Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer
Abstract
1. Introduction
2. Drug Resistance to EGFR-TKIs
2.1. Resistance Mechanisms to First- and Second-Generation EGFR-TKIs
2.2. Drug Resistance to Osimertinib in First-Line and Second-Line Treatment
2.2.1. EGFR-Dependent Resistance Mechanisms [24]
2.2.2. EGFR-Independent Resistance Mechanisms
3. Potentiation of Antitumor Efficacy of EGFR-TKIs by Medicinal Mushrooms
3.1. Lingzhi Inhibits Various Oncogenic Pathways and Overcomes Drug Resistance in EGFR-Mutated NSCLC
3.1.1. Inhibition of EGFR and Its Downstream Signaling Pathways
3.1.2. Modulation of VEGF-Dependent Angiogenesis Program by Lingzhi/Yunzhi
3.1.3. Inhibition of Other Aberrant Oncogenic Pathways by Lingzhi/Yunzhi
3.1.4. Circumvention of Other EGFR TKI Resistance Mechanisms
4. Involvement of Lingzhi/Yunzhi-Mediated Antitumor Immunity
4.1. Immunological Characteristics of EGFR-Mutated NSCLC
4.1.1. Low Tumor Immunogenicity
4.1.2. EGFR-Mutated Tumors Are Infiltrated with Immunosuppressive Immune Cells
4.1.3. EGFR-Mutated NSCLC Secretes Immunosuppressive Cytokines
4.1.4. EGFR-TKI Treatment Reinforces the Immunosuppressive TME in EGFR-Mutated Tumors
4.2. Immunomodulatory Effects of Lingzhi/Yunzhi and Their Potential Role in Treating EGFR-Mutated NSCLC
4.2.1. Ganoderma Boosts Antitumor Immunity
Enhancing Antitumor Activity of Macrophages
Enhancing the Antitumor Activity of NK Cells
Modulating T Cells to Enhance Antitumor Response
4.3. Potential Role of Lingzhi in EGFR-Mutated NSCLC: A Tumor Immunology Perspective
5. Pharmacokinetics Consideration
5.1. Potential Lingzhi–EGFR TKI Interaction via Drug Transporters
5.2. Potential Lingzhi/Yunzhi-EGFR TKI Interaction via Metabolic Enzymes
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Hou, Z.; Zhang, Y.; Jiang, B. Drug resistance mechanisms and progress in the treatment of EGFR-mutated lung adenocarcinoma. Oncol. Lett. 2022, 24, 408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gu, Z.; Yu, X.; Cheng, T.; Liu, B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front. Oncol. 2024, 14, 1447678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zeng, L.; Huang, Z.; Ruan, Z.; Yan, H.; Zou, C.; Xu, S.; Zhang, Y. Strategies beyond 3rd EGFR-TKI acquired resistance: Opportunities and challenges. Cancer Med. 2025, 14, e70921. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Fong, W.; Cho, W.C.S. Immunotherapy in treating EGFR-mutant lung cancer: Current challenges and new strategies. Front. Oncol. 2021, 11, 635007. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Sha, H.; Qin, X.; Chen, Y.; Li, X.; Shi, M.; Feng, J. EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells. Oncogene 2020, 39, 2643–2657. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Qiu, W.L.; Tsao, S.M.; Tseng, A.J.; Lu, M.K.; Hua, W.J.; Cheng, H.C.; Hsu, H.Y.; Lin, T.Y. Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer. Int. J. Biol. Macromol. 2020, 165 Pt A, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, L. Cellular and molecular mechanism of Ganoderma (Lingzhi) against tumor. Adv. Exp. Med. Biol. 2019, 1182, 79–118. [Google Scholar] [PubMed]
- Won, S.J.; Lee, S.S.; Ke, Y.H.; Lin, M.T. Enhancement of splenic NK cytotoxic activity by extracts of Ganoderma lucidum mycelium in mice. J. Biomed. Lab. Sci. 1989, 2, 201–213. [Google Scholar]
- Zhu, X.L.; Chen, A.F.; Lin, Z.B. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J. Ethnopharmacol. 2007, 11, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Lin, Z.B.; Duan, X.S.; Qi, H.H.; Yang, N.; Li, M.; Xing, E.H.; Sun, Y.; Yu, M.; Li, W.D.; et al. Suppression of the production of transforming growth factor β1, interleukin-10, and vascular endothelial growth factor in the B16F10 cells by Ganoderma lucidum polysaccharides. J. Interferon Cytokine Res. 2014, 34, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Li, W.D.; Lin, Z.B.; Duan, X.S.; Xing, E.H.; Jiang, M.M.; Yang, N.; Qi, H.H.; Sun, Y.; Li, M.; et al. Cytokine production suppression by culture supernatant of B16F10 cells and amelioration by Ganoderma lucidum polysaccharides in activated lymphocytes. Cell Tissue Res. 2015, 360, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.R.; Huo, X.K.; Dong, P.P.; Wang, C.; Huang, S.S.; Zhang, B.J.; Zhang, H.L.; Deng, S.; Liu, K.X.; Ma, X.C. Inhibitory effects of highly oxygenated lanostane derivatives from the fungus Ganoderma lucidum on P-glycoprotein and α-glucosidase. J. Nat. Prod. 2015, 78, 1868–1876. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Hu, C.T.; You, R.I.; Ma, P.L.; Pan, S.M.; Lee, M.C.; Wu, W.S. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS ONE 2015, 10, e0114495. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Hsu, H.Y.; Sun, W.H.; Wu, T.H.; Tsao, S.M. Induction of Cbl-dependent epidermal growth factor receptor degradation in Ling Zhi-8 suppressed lung cancer. Int. J. Cancer 2017, 140, 2596–2607. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Yan, P.; Lam, W.C.; Yao, L.; Bian, Z. Coriolus versicolor and Ganoderma lucidum related natural products as an adjunct therapy for cancers: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- You, Y.H.; Lin, Z.B. Protective effects of Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol. Sin. 2002, 23, 787–791. [Google Scholar] [PubMed]
- You, Y.H.; Lin, Z.B. Free radical scavenging activity by Ganoderma lucidum polysaccharides peptide on peritoneal macrophages in mice. Chin. J. Clin. Pharmacol. Ther. 2004, 9, 52–55. [Google Scholar]
- You, Y.H.; Lin, Z.B. Influence of Ganoderma lucidum polysaccharides peptide on free radical induced peritoneal macrophage injury in early stage. Chin. J. Pharmacol. Toxicol. 2004, 19, 137–139. [Google Scholar]
- Stanley, G.; Harvey, K.; Slivova, V.; Jiang, J.; Sliva, D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells. Biochem. Biophys. Res. Commun. 2005, 330, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.Z.; Lin, Z.B. Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. Life Sci. 2006, 78, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.Y.; Liu, J.J.; Sun, X.F.; Wang, N. Ganoderma lucidum inhibits proliferation of human ovarian cancer cells by suppressing VEGF expression and up-regulating the expression of connexin 43. BMC Complement. Altern. Med. 2014, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Arroyo, I.J.; Rios-Fuller, T.J.; Feliz-Mosquea, Y.R.; Lacourt-Ventura, M.; Leal-Alviarez, D.J.; Maldonado-Martinez, G.; Cubano, L.A.; Martinez-Montemayor, M.M. Ganoderma lucidum combined with the EGFR tyrosine kinase inhibitor, erlotinib synergize to reduce inflammatory breast cancer progression. J. Cancer 2016, 7, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, J.A.; Quantin, X.; Aussel, A.; Solassol, I.; Serre, I.; Solassol, J. EGFR-dependent mechanisms of resistance to osimertinib determined by ctDNA NGS analysis identify patients with better outcome. Transl. Lung Cancer Res. 2021, 10, 4084–4094. [Google Scholar] [CrossRef] [PubMed]
