Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,431)

Search Parameters:
Keywords = epidermal growth factor receptor (EGFR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3441 KiB  
Review
Epidermal Growth Factor Receptor (EGFR)-Targeting Peptides and Their Applications in Tumor Imaging Probe Construction: Current Advances and Future Perspectives
by Lu Huang, Ying Dong, Jinhang Li, Xinyu Yang, Xiaoqiong Li, Jia Wu, Jinhua Huang, Qiaoxuan Zhang, Zemin Wan, Shuzhi Hu, Ruibing Feng, Guodong Li, Xianzhang Huang and Pengwei Zhang
Biology 2025, 14(8), 1011; https://doi.org/10.3390/biology14081011 (registering DOI) - 7 Aug 2025
Abstract
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, [...] Read more.
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, and lack of real-time, whole-body data. EGFR-targeted imaging has emerged as a promising alternative. EGFR-targeting peptides, owing to their favorable physicochemical properties and versatility, are increasingly being explored for a variety of applications, including molecular imaging, drug delivery, and targeted therapy. Recent advances have demonstrated the potential of EGFR-targeting peptides conjugated to imaging probes for non-invasive, real-time in vivo tumor detection, precision therapy, and surgical guidance. Here, we provide a comprehensive overview of the latest progress in EGFR-targeting peptides development, with a particular focus on their application in the development of molecular imaging agents, including fluorescence imaging, PET/CT, magnetic resonance imaging, and multimodal imaging. Furthermore, we examine the challenges and future directions concerning the development and clinical application of EGFR-targeting peptide-based imaging probes. Finally, we highlight emerging technologies such as artificial intelligence, mutation-specific peptides, and multimodal imaging platforms, which offer significant potential for advancing the diagnosis and treatment of EGFR-targeted cancers. Full article
Show Figures

Figure 1

19 pages, 4313 KiB  
Article
Integrating Clinical and Imaging Markers for Survival Prediction in Advanced NSCLC Treated with EGFR-TKIs
by Thanika Ketpueak, Phumiphat Losuriya, Thanat Kanthawang, Pakorn Prakaikietikul, Lalita Lumkul, Phichayut Phinyo and Pattraporn Tajarernmuang
Cancers 2025, 17(15), 2565; https://doi.org/10.3390/cancers17152565 - 3 Aug 2025
Viewed by 181
Abstract
Background: Epidermal growth factor receptor (EGFR) mutations are presented in approximately 50% of East Asian populations with advanced non-small cell lung cancer (NSCLC). While EGFR-tyrosine kinase inhibitors (TKIs) are the standard treatment, patient outcomes are also influenced by host-related factors. This study aimed [...] Read more.
Background: Epidermal growth factor receptor (EGFR) mutations are presented in approximately 50% of East Asian populations with advanced non-small cell lung cancer (NSCLC). While EGFR-tyrosine kinase inhibitors (TKIs) are the standard treatment, patient outcomes are also influenced by host-related factors. This study aimed to investigate clinical and radiological factors associated with early mortality and develop a prognostic prediction model in advanced EGFR-mutated NSCLC. Methods: A retrospective cohort was conducted in patients with EGFR-mutated NSCLC treated with first line EGFR-TKIs from January 2012 to October 2022 at Chiang Mai University Hospital. Clinical data and radiologic findings at the initiation of treatment were analyzed. A multivariable flexible parametric survival model was used to determine the predictors of death at 18 months. The predicted survival probabilities at 6, 12, and 18 months were estimated, and the model performance was evaluated. Results: Among 189 patients, 84 (44.4%) died within 18 months. Significant predictors of mortality included body mass index <18.5 or ≥23, bone metastasis, neutrophil-to-lymphocyte ratio ≥ 5, albumin-to-globulin ratio < 1, and mean pulmonary artery diameter ≥ 29 mm. The model demonstrated good performance (Harrell’s C-statistic = 0.72; 95% CI: 0.66–0.78). Based on bootstrap internal validation, the optimism-corrected Harrell’s C-statistic was 0.71 (95% CI: 0.71–0.71), derived from an apparent C-statistic of 0.75 (95% CI: 0.74–0.75) and an estimated optimism of 0.04 (95% CI: 0.03–0.04). Estimated 18-month survival ranged from 87.1% in those without risk factors to 2.1% in those with all predictors. A web-based tool was developed for clinical use. Conclusions: The prognostic model developed from fundamental clinical and radiologic parameters demonstrated promising utility in predicting 18-month mortality in patients with advanced EGFR-mutated NSCLC receiving first-line EGFR-TKI therapy. Full article
Show Figures

