Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO
Abstract
1. Introduction
2. Results
2.1. Results of HM
2.2. Descriptors Selected by XGBoost
2.3. Results of RF
2.4. Results of GEP
2.5. Results of GBDT
2.6. Results of Poly-SVM
2.7. Results of MIX-SVM
2.8. Design of New EGFR Inhibitors
- “RS” denotes the relative amount of S in the compound. Increasing its value significantly decreases the value of IC50 [16].
- “NR” indicates the number of rings in the compound, and its coefficient indicates that decreasing its value slightly lowers the value of IC50 [17].
- “ME” represents the maximum exchange energy of the C-N bond in the compound. Lowering its value slightly reduces the value of the IC50 [16].
2.9. Property Prediction and Molecular Docking of New EGFR Inhibitors
2.10. Applicability Domain Analysis
3. Discussion
4. Experimental Section
4.1. Data Preparation
4.2. Descriptor Calculation
4.3. Linear Model by HM
4.4. Nonlinearly Selecting Descriptors by XGBoost
4.5. Nonlinear Model by RF
4.6. Nonlinear Model by GEP
4.7. Nonlinear Model by GBDT
4.8. Nonlinear Model by Poly-SVM
4.9. Nonlinear Model by MIX-SVM
4.10. Optimization by CLPSO
4.11. Evaluation and Validation
4.12. Applicability Domain
4.13. Property Prediction and Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization: WHO. Lung Cancer. 26 June 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/lung-cancer (accessed on 22 March 2025).
- Shah, R.; Lester, J.F. Tyrosine kinase inhibitors for the treatment of EGFR mutation-positive non–small-cell lung cancer: A clash of the generations. Clin. Lung Cancer 2020, 21, e216–e228. [Google Scholar] [CrossRef] [PubMed]
- Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef]
- Dowell, J.; Minna, J.D.; Kirkpatrick, P. Erlotinib hydrochloride. Nat. Rev. Drug Discov. 2005, 4, 13–14. [Google Scholar] [CrossRef]
- Wu, Y.L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 1454–1466. [Google Scholar] [CrossRef]
- Nelson, V.; Ziehr, J.; Agulnik, M.; Johnson, M. Afatinib: Emerging next-generation tyrosine kinase inhibitor for NSCLC. OncoTargets Ther. 2013, 6, 135–143. [Google Scholar] [CrossRef]
- Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. New Engl. J. Med. 2005, 352, 786–792. [Google Scholar] [CrossRef]
- Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070–1074. [Google Scholar] [CrossRef]
- Ricciuti, B.; Baglivo, S.; Paglialunga, L.; De Giglio, A.; Bellezza, G.; Chiari, R.; Crinò, L.; Metro, G. Osimertinib in patients with advanced epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer: Rationale, evidence and place in therapy. Ther. Adv. Med Oncol. 2017, 9, 387–404. [Google Scholar] [CrossRef]
- Schmid, S.; Li, J.J.; Leighl, N.B. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer 2020, 147, 123–129. [Google Scholar] [CrossRef]
- Dong, H.; Ye, X.; Zhu, Y.; Shen, H.; Shen, H.; Chen, W.; Ji, M.; Zheng, M.; Wang, K.; Cai, Z.; et al. Discovery of Potent and Wild-Type-Sparing Fourth-Generation EGFR Inhibitors for Treatment of Osimertinib-Resistance NSCLC. J. Med. Chem. 2023, 66, 6849–6868. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, X.; Shen, H.; Li, J.; Cai, Z.; Min, W.; Hou, Y.; Dong, H.; Wu, Y.; Wang, L.; et al. Discovery of Novel Fourth-Generation EGFR Inhibitors to Overcome C797S-Mediated Resistance. J. Med. Chem. 2023, 66, 14633–14652. [Google Scholar] [CrossRef]
- Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. CSUR 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Bader, R.F. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Lipkin, M.R.; Martin, C.C. Calculation of Weight Per Cent Ring and Number of Rings per Molecule for Aromatics. Anal. Chem. 1947, 19, 183–189. [Google Scholar] [CrossRef]
- Kwon, Y. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists; Springer Science & Business Media: Cham, Switzerland, 2001. [Google Scholar]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Smith, G.F. Designing drugs to avoid toxicity. Prog. Med. Chem. 2011, 50, 1–47. [Google Scholar]
- Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environ. Health Perspect. 2003, 111, 1361–1375. [Google Scholar] [CrossRef]
- Sosnowska, A.; Grzonkowska, M.; Puzyn, T. Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: The predictive ability. J. Mol. Liq. 2017, 231, 333–340. [Google Scholar] [CrossRef]
- Hyperchem; Version 4.0; Hypercube Inc.: Waterloo, ON, Canada, 1994.