- Zalaquett, Z.; Hachem, M.C.R.; Kassis, Y.; Hachem, S.; Eid, R.; Kourie, H.R.; Planchard, D. Acquired resistance mechanism to osimertinib: The constant battle. Cancer Treat. Rev. 2023, 116, 102557. [Google Scholar] [CrossRef] [PubMed]
- Hseu, Y.C.; Shen, Y.C.; Kao, M.C.; Mathew, D.C.; Karuppaiya, P.; Li, M.L.; Yang, H.L. Ganoderma tsugae induced ROS-independent apoptosis and cytoprotective autophagy in human chronic myeloid leukemia cells. Food Chem. Toxicol. 2019, 124, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Hua, W.J.; Qiu, W.L.; Tseng, A.J.; Cheng, H.C.; Lin, T.Y. WSG, a glucose-enriched polysaccharide from Ganoderma lucidum, suppresses tongue cancer cells via inhibition of EGFR-mediated signaling and potentiates cisplatin-induced apoptosis. Int. J. Biol. Macromol. 2021, 193, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Fan, Q.; Liu, Z.; Zhang, S.; Huang, W.; Li, H.; Liang, C.; Sun, F. An epitope on EGFR loading catastrophic internalization serves as a novel oncotarget for hepatocellular carcinoma therapy. Cancers 2020, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.W.; Ye, Z.J.; Xu, Y.M.; Zhang, J.; Tang, J.S. Ergosta-7,22-diene-2β,3α,9α-triol (EGDT) from Ganoderma lucidum inhibits nasopharyngeal carcinoma cells by blocking EGFR signaling pathway. Chin. Herb. Med. 2018, 10, 27–33. [Google Scholar] [CrossRef]
- Hsu, S.C.; Ou, C.C.; Chuang, T.C.; Li, J.W.; Lee, Y.J.; Wang, V.; Liu, J.Y.; Chen, C.S.; Lin, S.C.; Kao, M.C. Ganoderma tsugae extract inhibits expression of epidermal growth factor receptor and angiogenesis in human epidermoid carcinoma cells: In vitro and in vivo. Cancer Lett. 2009, 281, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Mahran, Y.F.; Hassan, H.M. Ganoderma lucidum prevents cisplatin-induced nephrotoxicity through inhibition of epidermal growth factor receptor signaling and autophagy-mediated apoptosis. Oxid. Med. Cell. Longev. 2020, 2020, 4932587. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.L.; Lo, H.C.; Lu, M.K.; Lin, T.Y. Significance of culture period on the physiochemistry and anti-cancer potentials of polysaccharides from mycelia of Ganoderma lucidum. Int. J. Biol. Macromol. 2023, 242 Pt 4, 125181. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qiu, F.; Wang, Y.; Liang, F.; Liang, J.; Lin, C.; Liang, J.; Gong, B.; Chan, S.; De Zhang, Z.; et al. A recombinant protein rLZ-8, originally extracted from Ganoderma lucidum, ameliorates OVA-induced lung inflammation by regulating Th17/Treg balance. J. Leukoc. Biol. 2020, 108, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Taniguchi, M.; Baba, K. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: Mechanism of action and isolation of an active substance. Anticancer Res. 2002, 22, 3309–3318. [Google Scholar] [PubMed]
- Guo, P.R.; Sheng, Y.W.; Liu, B.; Wang, C.; Liu, Y.D.; Fu, D.W.; Wang, C.C. Influence of Ganoderma lucidum polysaccharide on the inhibitory effects of cisplatin on the tumor growth and angiogenesis in bladder cancer (T24) cells-bearing nude mice. Med. J. Chin. PLA 2014, 39, 470–474. [Google Scholar]
- Sadava, D.; Still, D.W.; Mudry, R.R.; Kane, S.E. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Lett. 2009, 277, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lu, J.; Duan, X.S.; Qi, H.H.; Sun, L.X. Inhibitory Effects of Ganoderma Lucidum Polysaccharides on VEGF Secretion in B16F10 Melanoma Cells. J. Chengde Med. Coll. 2017, 34, 276–278. [Google Scholar]
- Chen, Y.H.; Zou, J.J.; Li, S.B.; Huang, G.R.; Zheng, Z.L.; Dong, Y.X.; Yang, M.X.; Luo, Y.H. The inhibiting effects of Ganoderma lucidum polysaccharides on proliferation and migration of HepG2 liver cancer cells. Guangdong Med. J. 2018, 39, 1625–1628. [Google Scholar]
- Sun, L.; Hua, C.Y.; Hou, Y.Y. Effect of glossy Ganoderma spore oil on human hepatoma cell line HepG2. J. Pract. Oncol. 2011, 26, 128–133. [Google Scholar]
- Song, Y.X.; Dou, H.; Liu, X.Q.; Gong, W.; Hou, Y.Y. The effects of Ganoderma lucidum spore oil on MCF-7 cell apoptosis and migration. Inf. Tradit. Chin. Med. 2011, 28, 91–94. [Google Scholar]
- Wang, Y.P.; Zhao, G.F.; Liu, L.; Li, P.F.; Hou, Y.Y. Glossy Ganoderma spore oil induced apoptosis of human lung adenocarcinoma LTEP-a2 cells through up-regulating miR-16 expression. Herald Med. 2011, 30, 570–573. [Google Scholar]
- Zhang, J.; Niu, M.M.; Yang, L.; Fan, L.S.; Wu, L.; Zhan, J.; Zhang, H.Q. Effects of Ganoderma lucidum spore oil and Ganoderma lucidum extraction spore oil on angiogenesis regulatory factors. Acta Anat. Sin. 2014, 45, 525–530. [Google Scholar]
- Wang, X.Y.; Chen, G.Y.; Su, J.; Lv, G.Y.; Chen, S.H. Effects of Ganoderma lucidum spore powders and broken Ganoderma lucidum spore powders on tumor growth and VEGF expression of mice with Lewis lung cancer. Pharmacol. Clin. Chin. Mater. Med. 2017, 33, 118–122. [Google Scholar]
- Wang, X.J.; Xu, J.P.; Cheng, Y.F. Inhibitory and antiangiogenetic effects of lucid Ganoderma spore on the human hepatocarcinoma transplanted in nude mice. Acta Acad. Med. Xuzhou 2006, 26, 115–119. [Google Scholar]
- Bian, S.; Xu, L.; Yu, Y.; Dun, W.L. LZBZY’s regulatory effect on the growth of H22 tumor and the expression of VEGF in transplanted H22 tumor of mice. Anhui Med. Pharm. J. 2007, 11, 1067–1068. [Google Scholar]
- El-Khashab, I. Antiangiogenic and proapoptotic activities of atorvastatin and Ganoderma lucidum in tumor mouse model via VEGF and caspase-3 pathways. Asian Pac. J. Cancer Prev. 2021, 22, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejewski, T.; Pawlikowska, M.Ł.; Sobocińska, J.; Wrotek, S. Protein-bound polysaccharides from Coriolus versicolor fungus disrupt the crosstalk between breast cancer cells and macrophages through inhibition of angiogenic cytokines production and shifting tumour-associated macrophages from the M2 to M1 subtype. Cell. Physiol. Biochem. 2020, 54, 615–628. [Google Scholar] [PubMed]
- Ho, J.; Konerding, M.; Gaumann, A.; Groth, M.; Liu, W. Fungal polysaccharopeptide inhibits tumor angiogenesis and tumor growth in mice. Life Sci. 2004, 75, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hou, Y.Y.; Zhang, W.Y.; Han, X.D. Research on the antitumor actions of extracts from the fruiting body of Coriolus versicolor. J. Med. Postgrad. 2004, 17, 413–415+419. [Google Scholar]