Figure 1

14 pages, 5672 KiB  
Article
Multiplex Immunofluorescence Reveals Therapeutic Targets EGFR, EpCAM, Tissue Factor, and TROP2 in Triple-Negative Breast Cancer
by T. M. Mohiuddin, Wenjie Sheng, Chaoyu Zhang, Marwah Al-Rawe, Svetlana Tchaikovski, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Int. J. Mol. Sci. 2025, 26(15), 7430; https://doi.org/10.3390/ijms26157430 - 1 Aug 2025
Viewed by 232
Abstract
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to [...] Read more.
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to characterize molecular and clinicopathological features and to assess the expression and therapeutic potential of four key surface markers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), tissue factor (TF), and trophoblast cell surface antigen (TROP2). Multiplex immunofluorescence (mIF) demonstrated elevated EGFR and TROP2 expression in the majority of samples. Significant positive correlations were observed between EGFR and TF, as well as between TROP2 and both TF and EpCAM. Expression analyses revealed increased EGFR and TF levels with advancing tumor stage, whereas EpCAM expression declined in advanced-stage tumors. TROP2 and TF expression were significantly elevated in higher-grade tumors. Additionally, EGFR and EpCAM levels were significantly higher in patients with elevated Ki-67 indices. Binding specificity assays using single-chain variable fragment (scFv-SNAP) fusion proteins confirmed robust targeting efficacy, particularly for EGFR and TROP2. These findings underscore the therapeutic relevance of EGFR and TROP2 as potential biomarkers and targets in TNBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 370
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

22 pages, 8682 KiB  
Article
Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO
by Shaokang Li, Wenzhe Dong and Aili Qu
Pharmaceuticals 2025, 18(8), 1092; https://doi.org/10.3390/ph18081092 - 23 Jul 2025
Viewed by 229
Abstract
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims [...] Read more.
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims to predict the inhibitory effects of Osimertinib derivatives against EGFRL858R/T790M/C797S mutations. Methods: Six models were established using heuristic method (HM), random forest (RF), gene expression programming (GEP), gradient boosting decision tree (GBDT), polynomial kernel function support vector machine (SVM), and mixed kernel function SVM (MIX-SVM). The descriptors for these models were selected by the heuristic method or XGBoost. Comprehensive learning particle swarm optimizer was adopted to optimize hyperparameters. Additionally, the internal and external validation were performed by leave-one-out cross-validation (QLOO2), 5-fold cross validation (Q5fold2) and concordance correlation coefficient (CCC), QF12, and QF22. The properties of novel EGFR inhibitors were explored through molecular docking analysis. Results: The model established by MIX-SVM whose kernel function is a convex combination of three regular kernel functions is best: R2 and RMSE for training set and test set are 0.9445, 0.1659 and 0.9490, 0.1814, respectively; QLOO2, Q5fold2, CCC, QF12, and QF22 are 0.9107, 0.8621, 0.9835, 0.9689, and 0.9680. Based on these results, the IC50 values of 162 newly designed compounds were predicted using the HM model, and the top four candidates with the most favorable physicochemical properties were subsequently validated through PEA. Conclusions: The MIX-SVM method will provide useful guidance for the design and screening of novel EGFRL858R/T790M/C797S inhibitors. Full article
(This article belongs to the Special Issue QSAR and Chemoinformatics in Drug Design and Discovery)
Show Figures

