquemal, D.; Boitrelle, F.; Larue, L.; Lédée, N.; Hatem, G.; Ruoso, L.; Bouret, D.; Siffroi, J.-P.; Rouen, A.; et al. Molecular Profiling of Spermatozoa Reveals Correlations between Morphology and Gene Expression: A Novel Biomarker Panel for Male Infertility. BioMed Res. Int. 2021, 2021, 1434546. [Google Scholar] [CrossRef]
- Cassuto, N.-G.; Boitrelle, F.; Mouik, H.; Larue, L.; Keromnes, G.; Lédée, N.; Part-Ellenberg, L.; Dray, G.; Ruoso, L.; Rouen, A.; et al. Genome-Wide microRNA Expression Profiling in Human Spermatozoa and Its Relation to Sperm Quality. Genes 2025, 16, 53. [Google Scholar] [CrossRef]
- Bendayan, M.; Caceres, L.; Saïs, E.; Swierkowski-Blanchard, N.; Alter, L.; Bonnet-Garnier, A.; Boitrelle, F. Human Sperm Morphology as a Marker of Its Nuclear Quality and Epigenetic Pattern. Cells 2022, 11, 1788. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Grow, E.J.; Mlcochova, H.; Maher, G.J.; Lindskog, C.; Nie, X.; Guo, Y.; Takei, Y.; Yun, J.; Cai, L.; et al. The Adult Human Testis Transcriptional Cell Atlas. Cell Res. 2018, 28, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Dodd, A.R.; Luense, L.J. Contribution of the Paternal Histone Epigenome to the Preimplantation Embryo. Front. Cell Dev. Biol. 2024, 12, 1476312. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Amaral, A.; Oliva, R. Sperm Nuclear Proteome and Its Epigenetic Potential. Andrology 2014, 2, 326–338. [Google Scholar] [CrossRef]
- Champroux, A.; Cocquet, J.; Henry-Berger, J.; Drevet, J.R.; Kocer, A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front. Cell Dev. Biol. 2018, 6, 50. [Google Scholar] [CrossRef]
- Wang, T.; Peng, J.; Fan, J.; Tang, N.; Hua, R.; Zhou, X.; Wang, Z.; Wang, L.; Bai, Y.; Quan, X.; et al. Single-Cell Multi-Omics Profiling of Human Preimplantation Embryos Identifies Cytoskeletal Defects during Embryonic Arrest. Nat. Cell Biol. 2024, 26, 263–277. [Google Scholar] [CrossRef]
- Wakeling, E.; McEntagart, M.; Bruccoleri, M.; Shaw-Smith, C.; Stals, K.L.; Wakeling, M.; Barnicoat, A.; Beesley, C.; Study, D.D.D.; Hanson-Kahn, A.K.; et al. Missense Substitutions at a Conserved 14-3-3 Binding Site in HDAC4 Cause a Novel Intellectual Disability Syndrome. HGG Adv. 2021, 2, 100015. [Google Scholar] [CrossRef]
- Wishart, M.J.; Dixon, J.E. The Archetype STYX/Dead-Phosphatase Complexes with a Spermatid mRNA-Binding Protein and Is Essential for Normal Sperm Production. Proc. Natl. Acad. Sci. USA 2002, 99, 2112–2117. [Google Scholar] [CrossRef]
- Hecht, N.B. Molecular Mechanisms of Male Germ Cell Differentiation. BioEssays 1998, 20, 555–561. [Google Scholar] [CrossRef]
- Evenson, D.P. The Sperm Chromatin Structure Assay (SCSA(®)) and Other Sperm DNA Fragmentation Tests for Evaluation of Sperm Nuclear DNA Integrity as Related to Fertility. Anim. Reprod. Sci. 2016, 169, 56–75. [Google Scholar] [CrossRef] [PubMed]