- Zhang, Y. Ganoderma lucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun. 2017, 488, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Li, S.; Zhuo, Y.; Chen, J.; Qin, X.; Guo, G. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol. Lett. 2017, 14, 7467–7472. [Google Scholar] [PubMed]
- Kino, K.; Yamashita, A.; Yamaoka, K.; Watanabe, J.; Tanaka, S.; Ko, K.; Shimizu, K.; Tsunoo, H. Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8 (LZ-8), from Ganoderma lucidum. J. Biol. Chem. 1989, 264, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Rios-Fuller, T.J.; Ortiz-Soto, G.; Lacourt-Ventura, M.; Maldonado-Martinez, G.; Cubano, L.A.; Schneider, R.J.; Martinez-Montemayor, M.M. Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway. Oncotarget 2018, 9, 35907–35921. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Hsu, H.Y. Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation. Cancer Lett. 2016, 375, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.S.; Song, Y.L.; Yin, Z.Q.; Guo, J.J.; Wang, S.P.; Zhao, W.W.; Chen, X.P.; Zhang, Q.W.; Lu, J.J.; Wang, Y.T. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS ONE 2013, 8, e76620. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Zhang, B.D.; Wei, R.; Liu, J.H.; Lin, Z.B. Reversal effect of Ganoderma lucidum polysaccharide on multidrug resistance in K562/ADM cell line. Acta Pharmacol. Sin. 2008, 29, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, J.; Wang, Y.; Dong, J. Co-administration of MDR1 and BCRP or EGFR/PI3K inhibitors overcomes lenvatinib resistance in hepatocellular carcinoma. Front. Oncol. 2022, 12, 944537. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chang, C.L.; Chen, T.H.; Chang, Y.W.; Lin, S.B. Colossolactone H, a new Ganoderma triterpenoid, exhibits cytotoxicity and potentiates drug efficacy of gefitinib in lung cancer. Fitoterapia 2016, 114, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Feliz-Mosquea, Y.; Suárez-Arroyo, I.; Cubano, L.A. Synergistic effect between Ganoderma lucidum (Reishi) and lapatinib in HER2+ inflammatory breast cancer cells. Cancer Res. 2014, 74 (Suppl. S19), 3219. [Google Scholar] [CrossRef]
- Liu, G.; Wang, K.; Kuang, S.; Cao, R.; Bao, L.; Liu, R.; Liu, H.; Sun, C. The natural compound GL22, isolated from Ganoderma mushrooms, suppresses tumor growth by altering lipid metabolism and triggering cell death. Cell Death Dis. 2018, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tang, Q.; Ren, X.; Zheng, F.; He, C.; Chai, X.; Li, L.; Hann, S.S. Reciprocal interaction of HOTAIR and SP1 together enhance the ability of Xiaoji decoction and gefitinib to inhibit EP4 expression. J. Ethnopharmacol. 2019, 237, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Vallega, K.A.; Wang, D.; Quan, Z.; Fan, S.; Wang, Q.; Leal, T.; Ramalingam, S.S.; Sun, S.Y. Inhibition of hTERT/telomerase/telomere mediates therapeutic efficacy of osimertinib in EGFR mutant lung cancer. J. Exp. Med. 2024, 221, e20240435. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Hsiao, Y.M.; Hsu, C.P.; Lin, M.Y.; Wang, J.C.; Huang, Y.L.; Ko, J.L. Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line. Mol. Carcinog. 2006, 45, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Sillapapongwarakorn, S.; Yanarojana, S.; Pinthong, D.; Thithapandha, A.; Ungwitayatorn, J.; Supavilai, P. Molecular docking based screening of triterpenoids as potential G-quadruplex stabilizing ligands with anti-cancer activity. Bioinformation 2017, 13, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.S.; Chen, L.S. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors. Exp. Ther. Med. 2017, 14, 3273–3278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Li, Z.; Sun, Y.; Liu, T.; Yin, R. Persist or resist: Immune checkpoint inhibitors in EGFR-mutated NSCLC. Cancer Sci. 2025, 116, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Y.; Zhang, J.T.; Liu, S.Y.; Su, J.; Zhang, C.; Xie, Z.; Zhou, Q.; Tu, H.Y.; Xu, C.R.; Yan, L.X.; et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 2017, 6, e1356145. [Google Scholar] [CrossRef] [PubMed]
- Vokes, N.; Jimenez Alguilar, E.; Adeni, A.; Umeton, R.; Sholl, L.; Rizvi, H.; Hellmann, M.; Awad, M.; Van Allen, E. MA19.01 efficacy and genomic correlates of response to anti-PD1/PD-L1 blockade in non-small cell lung cancers harboring targetable oncogenes. J. Thorac. Oncol. 2018, 13 (Suppl. S10), S422. [Google Scholar] [CrossRef]
- Negrao, M.V.; Lam, V.K.; Reuben, A.; Rubin, M.L.; Landry, L.L.; Roarty, E.B.; Rinsurongkawong, W.; Lewis, J.; Roth, J.A.; Swisher, S.G.; et al. PD-L1 expression, tumor mutational burden, and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non-small cell lung cancer. J. Thorac. Oncol. 2019, 14, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Ota, K.; Kawahara, A.; Hattori, S.; Iwama, E.; Harada, T.; Matsumoto, K.; Takayama, K.; Takamori, S.; Kage, M.; et al. Association of PDL1 overexpression with activating EGFR mutations in surgically resected non-small-cell lung cancer. Ann Oncol. 2014, 25, 1935–1940. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, N.; Li, L.; Chen, X.; Liu, X.; Zhang, Y.; Cui, J. Favorable immune microenvironment in patients with EGFR and MAPK co-mutations. Lung Cancer 2020, 11, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Chen, J.; Cheng, J.N.; Sun, C.; Jia, Q.; Diao, X.; Zhu, B. Tumor microenvironment properties are associated with low CD68-positive cell infiltration and favorable disease-free survival in EGFR-mutant lung adenocarcinoma. Clin. Lung Cancer 2018, 19, e551–e558. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, X.; Jiang, T.; Zhao, S.; Zhao, C.; Zhang, L.; Liu, X.; Shi, J.; Qiao, M.; Luo, J.; et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: Implications for combination therapies. Int. J. Cancer 2019, 145, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