Graphical abstract

17 pages, 4093 KiB  
Article
4-Hydroxychalcone Inhibits Human Coronavirus HCoV-OC43 by Targeting EGFR/AKT/ERK1/2 Signaling Pathway
by Yuanyuan Huang, Jieyu Li, Qiting Luo, Yuexiang Dai, Xinyi Luo, Jiapeng Xu, Wei Ye, Xinrui Zhou, Jiayi Diao, Zhe Ren, Ge Liu, Zhendan He, Zhiping Wang, Yifei Wang and Qinchang Zhu
Viruses 2025, 17(8), 1028; https://doi.org/10.3390/v17081028 - 23 Jul 2025
Viewed by 303
Abstract
Human coronaviruses are a group of viruses that continue to threaten human health. In this study, we investigated the antiviral activity of 4-hydroxychalcone (4HCH), a chalcone derivative, against human coronavirus HCoV-OC43. We found that 4HCH significantly inhibited the cytopathic effect, reduced viral protein [...] Read more.
Human coronaviruses are a group of viruses that continue to threaten human health. In this study, we investigated the antiviral activity of 4-hydroxychalcone (4HCH), a chalcone derivative, against human coronavirus HCoV-OC43. We found that 4HCH significantly inhibited the cytopathic effect, reduced viral protein and RNA levels in infected cells, and increased the survival rate of HCoV-OC43-infected suckling mice. Mechanistically, 4HCH targets the early stages of viral infection by binding to the epidermal growth factor receptor (EGFR) and inhibiting the EGFR/AKT/ERK1/2 signaling pathway, thereby suppressing viral replication. Additionally, 4HCH significantly reduced the production of pro-inflammatory cytokines and chemokines in both HCoV-OC43-infected RD cells and a suckling mouse model. Our findings demonstrate that 4HCH exhibits potent antiviral activity both in vitro and in vivo, suggesting its potential as a therapeutic agent against human coronaviruses. This study highlights EGFR as a promising host target for antiviral drug development and positions 4HCH as a candidate for further investigation in the treatment of coronavirus infections. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

21 pages, 810 KiB  
Review
Molecular Crosstalk and Therapeutic Synergy: Tyrosine Kinase Inhibitors and Cannabidiol in Oral Cancer Treatment
by Zainab Saad Ghafil AlRaheem, Thao T. Le, Ali Seyfoddin and Yan Li
Curr. Issues Mol. Biol. 2025, 47(8), 584; https://doi.org/10.3390/cimb47080584 - 23 Jul 2025
Viewed by 304
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with oral squamous cell carcinoma (OSCC) accounting for a significant portion of cases. Despite advancements in treatment, only modest gains have been made in HNSCC/OSCC control. Epidermal growth factor [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, with oral squamous cell carcinoma (OSCC) accounting for a significant portion of cases. Despite advancements in treatment, only modest gains have been made in HNSCC/OSCC control. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have emerged as targeted therapies for OSCC in clinical trials. However, their clinical efficacy remains a challenge. Cannabidiol (CBD), a non-psychoactive phytochemical from cannabis, has demonstrated anticancer and immunomodulatory properties. CBD induces apoptosis and autophagy and modulates signaling pathways often dysregulated in HNSCC. This review summarizes the molecular mechanisms of EGFR-TKIs and CBD and their clinical insights and further discusses potential implications of combination targeted therapies. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

28 pages, 944 KiB  
Review
Amphiregulin in Fibrotic Diseases and Cancer
by Tae Rim Kim, Beomseok Son, Chun Geun Lee and Han-Oh Park
Int. J. Mol. Sci. 2025, 26(14), 6945; https://doi.org/10.3390/ijms26146945 - 19 Jul 2025
Viewed by 437
Abstract
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual [...] Read more.
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual signaling pathways. Unlike high-affinity EGFR ligands, AREG induces sustained signaling that activates downstream effectors and promotes the integrin-mediated activation of transforming growth factor (TGF)-β. This enables both canonical and non-canonical EGFR signaling pathways that contribute to fibrosis. Elevated AREG expression correlates with disease severity across multiple organs, including the lungs, kidneys, liver, and heart. The therapeutic targeting of AREG has shown promising antifibrotic and anticancer effects, suggesting a dual-benefit strategy. The increasing recognition of the shared mechanisms between fibrosis and cancer further supports the development of unified treatment approaches. The inhibition of AREG has been shown to sensitize fibrotic tumor microenvironments to chemotherapy, enhancing combination therapy efficacy. Targeted therapies, such as Self-Assembled-Micelle inhibitory RNA (SAMiRNA)-AREG, have demonstrated enhanced specificity and favorable safety profiles in preclinical studies and early clinical trials. Personalized treatment based on AREG expression may improve clinical outcomes, establishing AREG as a promising precision medicine target for both fibrotic and malignant diseases. This review aims to provide a comprehensive understanding of AREG biology and evaluate its therapeutic potential in fibrosis and cancer. Full article
Show Figures