- Chatzimeletiou, K.; Fleva, A.; Nikolopoulos, T.-T.; Markopoulou, M.; Zervakakou, G.; Papanikolaou, K.; Anifandis, G.; Gianakou, A.; Grimbizis, G. Evaluation of Sperm DNA Fragmentation Using Two Different Methods: TUNEL via Fluorescence Microscopy, and Flow Cytometry. Medicina 2023, 59, 1313. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Martin, R.H. Aneuploidy in Human Spermatozoa: FISH Analysis in Men with Constitutional Chromosomal Abnormalities, and in Infertile Men. Reproduction 2001, 121, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.H. Cytogenetic Determinants of Male Fertility. Hum. Reprod. Update 2008, 14, 379–390. [Google Scholar] [CrossRef]
- Kleiman, S.E.; Almog, R.; Yogev, L.; Hauser, R.; Lehavi, O.; Paz, G.; Yavetz, H.; Botchan, A. Screening for Partial AZFa Microdeletions in the Y Chromosome of Infertile Men: Is It of Clinical Relevance? Fertil. Steril. 2012, 98, 43–47. [Google Scholar] [CrossRef]
- Neto, F.T.L.; Bach, P.V.; Najari, B.B.; Li, P.S.; Goldstein, M. Spermatogenesis in Humans and Its Affecting Factors. Semin. Cell Dev. Biol. 2016, 59, 10–26. [Google Scholar] [CrossRef]
- Houfflyn, S.; Matthys, C.; Soubry, A. Male Obesity: Epigenetic Origin and Effects in Sperm and Offspring. Curr. Mol. Biol. Rep. 2017, 3, 288–296. [Google Scholar] [CrossRef]
- Crafa, A.; Cannarella, R.; Calogero, A.E.; Gunes, S.; Agarwal, A. Behind the Genetics: The Role of Epigenetics in Infertility-Related Testicular Dysfunction. Life 2024, 14, 803. [Google Scholar] [CrossRef]
- Durairajanayagam, D. Lifestyle Causes of Male Infertility. Arab. J. Urol. 2018, 16, 10–20. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassuto, N.-G.; Boitrelle, F.; Ruoso, L.; Bouattane, O.; Bendayan, M.; Abdiche, L.; Larue, L.; Keromnes, G.; Lédée, N.; Prat-Ellenberg, L.; et al. The Combined Expression Profiles of Epigenetic Biomarkers Reveal Heterogeneity in Normospermic Human Sperm Samples. Genes 2025, 16, 1314. https://doi.org/10.3390/genes16111314
Cassuto N-G, Boitrelle F, Ruoso L, Bouattane O, Bendayan M, Abdiche L, Larue L, Keromnes G, Lédée N, Prat-Ellenberg L, et al. The Combined Expression Profiles of Epigenetic Biomarkers Reveal Heterogeneity in Normospermic Human Sperm Samples. Genes. 2025; 16(11):1314. https://doi.org/10.3390/genes16111314
Chicago/Turabian StyleCassuto, Nino-Guy, Florence Boitrelle, Lea Ruoso, Omar Bouattane, Marion Bendayan, Lina Abdiche, Lionel Larue, Gwenola Keromnes, Nathalie Lédée, Laura Prat-Ellenberg, and et al. 2025. "The Combined Expression Profiles of Epigenetic Biomarkers Reveal Heterogeneity in Normospermic Human Sperm Samples" Genes 16, no. 11: 1314. https://doi.org/10.3390/genes16111314
APA StyleCassuto, N.-G., Boitrelle, F., Ruoso, L., Bouattane, O., Bendayan, M., Abdiche, L., Larue, L., Keromnes, G., Lédée, N., Prat-Ellenberg, L., Dray, G., Rouen, A., De Vos, J., & Assou, S. (2025). The Combined Expression Profiles of Epigenetic Biomarkers Reveal Heterogeneity in Normospermic Human Sperm Samples. Genes, 16(11), 1314. https://doi.org/10.3390/genes16111314