- Isomoto, K.; Haratani, K.; Hayashi, H.; Shimizu, S.; Tomida, S.; Niwa, T.; Yokoyama, T.; Fukuda, Y.; Chiba, Y.; Kato, R.; et al. Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin. Cancer Res. 2020, 26, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Toki, M.I.; Mani, N.; Smithy, J.W.; Liu, Y.; Altan, M.; Wasserman, B.; Tuktamyshov, R.; Schalper, K.; Syrigos, K.N.; Rimm, D.L. Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J. Thorac. Oncol. 2018, 13, 1884–1896. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.M.; Traeger, L.; Eusebio, J.; Simon, N.M.; Sequist, L.V.; Greer, J.A.; Temel, J.S.; Pirl, W.F. Depression, inflammation, and epidermal growth factor receptor (EGFR) status in metastatic non-small cell lung cancer: A pilot study. J. Psychosom. Res. 2017, 99, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Sunaga, N.; Imai, H.; Shimizu, K.; Shames, D.S.; Kakegawa, S.; Girard, L.; Sato, M.; Kaira, K.; Ishizuka, T.; Gazdar, A.F.; et al. Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int. J. Cancer 2012, 130, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Le, X.; Negrao, M.V.; Reuben, A.; Federico, L.; Diao, L.; McGrail, D.; Nilsson, M.; Robichaux, J.; Munoz, I.G.; Patel, S.; et al. Characterization of the immune landscape of EGFR-mutant NSCLC identifies CD73/adenosine pathway as a potential therapeutic target. J. Thorac. Oncol. 2021, 16, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Park, L.C.; Rhee, K.; Kim, W.B.; Cho, A.; Song, J.; Anker, J.F.; Oh, M.; Bais, P.; Namburi, S.; Chuang, J.; et al. Immunologic and clinical implications of CD73 expression in non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2018, 36 (Suppl. S15), 12050. [Google Scholar] [CrossRef]
- Ishii, H.; Azuma, K.; Kawahara, A.; Kinoshita, T.; Matsuo, N.; Naito, Y.; Tokito, T.; Yamada, K.; Akiba, J.; Hoshino, T. Predictive value of CD73 expression in EGFR-mutation positive non-small-cell lung cancer patients received immune checkpoint inhibitors. J. Clin. Oncol. 2018, 36 (Suppl. S15), 9065. [Google Scholar] [CrossRef]
- Simoni, Y.; Becht, E.; Fehlings, M.; Loh, C.Y.; Koo, S.L.; Teng, K.W.W.; Yeong, J.P.S.; Nahar, R.; Zhang, T.; Kared, H.; et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018, 557, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, T.D.; Prieto-Dominguez, N.; Gowda, P.S.; Ubil, E. Mechanisms of macrophage plasticity in the tumor environment: Manipulating activation state to improve outcomes. Front. Immunol. 2021, 12, 642285. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Feng, L.; Schmid, F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp. Cell Res. 2024, 442, 114198. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, B.; Qi, M.; Li, Y.; Duan, Y.; Yao, Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189172. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.T.; Hua, K.F.; Hsu, J.; Karmenyan, A.; Tseng, K.Y.; Wong, C.H.; Chiou, A. The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Opt. Express 2007, 15, 11020–11032. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.B.; Zhang, Z.L.; Ruan, Y.; Wu, Y.C.; Cong, Z. The pharmacological study of Ganoderma lucidum part VI: Effects of different extract fractions from Ganoderma lucidum fruiting bodies on the phagocytic activity of mouse peritoneal macrophages. Edib. Fungi 1980, 3, 5–6. [Google Scholar]
- Tang, Q.J.; Zhang, J.S.; Pan, Y.J.; Martin, Z.K.; Werner, R.; Fan, H. Activation of normal and tumor-bearing mouse macrophages by active polysaccharide from Ganoderma lucidum. Curr. Immunol. 2005, 25, 49–52. [Google Scholar]
- Zhang, J.; Tang, Q.; Zhou, C.; Jia, W.; Da Silva, L.; Nguyen, L.D.; Reutter, W.; Fan, H. GLIS, a bioactive proteoglycan fraction from Ganoderma lucidum, displays antitumour activity by increasing both humoral and cellular immune response. Life Sci. 2010, 87, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.Z.; Lin, Z.B. Comparison of the effects of polysaccharides from wood-cultured and bag-cultured Ganoderma lucidum on murine spleen lymphocyte proliferation in vitro. Acta Pharm. Sin. 2003, 38, 92–97. [Google Scholar]
- Tang, Q.J.; Zhang, J.S.; Pan, Y.J.; Werner, R.; Fan, H. Activation of mouse macrophages by the alkali extracted polysaccharide from spore of Ganoderma lucidum. Chin. J. Cell Mol. Immunol. 2004, 20, 142–144. [Google Scholar]
- Huang, J.Q.; Nie, Q.X.; Liu, X.Z.; Zhang, S.S.; Nie, S.P.; Huang, D.F.; Xie, M.Y. Ganoderma atrum polysaccharide modulates TNF-α secretion and mRNA expression in macrophages of S-180 tumor-bearing mice. Food Hydrocoll. 2016, 53, 24–30. [Google Scholar] [CrossRef]
- Hsu, M.J.; Lee, S.S.; Lee, S.T.; Lin, W.W. Signaling mechanisms of enhanced neutrophil phagocytosis and chemotaxis by the polysaccharide purified from Ganoderma lucidum. Br. J. Pharmacol. 2003, 139, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.J.; Lee, S.S.; Lin, W.W. Polysaccharide purified from Ganoderma lucidum inhibits spontaneous and Fas-mediated apoptosis in human neutrophils through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. J. Leukoc. Biol. 2002, 72, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Shuto, T.; Sato, M.; Onuki, K.; Mizunoe, S.; Suzuki, S.; Sato, T.; Koga, T.; Suico, M.A.; Kai, H.; et al. Lucidenic acids-rich extract from antlered form of Ganoderma lucidum enhances TNF-α induction in THP-1 monocytic cells possibly via its modulation of MAP kinases p38 and JNK. Biochem. Biophys. Res. Commun. 2011, 408, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Lin, Z.B.; Lu, J.; Li, W.D.; Niu, Y.D.; Yu, S.; Hu, C.Y.; Zhang, G.Q.; Duan, X.S. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol. Res. 2017, 65, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Wu, Y.S.; Chen, S.; Liu, C.F.; Chen, S.N. Mushroom β-glucan may immunomodulate the tumor-associated macrophages in the Lewis lung carcinoma. Biomed. Res. Int. 2015, 2015, 604385. [Google Scholar]
- Saadh, M.J.; Rasulova, I.; Khalil, M.; Farahim, F.; Sarbu, I.; Ciongradi, C.I.; Omar, T.M.; Alhili, A.; Jawad, M.J.; Hani, T.; et al. Natural killer cell-mediated immune surveillance in cancer: Role of tumor microenvironment. Pathol. Res. Pract. 2024, 254, 155120. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Yang, J.S.; Yang, J.L.; Wu, C.L.; Chang, S.J.; Lu, K.W.; Lin, J.J.; Hsia, T.C.; Lin, Y.T.; Ho, C.C.; et al. Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo. Biosci. Biotechnol. Biochem. 2009, 73, 2589–2594. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Yang, F.L.; Huang, Z.Y.; Chen, C.S.; Yang, Y.L.; Hua, K.F.; Li, J.; Chen, S.T.; Wu, S.H. Oligosaccharide and peptidoglycan of Ganoderma lucidum activate the immune response in human mononuclear cells. J. Agric. Food Chem. 2012, 60, 2830–2837. [Google Scholar] [CrossRef] [PubMed]
- Won, S.J.; Lin, M.T.; Wu, W.L. Ganoderma tsugae mycelium enhances splenic natural killer cell activity and serum interferon production in mice. Jpn. J. Pharmacol. 1992, 59, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Ning, A.H.; Cao, J.; Huag, M.; Zhang, W. The antitumor action and influence of immune system of Ganoderma polysaccharides in mice. Chin. J. Microecol. 2004, 16, 13–14. [Google Scholar]