Figure 1

32 pages, 3865 KiB  
Article
Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors
by Fatemah S. Albalawi, Mashooq A. Bhat, Ahmed H. Bakheit, A. F. M. Motiur Rahman, Nawaf A. Alsaif, Alan M. Jones and Isolda Romero-Canelon
Pharmaceuticals 2025, 18(7), 1051; https://doi.org/10.3390/ph18071051 - 17 Jul 2025
Viewed by 555
Abstract
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 6 [...] Read more.
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 624 (a,b), as anticancer agents targeting EGFR and HER2 kinases. Methods: The proposed compounds were initially screened in silico using molecular docking to investigate their binding affinity to the active sites of EGFR and HER2 kinase domains. Subsequently, the compounds were synthesized and evaluated in vitro for their antiproliferative activity, using the MTT assay, against the various cancer cell lines A549, SKOV-3, A2780, and SKBR-3, with lapatinib as the reference drug. The most active derivatives were then examined to determine their inhibitory activity against EGFR and HER2 kinases. Results: Among the assessed compounds, significant antiproliferative activity was demonstrated by 19a, 16b, and 22b. 19a exhibited substantial anticancer efficacy against A549 and SKBR-3, with IC50 values of 0.81 µM and 1.41 µM, respectively. This activity surpassed lapatinib, which has an IC50 of 11.57 µM on A549 and 8.54 µM on SKBR-3 cells. Furthermore, 19a, 16b, and 22b exhibited superior EGFR inhibitory efficacy compared with lapatinib (IC50 = 0.13 µM), with IC50 values of 0.08, 0.06, and 0.07 µM, respectively. Regarding HER2, 22b demonstrated the greatest potency with an IC50 of 0.03 µM, equipotent to lapatinib (IC50 = 0.03 µM). Flow cytometry analysis of A549 cells treated with 19a and 22b indicated their ability to arrest the cell cycle during the G1 phase and to trigger cellular apoptosis. Conclusions: Compounds 19a, 16b, and 22b represent intriguing candidates for the development of an anticancer agent targeting EGFR and HER2 kinases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

31 pages, 4404 KiB  
Review
Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer
by Hang Zhang, Longling Wang, Yuet Wa Chan, William C. Cho, Zhong Zuo and Kenneth K. W. To
Pharmaceutics 2025, 17(7), 917; https://doi.org/10.3390/pharmaceutics17070917 - 15 Jul 2025
Viewed by 717
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the major subtype, accounting for more than 85% of all lung cancer cases. Recent advances in precision oncology have allowed NSCLC patients bearing specific oncogenic epidermal growth [...] Read more.
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the major subtype, accounting for more than 85% of all lung cancer cases. Recent advances in precision oncology have allowed NSCLC patients bearing specific oncogenic epidermal growth factor receptor (EGFR) mutations to respond well to EGFR tyrosine kinase inhibitors (TKIs). Due to the high EGFR mutation frequency (up to more than 50%) observed particularly in Asian NSCLC patients, EGFR-TKIs have produced unprecedented clinical responses. Depending on their binding interactions with EGFRs, EGFR-TKIs are classified as reversible (first-generation: gefitinib and erlotinib) or irreversible inhibitors (second-generation: afatinib and dacomitinib; third-generation: osimertinib). While the discovery of osimertinib represents a breakthrough in the treatment of NSCLC, most patients eventually relapse and develop drug resistance. Novel strategies to overcome osimertinib resistance are urgently needed. In Asian countries, the concomitant use of Western medicine and traditional Chinese medicine (TCM) is very common. Ganoderma lucidum (Lingzhi) and Coriolus versicolor (Yunzhi) are popular TCMs that are widely consumed by cancer patients to enhance anticancer efficacy and alleviate the side effects associated with cancer therapy. The bioactive polysaccharides and triterpenes in these medicinal mushrooms are believed to contribute to their anticancer and immunomodulating effects. This review presents the latest update on the beneficial combination of Lingzhi/Yunzhi and EGFR-TKIs to overcome drug resistance. The effects of Lingzhi/Yunzhi on various oncogenic signaling pathways and anticancer immunity, as well as their potential to overcome EGFR-TKI resistance, are highlighted. The potential risk of herb–drug interactions could become critical when cancer patients take Lingzhi/Yunzhi as adjuvants during cancer therapy. The involvement of drug transporters and cytochrome P450 enzymes in these herb–drug interactions is summarized. Finally, we also discuss the opportunities and future prospects regarding the combined use of Lingzhi/Yunzhi and EGFR-TKIs in cancer patients. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