- Loomis, R.A.; McGuire, B.A.; Shingledecker, C.; Johnson, C.H.; Blair, S.; Robertson, A.; Remijan, A.J. Investigating the minimum energy principle in searches for new molecular species—The case of H2C3O isomers. Astrophys. J. 2015, 799, 34. [Google Scholar] [CrossRef]
- Stewart, J.J. MOPAC: A semiempirical molecular orbital program. J. Comput.-Aided Mol. Des. 1990, 4, 1–103. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Kulshyn, O.V.; Stoyanova-Slavova, I.; Dobchev, D.A.; Kuanar, M.; Fara, D.C.; Karelson, M. Antimalarial activity: A QSAR modeling using CODESSA PRO software. Bioorganic Med. Chem. 2006, 14, 2333–2357. [Google Scholar] [CrossRef]
- Gao, Z.; Xia, R.; Zhang, P. Prediction of anti-proliferation effect of [1, 2, 3] triazolo [4, 5-d] pyrimidine derivatives by random forest and mix-kernel function SVM with PSO. Chem. Pharm. Bull. 2022, 70, 684–693. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Qu, A.; Zhang, P.; Si, H.; Zhai, H. Study of Tacrine Derivatives for Acetylcholinesterase Inhibitors Based on Artificial Intelligence. Lat. Am. J. Pharm. 2020, 39, 1159–1170. [Google Scholar]
- LI, G.; Wang, X.; LI, A.; Zhang, P. QSAR Study on the IC50 of Thiosemicarbazone Derivatives as PC-3 Inhibitors Based on Mixed Kernel Function Support Vector Machine. Lat. Am. J. Pharm. 2023, 42, 543–553. [Google Scholar]
- Wang, Y.; Zhang, P. Prediction of histone deacetylase inhibition by triazole compounds based on artificial intelligence. Front. Pharmacol. 2023, 14, 1260349. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, H.; Zhang, Y.; Zhang, P. Quantitative Structure-Activity Relationship Study of Amide Derivatives as Xanthine Oxidase Inhibitors using machine learning. Front. Pharmacol. 2023, 14, 1227536. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Zheng, H.; Yuan, J.; Chen, L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies 2017, 10, 1168. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. arXiv 2001, arXiv:cs/0102027. [Google Scholar] [CrossRef]
- Ferreira, C. Gene expression programming in problem solving. In Soft Computing and Industry: Recent Applications; Springer: London, UK, 2002; pp. 635–653. [Google Scholar]
- Zhang, C.; Zhang, Y.; Shi, X.; Almpanidis, G.; Fan, G.; Shen, X. On incremental learning for gradient boosting decision trees. Neural Process. Lett. 2019, 50, 957–987. [Google Scholar] [CrossRef]
- Sun, R.; Wang, G.; Zhang, W.; Hsu, L.T.; Ochieng, W.Y. A gradient boosting decision tree based GPS signal reception classification algorithm. Appl. Soft Comput. 2020, 86, 105942. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Cyganek, B.; Krawczyk, B.; Woźniak, M. Multidimensional data classification with chordal distance based kernel and support vector machines. Eng. Appl. Artif. Intell. 2015, 46, 10–22. [Google Scholar] [CrossRef]
- Fathi Hafshejani, S.; Moaberfard, Z. A new trigonometric kernel function for support vector machine. Iran J. Comput. Sci. 2023, 6, 137–145. [Google Scholar] [CrossRef]