- Wang, C.H.; Shi, S.S.; Chen, Q.; Lin, S.Q.; Wang, R.; Wang, S.Z.; Chen, C.M. Antitumor and immunomodulatory activities of Ganoderma lucidum polysaccharides in glioma-bearing rats. Integr. Cancer Ther. 2018, 17, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Lin, Z.B.; Li, X.J.; Li, M.; Lu, J.; Duan, X.S.; Ge, Z.H.; Song, Y.X.; Xing, E.H.; Li, W.D. Promoting effects of Ganoderma lucidum polysaccharides on B16F10 cells to activate lymphocytes. Basic Clin. Pharmacol. Toxicol. 2011, 108, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Lin, Z.B.; Duan, X.S.; Lu, J.; Ge, Z.H.; Li, X.F.; Li, X.J.; Li, M.; Xing, E.H.; Song, Y.X.; et al. Enhanced MHC class I and costimulatory molecules on B16F10 cells by Ganoderma lucidum polysaccharides. J. Drug Target 2012, 20, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Lin, Z.B.; Duan, X.S.; Lu, J.; Ge, Z.H.; Li, X.J.; Li, M.; Xing, E.H.; Jia, J.; Lan, T.F.; et al. Ganoderma lucidum polysaccharides antagonize the suppression on lymphocytes induced by culture supernatants of B16F10 melanoma cells. J. Pharm. Pharmacol. 2011, 63, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Chen, Q.; He, Y.-M. The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network. Sci. Rep. 2018, 8, 12680. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Qu, Z.H.; Zhao, Z.Y. Effect of Ganoderma lucidum spores on immune function in patients with non-small cell lung cancer during chemotherapy. China Pract. Med. 2014, 9, 20–21. [Google Scholar]
- Zhen, Z.J.; Wang, F.J.; Fan, G.Y.; Chen, H.W. Effect of Ganoderma lucidum spore to the immunological function of patients with hepatocellular carcinoma after operation. Chin. J. Hepat. Surg. 2013, 2, 171–174. [Google Scholar]
- Lin, Y.L.; Liang, Y.C.; Lee, S.S.; Chiang, B.L. Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-κB and p38 mitogen-activated protein kinase pathways. J. Leukoc. Biol. 2005, 78, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Hsu, M.L.; Hsu, H.C.; Tzeng, C.H.; Lee, S.S.; Shiao, M.S. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 1997, 70, 699–705. [Google Scholar] [CrossRef]
- Lin, N.D.; Su, J.N.; Zhu, Z.; Gao, Y.H.; Gao, H.; Xie, G.Y. Analysis on 66 cases of cancer patients treated by chemotherapy with extract of Ganoderma lucidum. J. Pract. Tradit. Chin. Intern. Med. 2004, 18, 457–458. [Google Scholar]
- Wang, M.M.; Coupland, S.E.; Aittokallio, T.; Figueiredo, C.R. Resistance to immune checkpoint therapies by tumor-induced T-cell desertification and exclusion: Key mechanisms, prognostication and new therapeutic opportunities. Br. J. Cancer 2023, 129, 1212–1224. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Su, L.; Li, D.; Shuai, O.; Zhang, Y.; Liang, H.; Jiao, C.; Xu, Z.; Lai, Y.; Xie, Y. Antitumor activity of extract from the sporoderm-breaking spore of Ganoderma lucidum: Restoration on exhausted cytotoxic T cell with gut microbiota remodeling. Front. Immunol. 2018, 9, 1765. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; He, Y.T.; Dong, S.; Wei, X.W.; Chen, Z.H.; Zhang, B.; Chen, W.D.; Yang, X.R.; Wang, F.; Shang, X.M.; et al. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J. Immunother. Cancer 2022, 10, e003534. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sun, L.X.; Lin, Z.B.; Duan, X.S.; Ge, Z.H.; Xing, E.H.; Lan, T.F.; Yang, N.; Li, X.J.; Li, M.; et al. Antagonism by Ganoderma lucidum polysaccharides against the suppression by culture supernatants of B16F10 melanoma cells on macrophage. Phytother. Res. 2014, 28, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Huang, D.; Wang, Y.; Li, D.; Yang, X.; Fu, Y.; Du, N.; Zhao, Y.; Li, X.; Ma, J.; et al. The efficacy of immune checkpoint inhibitors in advanced EGFR-mutated non-small cell lung cancer after resistance to EGFR-TKIs: Real-world evidence from a multicenter retrospective study. Front. Immunol. 2022, 13, 975246. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Gao, Z.; Wu, D.; Zheng, J.; Hu, C.; Huang, D.; He, C.; Liu, Y.; Lin, C.; Peng, T.; et al. Understanding the dynamics of TKI-induced changes in the tumor immune microenvironment for improved therapeutic effect. J. Immunother. Cancer 2024, 12, e009165. [Google Scholar] [CrossRef] [PubMed]
- Angelicola, S.; Giunchi, F.; Ruzzi, F.; Frascino, M.; Pitzalis, M.; Scalambra, L.; Semprini, M.S.; Pittino, O.M.; Cappellp, C.; Siracusa, I.; et al. PD-L1 and IFN-γ modulate non-small cell lung cancer (NSCLC) cell plasticity associated to immune checkpoint inhibitor (ICI)-mediated hyperprogressive disease (HPD). J. Transl. Med. 2025, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.R.; Feng, L.; Ye, L.H.; Wang, L.S.; Xiao, B.X.; Tao, X.; Chang, Q. Ganoderic Acid A Metabolites and Their Metabolic Kinetics. Front. Pharmacol. 2017, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Tang, W. Ganoderic acid T improves sensitivity of multidrug-resistant KB-A-1/dox cells to doxorubicin. Nat. Prod. Res. Dev. 2013, 25, 1052–1055. [Google Scholar]
- Tang, W. Ganoderic acid Me improves the sensitivity of multidrug-resistant KB-A-1/Dox cells to doxorubicin. Sci. Technol. Food Ind. 2013, 34, 97–100. [Google Scholar]
- Tang, Y.; Gao, Q.H.; Xu, W.T.; Wu, Z.; Li, F.R. The active section of Ganoderma lucidum on reversion of multidrug resistance in multidrug-resistant gastric carcinoma cell line SGC7901/ADR. J. Chin. Med. Mater. 2013, 36, 2007–2010. [Google Scholar]
- Ballard, P.; Yates, J.W.; Yang, Z.; Kim, D.W.; Yang, J.C.H.; Cantarini, M.; Pickup, K.; Jordan, A.; Hickey, M.; Grist, M.; et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 2016, 22, 5130–5140. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Li, J.L. Comparative review of drug-drug interactions with epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Onco Targets Ther. 2019, 12, 5467–5484. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Shen, C.; Lin, Q.F.; Zhong, J.Y.; Zhou, Y.F.; Liu, B.C.; Xu, J.H.; Zhang, Z.Q.; Li, P. Sterols and triterpenoids from Ganoderma lucidum and their reversal activities of tumor multidrug resistance. Nat. Prod. Res. 2022, 36, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lin, Y.; Lv, X.; Wu, Y.; Han, C.; Cao, P.; Zhang, G.; Leng, A.; Zhou, J.; Wang, C. Triterpenoids from Ganoderma lucidum inhibit cytochrome P450 enzymes interfering with the metabolic process of specific clinical drugs. Front. Pharmacol. 2024, 15, 1485209. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Li, D.; Lou, Y.Q.; Lin, Z.B.; Zhang, G.L. Effects of Ganoderma lucidum polysaccharide on CYP2E1, CYP1A2 and CYP3A activities in BCG-immune hepatic injury in rats. Biol. Pharm. Bull. 2007, 30, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.H.; Or, P.M. Polysaccharide peptides from Coriolus versicolor competitively inhibit model cytochrome P450 enzyme probe substrates metabolism in human liver microsomes. Phytomedicine 2012, 19, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, F.; Chen, D.; Su, K.; Zhang, L.; Jiang, R. In vitro inhibitory effects of ganoderic acid A on human liver cytochrome P450 enzymes. Pharm. Biol. 2020, 58, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Nicandro, J.P.; Tsourounis, C.; Frassetto, L.; Guglielmo, B.J. In vivo effect of I’m-Yunity on hepatic cytochrome P450 3A4. J. Herb. Pharmacother. 2007, 7, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.H.; Or, P.M. Polysaccharide peptides from Coriolus versicolor competitively inhibit tolbutamide 4-hydroxylation in specific human CYP2C9 isoform and pooled human liver microsomes. Phytomedicine 2011, 18, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Rodseeda, C.; Yamanont, P.; Pinthong, D.; Korprasertthaworn, P. Inhibitory effects of Thai herbal extracts on the cytochrome P450 3A-mediated metabolism of gefitinib, lapatinib and sorafenib. Toxicol. Rep. 2022, 9, 1846–1852. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; de Mores, A.R.; Cohen, L.; Anwar, M.M.; Lazar, F.; Hicklen, R.; Lopez, G.; Yang, P.; Bruera, E. Medicinal mushroom supplements in cancer: A systematic review of clinical studies. Curr. Oncol. Rep. 2023, 25, 569–587. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Pan, L.C.; Zheng, Y.G.; Du, G.S.; Fu, X.Q.; Zhu, Z.D.; Song, J.Y.; Liu, Z.J.; Su, X.Z.; Chen, W.; et al. Novel strategy of sirolimus plus thymalfasin and Huaier granule on tumor recurrence of hepatocellular carcinoma beyond the UCSF criteria following liver transplantation: A single center experience. Oncol. Lett. 2018, 16, 4407–4417. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, X.P. Adjuvant Huaier granule for hepatocellular carcinoma after curative resection: A phase IV, multicenter, randomized, and parallel-group controlled clinical trial. J. Hepatol. 2017, 66 (Suppl. S1), S622. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Chen, T. Efficacy of Huaier granule in patients with breast cancer. Clin. Transl. Oncol. 2019, 21, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Akagi, J.; Baba, H. PSK may suppress CD57(+) T cells to improve survival of advanced gastric cancer patients. Int. J. Clin. Oncol. 2010, 15, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ito, G.; Tanaka, H.; Ohira, M.; Yoshii, M.; Muguruma, K.; Kubo, N.; Yashiro, M.; Yamada, N.; Maeda, K.; Sawada, T.; et al. Correlation between efficacy of PSK postoperative adjuvant immunochemotherapy for gastric cancer and expression of MHC class I. Exp. Ther. Med. 2012, 3, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.S.; Kang, S.Y.; Lee, H.W.; Jeong, S.H.; Park, J.S.; Lee, K.J.; Cho, Y.K.; Han, S.U.; Lee, S.Y.; Lim, H.Y.; et al. 5-Fluorouracil, mitomycin-c, and polysaccharide-k versus uracil-ftorafur and polysaccharide-K as adjuvant chemoimmunotherapy for patients with locally advanced gastric cancer with curative resection. Onkologie 2013, 36, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, M.; Mochiki, E.; Ishiguro, T.; Ogura, T.; Sobajima, J.; Kumagai, Y.; Ishibashi, K.; Ishida, H. Improved efficacy by addition of protein-bound polysaccharide K to adjuvant chemotherapy for advanced gastric cancer. Anticancer Res. 2016, 36, 4237–4241. [Google Scholar] [PubMed]
- Wu, T.T.; Chen, Y.Y.; Yuan, Z.C.; Yang, G.W.; Zhang, G.L. Synergy of de-walled Ganoderma Lucidum spore powder (GLSP) on targeted therapy in advanced non-squamous non-small cell lung cancer with epidermal growth factor receptor (EGFR) mutant: Protocol for a randomized, double-blind, placebo-controlled study. BMC Complement. Med. Ther. 2024, 24, 125. [Google Scholar] [CrossRef] [PubMed]
- Majam, T.; Sukasem, C.; Reungwetwattana, T.; Chansriwong, P.; Atasilp, C.; Trachu, N.; Thamrongjjrapat, T.; Sukprasong, R.; Meanwatthana, J. CYP450 and drug efflux transporters polymorphism influence clinical outcomes of Thai osimertinib-treated non-small cell lung cancer patients. Front. Pharmacol. 2023, 14, 1222435. [Google Scholar] [CrossRef] [PubMed]
- Veerman, G.D.; Boosman, R.J.; Jebbink, M.; Oomen-de Hoop, E.; van der Wekken, A.J.; Bahce, I.; Hendriks, L.E.L.; Croes, S.; Steendam, C.M.J.; de Jonge, E.; et al. Influence of germline variations in drug transporters ABCB1 and ABCG2 on intracerebral osimertinib efficacy in patients with non-small cell lung cancer. EClinicalMedicine 2023, 59, 101955. [Google Scholar] [CrossRef] [PubMed]
- Tanda, M.; Yamamoto, K.; Hori, T.; Nishiguchi, H.; Yagi, M.; Shimizu, M.; Konishi, T.; Ozaki, T.; Yoshioka, N.; Tachihara, M.; et al. Association of STAT3, CYP3A5, and ABCG2 polymorphisms with osimerinib-induced adverse events in NSCLC patients. Anticancer Res. 2023, 43, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, K.; Chen, S.; Wang, L.; Zhang, X.; Xu, W.; Yam, M.F.; Wu, C.; Xu, W.; Lin, Y. Quality control of Ganoderma lucidum by using C, H, O, and N stable isotypes and C and N contents for geographical traceability. Front. Plant Sci. 2023, 14, 1234729. [Google Scholar]
- Yeung, S.; Chen, Q.; Yu, Y.; Zhou, B.; Wu, W.; Li, X.; Huang, Y.; Wang, Z. Quality evaluation of commercial products of Ganoderma lucidum made from its fruiting body and spore. Acta Chromatogr. 2021, 34, 100–113. [Google Scholar] [CrossRef]
Species | Herbal Component Contributing to the Biological Effect | Study Systems (Cell, Microsome, Animal) | Major Effects | Reference |
---|---|---|---|---|
Ganoderma lucidum | WSG | Human lung adenocarcinoma A549 cell line and murine Lewis lung carcinoma (LLC1) | (1) WSG significantly suppressed the viability and motility of lung cancer cells. (2) WSG markedly inhibited lung tumor progression, decreased the size of metastatic nodules within the lungs, and extended the survival of LLC1-bearing mice. | [7] |
Ganoderma lucidum | WSG | Human tongue cancer SAS and HSC3 cells | (1) The IC50 values for SAS and HSC3 cells following 48 h treatment with WSG were 107 μg/mL and 232 μg/mL, respectively. (2) WSG did not significantly reduce the EGFR level but did significantly reduced EGFR phosphorylation by about 50–60%. (3) WSG + cisplatin enhanced cytotoxicity in tongue cancer cells. | [27] |