21 pages, 3752 KiB  
Article
Virulence and Antibiotic Resistance Profiles of Staphylococcus aureus Isolated from Epidermal Growth Factor Receptor Inhibitors-Associated Skin Lesions
by Mara-Mădălina Mihai, Iuliana Anghelescu, Alina Maria Holban, Irina Gheorghe-Barbu, Mariana-Carmen Chifiriuc, Lia-Mara Dițu, Cornelia-Ioana Ilie, Dan Anghelescu and Beatrice Bălăceanu-Gurău
Int. J. Mol. Sci. 2025, 26(14), 6595; https://doi.org/10.3390/ijms26146595 - 9 Jul 2025
Viewed by 411
Abstract
Cutaneous adverse reactions (CARs) are common complications of epidermal growth factor receptor (EGFR) inhibitor therapy, with papulopustular eruptions and paronychia being the most frequent. Growing scientific evidence implies that Staphylococcus aureus is involved in the pathogenesis of these reactions. This observational prospective study [...] Read more.
Cutaneous adverse reactions (CARs) are common complications of epidermal growth factor receptor (EGFR) inhibitor therapy, with papulopustular eruptions and paronychia being the most frequent. Growing scientific evidence implies that Staphylococcus aureus is involved in the pathogenesis of these reactions. This observational prospective study characterized 42 S. aureus strains isolated from CARs, analyzing antibiotic resistance, biofilm formation, soluble virulence factors, and virulence/resistance genes using multiplex polymerase chain reaction (PCR). S. aureus was identified in 90% of lesions; in 33% of cases, nasal and skin isolates were genetically identical. High resistance rates were noted for penicillins (85%) and tetracyclines (57%), while all strains remained susceptible to fluoroquinolones, vancomycin, and rifampicin. All isolates formed biofilms, and DNase/esculinase production significantly correlated with CAR severity. An enzymatic score based on these markers was associated with an 18-fold increased risk of severe reactions. Genotypically, clfA and clfB were prevalent (85.7%), while exotoxin genes were less common. These findings support a key role for S. aureus in exacerbating CARs via antibiotic resistance, biofilm production, and the expression of virulence factor. Additionally, we emphasize the role of routine microbial screening—including nasal swabs—and therapy guided by antibiograms. Furthermore, the enzymatic score may further be validated as a predictive biomarker. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases (Second Edition))
Show Figures