- Chen, D.G.; Wang, H.Y.; Tsang, E.C. Generalized Mercer theorem and its application to feature space related to indefinite kernels. In Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; Volume 2, pp. 774–777. [Google Scholar]
- Hu, M.; Chen, Y.; Kwok, J.T.Y. Building sparse multiple-kernel SVM classifiers. IEEE Trans. Neural Netw. 2009, 20, 827–839. [Google Scholar]
- Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Liang, J.J.; Qin, A.K.; Suganthan, P.M.; Baskar, S. Particle swarm optimization algorithms with novel learning strategies. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), The Hague, The Netherlands, 10–13 October 2004; Volume 4, pp. 3659–3664. [Google Scholar]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Chirico, N.; Gramatica, P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J. Chem. Inf. Model. 2012, 52, 2044–2058. [Google Scholar] [CrossRef] [PubMed]
- Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 2012, 17, 4791–4810. [Google Scholar] [CrossRef]
- Tropsha, A.; Gramatica, P.; Gombar, V.K. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003, 22, 69–77. [Google Scholar] [CrossRef]
- Di, L.; Kerns, E.H.; Carter, G.T. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des. 2009, 15, 2184–2194. [Google Scholar] [CrossRef]
- Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol. 2008, 443, 365–382. [Google Scholar]
Physical–Chemical Meaning | Symbol | Coefficient |
---|---|---|
Relative number of S atoms | RS | −40.041 |
Number of rings | NR | 0.48875 |
Max exchange energy for a C-N bond | ME | 0.80855 |
Physical–Chemical Meaning | Symbol |
---|---|
DPSA-3 Difference in CPSAs (PPSA3-PNSA3) [Quantum-Chemical PC] | DDC |
FHASA Fractional HASA (HASA/TMSA) [Quantum-Chemical PC] | FFH |
RPCS Relative positive charged SA (SAMPOS*RPCG) [Zefirov’s PC] | RRPCSA |
RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov’s PC] | RRPC |
HA dependent HDSA-1 [Zefirov’s PC] | HDH |
No. | EGFR Inhibitors | Predicted lg (IC50) | Total Score |
---|---|---|---|
45 | 0.64 | 4.8087 | |
45a | 0.62 | 4.8125 | |
45b | 0.63 | 4.8103 | |
45c | 0.56 | 5.0483 | |
45d | 0.60 | 4.8394 |
No. | Pre.lg (IC50) | LogP | Solubility | Mol Weight | TPSA | Drug Likeness | Drug Score |
---|---|---|---|---|---|---|---|
45 | 0.64 | 3.58 | −7.51 | 556.0 | 93.43 | −2.85 | 0.17 |
45a | 0.62 | 4.06 | −8.36 | 602.0 | 118.7 | −0.91 | 0.18 |
45b | 0.63 | 4.06 | −8.36 | 602.0 | 118.7 | −0.85 | 0.18 |
45c | 0.56 | 4.06 | −8.03 | 618.9 | 116.7 | −0.67 | 0.19 |
45d | 0.60 | 3.68 | −7.83 | 574.0 | 93.43 | −0.91 | 0.20 |
random 1 | 0.0208 | −0.1850 |
random 2 | 0.0207 | −0.1943 |
random 3 | 0.0016 | −0.3308 |
random 4 | 0.0663 | −0.1514 |
random 5 | 0.0152 | −0.0859 |
random 6 | 0.0440 | −0.4301 |
random 7 | 0.0003 | −0.4650 |
random 8 | 0.0010 | −0.3564 |
random 9 | 0.0597 | −0.1834 |