Ganoderma lucidum | rLZ-8 | Human lung cancer cell lines; Lewis tumor-bearing C57BL/6 mice | (1) rLZ-8 significantly suppressed EGFR protein level. (2) rLZ-8 significantly decreased (i) tumor weight and volume. (ii) EGFR expression in tumor lesions. | [15] |
Ganoderma lucidum | rLZ-8 | Hep3B, A549, MDA-MB-468 and B16F10 cancer cells; Orthotopic HCC NOG mouse models. Patient-derived tumor xenograft (PDX) models of HCC (LI6280, LI1097, LI0050, LI0334, LI6611) | (1) Cancer cell growth (Hep3B, A549, MDA-MB-468, and B16F10 cancer cell lines) was inhibited significantly in vitro. (2) rLZ-8 exhibited a dose-dependent inhibition of tumor xenograft growth. (3) The tumor inhibitory efficacy of rLZ-8 was directly correlated with EGFR expression levels. | [28] |
Ganoderma lucidum | EGDT | Well and poorly differentiated NPC cell lines CNE1 and CNE2 BALB/C nu/nu female mice | (1) EGDT reduced the protein and mRNA levels of EGFR as well as its downstream RAF/MEK/ERK and PI3K/AKT signaling pathways in a time- and dose-dependent manner. (2) EGDT demonstrated significant antitumor activity in NPC xenograft models in vivo. | [29] |
Ganoderma tsugae | GTME | The human epidermoid carcinoma A431 cell line BALB/C nu/nu nude mice | GTME suppressed EGFR expression, leading to reduced VEGF secretion in epidermoid carcinoma A431 cells through the inhibition of VEGF expression. | [30] |
Ganoderma lucidum | Adult male Sprague Dawley rats | GL attenuated the EGFR expression in cisplatin-exposed renal tissues. | [31] | |
Ganoderma lucidum | GPS-49 and GSPS-49 | Lung cancer A549 and LLC1 cells | At 49 days, GPS and GSPS demonstrate significant anticancer effects without impacting normal fibroblasts. GPS-49 and GSPS-49 inhibit lung cancer by targeting and suppressing the signaling networks mediated by epidermal growth factor receptor (EGFR) and transforming growth factor beta receptor (TGFβR). | [32] |
Species | Herbal Preparation | Study Systems (Cell, Microsome, Animal) | Major Effects | Reference |
---|---|---|---|---|
Ganoderma lucidum | Extract | Human prostate cancer cell line PC3 | GLE significantly inhibited (i) capillary morphogenesis; (ii) VEGF secretion in a dose-dependent manner. | [20] |
Ganoderma lucidum | Polysaccharide peptide (GLPP) | Human lung carcinoma cells PG | GLPP significantly inhibited VEGF secretion at 200 μg/mL. | [21] |
Ganoderma lucidum | Extract | Human ovarian cancer cells HO8910 (HOCCs) Human primary ovarian cells (HPOCs) | GLE significantly decreased VEGF:
| [22] |
Ganoderma lucidum | Polysaccharide | Mouse melanoma cells B16F10 | GLPS significantly decreased VEGF:
| [11] |
Ganoderma lucidum | Polysaccharide | Mouse melanoma cells B16F10 | GLPS significantly decreased VEGF mRNA expression and protein level from 0.8 μg/mL. | [37] |
Ganoderma lucidum | Polysaccharide | Human hepatocarcinoma cells HepG2 | GLPS significantly decreased VEGF protein level after 24 h of incubation. | [38] |
Ganoderma lucidum | Spore oil | Human hepatocarcinoma cells HepG2 | GLSO significantly decreased VEGF mRNA expression. | [39] |
Ganoderma lucidum | Spore oil | Human breast carcinoma cells MCF-7 | GLSO slightly decreased VEGF mRNA expression. | [40] |
Ganoderma lucidum | Spore oil | Human lung carcinoma cells LTEP-a2 | GLSO significantly decreased VEGF mRNA expression by about 50%. | [41] |
Ganoderma lucidum | Spore oil/extract spore oil | Human breast cancer cell line MDA-MB-231 | GLSO and GLESO significantly decreased VEGF mRNA expression. | [42] |
Ganoderma lucidum | Spore oil/extract spore oil | Mice implanted with MDA-MB-231 | (1) 20 mg/kg, 40 mg/kg GLSO, and 40 mg/kg GLESO significantly reduced tumor weight relative to the control group. (2) GLSO and GLESO significantly decreased VEGF-A mRNA expression. | [42] |
Ganoderma lucidum | Broken spore powder | Lewis tumor-bearing mice | Broken GLSP significantly reduced tumor weight, volume, and VEGF protein level relative to the normal saline control group. | [43] |
Ganoderma lucidum | Spore powder | BALB/c mice implanted with HepG2 cells | GLSP significantly reduced tumor volume and VEGF protein level compared to the saline group. | [44] |
Ganoderma lucidum | Spore oil | Mice implanted with hepatocarcinoma H22 cells | GLSO (7.4 and 14.8 g/kg) significantly reduced tumor volume and VEGF protein level relative to the saline control group. | [45] |
Ganoderma lucidum | Solaray® | Ehrlich Ascites Carcinoma cells-bearing mice | GL significantly reduced tumor volume and VEGF protein level relative to the control group. | [46] |
Coriolus versicolor | Protein-bound polysaccharides (PBPs) | Murine breast cancer cell line (4T1) | PBP regulated the secretion of various cytokines, including the decreased production of VEGF. | [47] |
Coriolus versicolor | PSP solution | BALB/c mice implanted with murine sarcoma S180 cells | Compared to the control group, PSP significantly decreased tumor growth, vascular density, and VEGF mRNA expression. | [48] |
Coriolus versicolor | Polysaccharide (CVE) | Mice implanted with hepatocarcinoma cells HepA | Compared to the control group, CVE significantly decreased tumor weight and VEGF gene expression. | [49] |
Species | EGFR TKI | Chemical Nature of Active Components | Bioactive Compounds/Decoction | Assay/Cells/Model | Major Effects | Reference |
---|---|---|---|---|---|---|
Ganoderma lucidum | Gefitinib, lapatinib, and sorafenib | - | Extract | HLM | Ganoderma lucidum extracts had less effect on the metabolism of the tested anticancers (IC50 values >10 μg/mL). | [57] |
Ganoderma colossum | Gefitinib | Pentacyclic triterpene dilactones | Colossolactone H (colo H) | H1650 cell line xenografts in athymic mice (lung cancer) | Combination of colo H and gefitinib had additive cytotoxicity for gefitinib-resistant H1650 lung cancer cells and inhibited the growth of tumor. | [58] |
Ganoderma lucidum | Lapatinib | - | Extract | Triple-negative IBC SUM149 cell line (breast cancer) | Reishi chemosensitized IBC cells to lapatinib therapy. | [59] |
Ganoderma lucidum | Erlotinib | - | Extract | IBC cell line, rSUM149 (erlotinib-resistant cells) SCID mice Western blot (breast cancer) | (1) GLE synergized with erlotinib to sensitize SUM-149 cells and overcome erlotinib resistance. (2) Erlotinib/GLE decreased SUM-149 cell viability, proliferation, migration, and invasion. (3) GLE increased erlotinib sensitivity by inactivating AKT and ERK signaling pathways. | [23] |
Ganoderma lucidum | Sorafenib | Triterpenoid | GL22 | Huh7.5 cells BALB/c nu mice (hepatocellular carcinoma) | (1) GL22 displayed robust antitumor activity against Huh7.5 cells in vitro and in vivo. (2) Combination therapy acts synergistically in the inhibition of HCC. | [60] |