Figure 1

28 pages, 2586 KiB  
Review
Diagnostic, Therapeutic, and Prognostic Applications of Artificial Intelligence (AI) in the Clinical Management of Brain Metastases (BMs)
by Kyriacos Evangelou, Panagiotis Zemperligkos, Anastasios Politis, Evgenia Lani, Enrique Gutierrez-Valencia, Ioannis Kotsantis, Georgios Velonakis, Efstathios Boviatsis, Lampis C. Stavrinou and Aristotelis Kalyvas
Brain Sci. 2025, 15(7), 730; https://doi.org/10.3390/brainsci15070730 - 8 Jul 2025
Viewed by 703
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults. Their heterogeneity, potential multifocality, and complex biomolecular behavior pose significant diagnostic and therapeutic challenges. Artificial intelligence (AI) has the potential to revolutionize BM diagnosis by facilitating early lesion detection, precise imaging segmentation, [...] Read more.
Brain metastases (BMs) are the most common intracranial tumors in adults. Their heterogeneity, potential multifocality, and complex biomolecular behavior pose significant diagnostic and therapeutic challenges. Artificial intelligence (AI) has the potential to revolutionize BM diagnosis by facilitating early lesion detection, precise imaging segmentation, and non-invasive molecular characterization. Machine learning (ML) and deep learning (DL) models have shown promising results in differentiating BMs from other intracranial tumors with similar imaging characteristics—such as gliomas and primary central nervous system lymphomas (PCNSLs)—and predicting tumor features (e.g., genetic mutations) that can guide individualized and targeted therapies. Intraoperatively, AI-driven systems can enable optimal tumor resection by integrating functional brain maps into preoperative imaging, thus facilitating the identification and safeguarding of eloquent brain regions through augmented reality (AR)-assisted neuronavigation. Even postoperatively, AI can be instrumental for radiotherapy planning personalization through the optimization of dose distribution, maximizing disease control while minimizing adjacent healthy tissue damage. Applications in systemic chemo- and immunotherapy include predictive insights into treatment responses; AI can analyze genomic and radiomic features to facilitate the selection of the most suitable, patient-specific treatment regimen, especially for those whose disease demonstrates specific genetic profiles such as epidermal growth factor receptor mutations (e.g., EGFR, HER2). Moreover, AI-based prognostic models can significantly ameliorate survival and recurrence risk prediction, further contributing to follow-up strategy personalization. Despite these advancements and the promising landscape, multiple challenges—including data availability and variability, decision-making interpretability, and ethical, legal, and regulatory concerns—limit the broader implementation of AI into the everyday clinical management of BMs. Future endeavors should thus prioritize the development of generalized AI models, the combination of large and diverse datasets, and the integration of clinical and molecular data into imaging, in an effort to maximally enhance the clinical application of AI in BM care and optimize patient outcomes. Full article
(This article belongs to the Section Neuro-oncology)
Show Figures

Figure 1

22 pages, 5156 KiB  
Article
The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance
by Aayush Rastogi, Rong Qiu, Rachel Campoli, Usama Altayeh, Sarai Arriaga, Muhammad J. Khan, Subaranjana Saravanaguru Vasanthi, Robert Hillwig and Neelu Puri
Biomedicines 2025, 13(7), 1653; https://doi.org/10.3390/biomedicines13071653 - 7 Jul 2025
Viewed by 514
Abstract
Background/Objectives: The fat mass and obesity-associated (FTO) protein demethylates nuclear N6-Methyladenosine (m6A) on mRNA, facilitates tumor growth, and contributes to therapeutic resistance in multiple cancer types. Recent evidence demonstrates several roles of FTO in tumorigenesis. In this study, we seek to explore [...] Read more.
Background/Objectives: The fat mass and obesity-associated (FTO) protein demethylates nuclear N6-Methyladenosine (m6A) on mRNA, facilitates tumor growth, and contributes to therapeutic resistance in multiple cancer types. Recent evidence demonstrates several roles of FTO in tumorigenesis. In this study, we seek to explore the role of FTO in non-small cell lung cancer (NSCLC) tumorigenicity and its relationship with epidermal growth factor receptor (EGFR) tyrosine kinase resistance. Methods: We performed qPCR, immunoblotting, viability assays, migration assays, and ATP assays to investigate the functions of FTO in EGFR tyrosine kinase inhibitor (TKI) resistance, specifically to erlotinib, in three NSCLC cell lines harboring either wild-type or mutant EGFR. We also performed immunohistochemistry on lung tumor tissues from patients diagnosed at different stages of NSCLC. Results: Our study found an upregulation of FTO in erlotinib-resistant (ER) cell lines at both the gene and protein levels. FTO inhibition and knockdown significantly reduced cell viability of erlotinib-resistant H2170 and PC9 cells by over 30% when treated with 0.8 µM of Dac51 and about 20% when treated with siFTO. FTO inhibition also slowed down the migration of ER cells, and the effect was even more pronounced when combined with erlotinib. Furthermore, FTO was found to be overexpressed in late-stage NSCLC tumor tissues compared to early-stage tumors, and it was upregulated in patients who smoked. Conclusions: These findings suggest FTO might mediate resistance and tumor growth by augmenting cell proliferation. In addition, FTO can be a potential prognostic marker in NSCLC patients. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