Coriolus versicolor | Gefitinib | - | XJD * | A549 and H1650 cells xenograft nude mice (NSCLC) | (1) Combination therapy inhibited cell growth, reduced SP1 and EP4 protein expression levels, and HOTAIR levels. (2) Combination treatment resulted in significant reduction in tumor weight and sizes compared to the control group. | [61] |
Transporter | Species | Nature of the Herbal Materials | Active Component(s) from the Medicinal Mushroom | Concentration | Inhibitor/ Substrate | Other Effect(s) | Reference |
---|---|---|---|---|---|---|---|
P-gp | Ganoderma lucidum | extract | - | 100 μg/mL | Inhibitor | - | [119] |
Ganoderma lucidum | triterpenoid extract | - | 100 μg/mL | Inhibitor | - | [119] | |
Ganoderma lucidum | polysaccharide extract | - | 100 μg/mL | No influence | - | [119] | |
Ganoderma lucidum | triterpene | Ganoderic acid A | 1, 10, 100 μg/mL | No influence | - | [119] | |
Ganoderma lucidum | polysaccharides | - | 10, 50 mg/L | - | Downregulation mRNA expression | [56] | |
Ganoderma lucidum | triterpene | Ganoderic acid T | 12 μg/mL | Inhibitor | - | [120] | |
Ganoderma lucidum | triterpene | Ganoderic acid Me | 12 μg/mL | Inhibitor | - | [121] | |
Ganoderma lucidum | ethyl acetate extract | - | 20, 100 μg/mL | - | Downregulation protein expression | [122] | |
Ganoderma lucidum | n-butyl alcohol extract | - | 4, 20 μg/mL | - | Downregulation protein expression | [122] | |
Ganoderma lucidum | triterpene | Ganoderic acids | 20 μM | Inhibitor | - | [13] | |
MDR-1 | Ganoderma lucidum | ethyl acetate extract | - | 20, 100 μg/mL | - | Downregulation gene expression | [122] |
Ganoderma lucidum | n-butyl alcohol extract | - | 4, 20 μg/mL | - | Downregulation gene expression | [122] | |
MRP | Ganoderma lucidum | extract | - | 100 μg/mL | Inhibitor | - | [119] |
Ganoderma lucidum | triterpenoid extract | - | 100 μg/mL | Inhibitor | - | [119] | |
Ganoderma lucidum | polysaccharide extract | - | 100 μg/mL | No influence | - | [119] | |
Ganoderma lucidum | triterpene | Ganoderic acid A | 1, 10, 100 μg/mL | No influence | - | [119] | |
Ganoderma lucidum | polysaccharides | - | 10, 50 mg/L | - | Downregulation mRNA expression | [56] | |
BCRP | Ganoderma lucidum | extract | - | 100 μg/mL | Inducer | - | [119] |
Ganoderma lucidum | triterpenoid extract | - | 100 μg/mL | Inducer | - | [119] | |
Ganoderma lucidum | polysaccharide extract | - | 100 μg/mL | Inducer | - | [119] | |
Ganoderma lucidum | triterpene | Ganoderic acid A | 1, 10, 100 μg/mL | No influence | - | [119] |
P450 Isoenzyme | Species | Nature of Herbal Materials | Active Component | Model | IC50 (µg/mL) | Reference |
---|---|---|---|---|---|---|
CYP1A2 | Ganoderma lucidum | extract | - | HLMs | 272.6 | [119] |
triterpene | HLMs | 364.2 | ||||
polysaccharide | HLMs | * | ||||
extract | RLMs | * | ||||
triterpene | RLMs | 476.8 | ||||
polysaccharide | RLMs | * | ||||
triterpene | Ganoderic acid A | HLMs | No inhibition | |||
triterpene | Ganoderic acid A | RLMs | No inhibition | |||
polysaccharide | CGHM | 393 | [128] | |||
Coriolus versicolor | polysaccharopeptide | - | HLMs | IC20 = 5.4 μM | [129] | |
CYP2C19 | Ganoderma lucidum | extract | - | HLMs | 131.2 | [119] |
triterpene | HLMs | 102.5 | ||||
polysaccharide | HLMs | * | ||||
extract | - | RLMs | 261.1 | |||
triterpene | RLMs | * | ||||
polysaccharide | RLMs | * | ||||
triterpene | triterpene | HLMs | No inhibition | |||
triterpene | triterpene | RLMs | No inhibition | |||
CYP2D6 | Ganoderma lucidum | extract | - | HLMs | 164.4 | |
triterpene | HLMs | 116.1 | ||||
polysaccharide | HLMs | * | ||||
extract | RLMs | 256.8 | ||||
triterpene | RLMs | 289.1 | ||||
polysaccharide | RLMs | * | ||||
triterpene | Ganoderic acid A | HLMs | No inhibition | |||
triterpene | Ganoderic acid A | RLMs | No inhibition | |||
triterpene | Ganoderic acid A | HLMs | 21.83 µM | [130] | ||
Coriolus versicolor | polysaccharopeptide | HLMs | IC20 = 15.6 μM | [129] | ||
CYP3A4 | Ganoderma lucidum | extract | HLMs | 150.5 | [119] | |
triterpene | HLMs | 136.4 | ||||
polysaccharide | HLMs | * | ||||
extract | RLMs | 460.8 | ||||
triterpene | RLMs | 245.9 | ||||
polysaccharide | RLMs | * | ||||
triterpene | Ganoderic acid A | HLMs | No inhibition | |||
triterpene | Ganoderic acid A | RLMs | No inhibition | |||
triterpene | Ganoderic acid A | HLMs | 15.05 µM | [130] | ||
Coriolus versicolor | polysaccharopeptide | - | healthy adults | no inhibition or induction | [131] | |
polysaccharopeptide | - | HLMs | IC20 = 7.6 μM | [129] | ||
CYP2C9 | Ganoderma lucidum | extract | HLMs | 142.2 | [119] | |
triterpene | HLMs | 82.2 | ||||
polysaccharide | HLMs | * | ||||
extract | RLMs | 235.2 | ||||
triterpene | RLMs | 163.1 | ||||
polysaccharide | RLMs | * | ||||
triterpene | Ganoderic acid A | HLMs | No inhibition | |||
triterpene | Ganoderic acid A | RLMs | No inhibition | |||
Coriolus versicolor | polysaccharopeptide | HLMs | IC20 = 5.47 μM | [132] | ||
CYP2E1 | Ganoderma lucidum | extract | - | HLMs | 290.2 | [119] |
triterpene | HLMs | * | ||||
polysaccharide | HLMs | 305.3 | ||||
extract | RLMs | 226.9 | ||||
triterpene | RLMs | 387.3 | ||||
polysaccharide | RLMs | * | ||||
triterpene | Ganoderic acid A | HLMs | No inhibition | |||
triterpene | Ganoderic acid A | HLMs | 28.35 µM | [130] | ||
triterpene | Ganoderic acid A | RLMs | No inhibition | [119] | ||
Polysaccharide | - | CGHM | * | [128] | ||
Coriolus versicolor | polysaccharopeptide | - | HLMs | IC20 = 11.9 μM | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, L.; Chan, Y.W.; Cho, W.C.; Zuo, Z.; To, K.K.W. Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer. Pharmaceutics 2025, 17, 917. https://doi.org/10.3390/pharmaceutics17070917
Zhang H, Wang L, Chan YW, Cho WC, Zuo Z, To KKW. Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer. Pharmaceutics. 2025; 17(7):917. https://doi.org/10.3390/pharmaceutics17070917
Chicago/Turabian StyleZhang, Hang, Longling Wang, Yuet Wa Chan, William C. Cho, Zhong Zuo, and Kenneth K. W. To. 2025. "Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer" Pharmaceutics 17, no. 7: 917. https://doi.org/10.3390/pharmaceutics17070917
APA StyleZhang, H., Wang, L., Chan, Y. W., Cho, W. C., Zuo, Z., & To, K. K. W. (2025). Recent Advances in the Use of Ganoderma lucidum and Coriolus versicolor Mushrooms to Enhance the Anticancer Efficacy of EGFR-Targeted Drugs in Lung Cancer. Pharmaceutics, 17(7), 917. https://doi.org/10.3390/pharmaceutics17070917