19 pages, 4114 KiB  
Article
Proteomic Profiling Reveals TPR and FGA as Predictive Serum Biomarkers of Relapse to First- and Second-Generation EGFR-TKIs in Advanced Lung Adenocarcinoma
by Pritsana Raungrut, Wararat Chiangjong, Thipphanet Masjon, Saowanee Maungchanburi, Thidarat Ruklert and Narongwit Nakwan
Biomedicines 2025, 13(7), 1608; https://doi.org/10.3390/biomedicines13071608 - 30 Jun 2025
Viewed by 339
Abstract
Background: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) significantly enhance the median survival of patients with lung adenocarcinoma (ADC) that harbor EGFR-sensitive mutations. However, most patients inevitably experience tumor relapse owing to drug resistance. We aimed to identify potential serum biomarkers [...] Read more.
Background: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) significantly enhance the median survival of patients with lung adenocarcinoma (ADC) that harbor EGFR-sensitive mutations. However, most patients inevitably experience tumor relapse owing to drug resistance. We aimed to identify potential serum biomarkers for predicting post-EGFR-TKI treatment relapse in patients with advanced-stage lung ADC. Methods: Among 27 patients, including 6 and 21 with early and late relapse, respectively, differentially expressed proteins between patients with early and late relapses were identified using liquid chromatography and tandem mass spectrometry and subsequently validated using Western blotting. Predictive ability was assessed using the receiver operating characteristic curve and area under the curve (AUC) analysis. The association between the clinical variables and treatment response was evaluated using the chi-square test. Results: The serum expression levels of the translocated promoter region (TPR), junction plakoglobin (JUP), and fibrinogen alpha chain (FGA) were significantly higher in patients with late rather than early relapse. The findings indicated that TPR and FGA exhibited good diagnostic performance, with AUCs of 0.946 (p = 0.002; 95% confidence interval [CI], 0.84–1.05) and 0.809 (p = 0.034; 95% CI, 0.65–0.97), respectively. Conclusions: Our results suggest that the TPR and FGA levels are potential predictors of post-EGFR-TKI treatment relapse. Full article
(This article belongs to the Special Issue Advances in Lung Cancer: From Bench to Bedside)
Show Figures

Figure 1

19 pages, 1798 KiB  
Review
Current Status of Multimodal Therapy for Oligometastatic Disease, Induced Oligometastatic Disease, and Oligo-Progressive Disease in EGFR-Mutated Non-Small-Cell Lung Cancer
by Taichi Miyawaki, Hirotsugu Kenmotsu, Ryo Ko, Masaki Oshima, Takehito Shukuya, Naoto Shikama and Kazuhisa Takahashi
Cancers 2025, 17(13), 2202; https://doi.org/10.3390/cancers17132202 - 30 Jun 2025
Viewed by 473
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have shown clinical activity for patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, the development of resistance to EGFR-TKIs is almost inevitable, posing a significant barrier to long-term survival. Local ablative therapy (LAT) may [...] Read more.
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have shown clinical activity for patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, the development of resistance to EGFR-TKIs is almost inevitable, posing a significant barrier to long-term survival. Local ablative therapy (LAT) may facilitate the prolonged survival of patients with oligometastatic NSCLC. Therapeutic combinations of EGFR-TKIs and LAT for residual disease have been suggested to be potentially effective in EGFR-mutated NSCLC with induced oligometastatic disease, wherein a few lesions remain following initial EGFR-TKI treatment. Various resistance pathways for third-generation EGFR-TKIs including osimertinib, current standard of care for patients with EGFR-mutated NSCLC, have also been identified. In addition to resistance mechanisms, the disease-progression pattern may be an essential element for achieving long-term response and survival. Oligo-progressive disease is a state in which only a few lesions become resistant, whereas many lesions remain controlled with effective systemic therapy. Previous studies have shown that LAT for all oligo-progressive lesions could provide survival benefits. This review discusses the current treatment options and potential future therapeutic developments for patients with EGFR-mutated NSCLC who have synchronous oligometastatic disease, oligo-residual disease during treatment with EGFR-TKIs, and oligo-progressive disease following resistance to EGFR-TKIs. Full article
(This article belongs to the Special Issue The Current Status of Treatment for Oligometastatic Lung Cancer)
Show Figures

Graphical abstract

Back to TopTop