random 10 | 0.0922 | −0.2965 |
Compound | R | Measured IC50 (nM) | Measured lg (IC50) | Predicted Ig (IC50) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HM | RF | GEP | GBDT | Poly-SVM | MIX-SVM | |||||||||
1 * | 177 | 2.25 | 2.39 | 2.31 | 2.05 | 2.06 | 2.31 | 2.26 | ||||||
2 * | 180 | 2.26 | 2.39 | 2.33 | 2.13 | 2.06 | 2.28 | 2.34 | ||||||
3 | 378 | 2.58 | 2.43 | 2.39 | 2.16 | 2.06 | 2.18 | 2.32 | ||||||
4 | 217 | 2.34 | 2.40 | 2.38 | 2.11 | 1.94 | 2.36 | 2.35 | ||||||
5 * | 242 | 2.38 | 2.37 | 2.39 | 2.08 | 1.92 | 2.42 | 2.37 | ||||||
6 | 572 | 2.76 | 2.44 | 2.38 | 2.15 | 2.16 | 2.45 | 2.75 | ||||||
Compound | R1 | R2 | R3 | Measured IC50 (nM) | Measured lg (IC50) | Predicted Ig (IC50) | ||||||||
HM | RF | GEP | GBDT | Poly-SVM | MIX-SVM | |||||||||
7 * | 31 | 1.49 | 1.32 | 1.43 | 1.14 | 1.34 | 1.26 | 1.33 | ||||||
8 | 22 | 1.34 | 1.17 | 1.42 | 1.40 | 1.41 | 1.27 | 1.35 | ||||||
9 | 29 | 1.46 | 1.34 | 1.34 | 1.20 | 1.45 | 1.38 | 1.45 | ||||||
10 | 27 | 1.43 | 1.42 | 1.5 | 1.27 | 1.45 | 1.42 | 1.44 | ||||||
11 | 11 | 1.04 | 1.38 | 1.23 | 1.50 | 1.21 | 1.46 | 1.05 | ||||||
12 | 37 | 1.57 | 1.34 | 1.34 | 1.26 | 1.51 | 1.23 | 1.56 | ||||||
13 | 18 | 1.26 | 1.87 | 1.47 | 1.13 | 1.35 | 1.38 | 1.27 | ||||||
14 | 448 | 2.65 | 2.27 | 2.5 | 2.24 | 2.07 | 2.31 | 2.64 | ||||||
15 * | 249 | 2.40 | 2.26 | 2.5 | 2.36 | 1.99 | 2.34 | 2.29 | ||||||
16 | 206 | 2.31 | 2.43 | 2.38 | 2.09 | 1.98 | 2.18 | 2.32 | ||||||
17 | 256 | 2.41 | 2.36 | 2.47 | 2.05 | 1.99 | 2.81 | 2.42 | ||||||
18 | 158 | 2.20 | 2.35 | 2.39 | 2.20 | 1.89 | 2.57 | 2.21 | ||||||
19 * | 341 | 2.53 | 2.26 | 2.5 | 2.27 | 2.01 | 2.75 | 2.57 | ||||||
20 * | 261 | 2.42 | 2.95 | 2.41 | 2.18 | 2.00 | 2.27 | 2.41 | ||||||
21 | 42 | 1.62 | 1.38 | 1.47 | 1.43 | 1.55 | 1.36 | 1.23 | ||||||
22 | 19 | 1.28 | 1.23 | 1.18 | 1.37 | 1.36 | 1.44 | 1.29 | ||||||
23 | 23 | 1.36 | 1.38 | 1.27 | 1.20 | 1.40 | 1.39 | 1.40 | ||||||
24 | 21 | 1.32 | 1.20 | 1.29 | 1.21 | 1.39 | 1.53 | 1.31 | ||||||
25 | 13 | 1.11 | 1.17 | 1.18 | 1.10 | 1.26 | 1.47 | 1.12 | ||||||
26 * | 60 | 1.78 | 1.25 | 1.73 | 1.21 | 1.67 | 1.6 | 1.44 | ||||||
27 | 26 | 1.41 | 1.74 | 1.45 | 1.02 | 1.41 | 1.33 | 1.42 | ||||||
Compound | X | R1 | R2 | R3 | R4 | Measured IC50 (nM) | Measured lg (IC50) | Predicted Ig (IC50) | ||||||
HM | RF | GEP | GBDT | Poly-SVM | MIX-SVM | |||||||||
28 * | C | H | -CH3 | H | 375 | 2.57 | 2.30 | 2.2 | 2.36 | 2.46 | 2.22 | 2.22 | ||
29 | C | H | -CH3 | H | 1571 | 3.20 | 2.84 | 2.54 | 2.26 | 2.42 | 3.05 | 3.19 | ||
30 | C | CI | -CH3 | H | 170 | 2.23 | 2.29 | 2.23 | 2.47 | 1.89 | 2.42 | 2.22 | ||
31 | C | CI | -CH3 | H | 1963 | 3.29 | 2.83 | 2.42 | 2.44 | 2.47 | 2.93 | 3.28 | ||
32 | C | H | H | 7.6 | 0.88 | 1.22 | 0.73 | 1.08 | 1.10 | 0.62 | 0.87 | |||
33 | C | H | H | 56 | 1.75 | 1.74 | 1.81 | 1.30 | 1.63 | 1.36 | 1.76 | |||
34 | C | CI | H | 175 | 2.24 | 1.77 | 1.84 | 1.42 | 1.81 | 1.44 | 1.89 | |||
35 | C | H | H | 11 | 1.04 | 1.32 | 0.91 | 1.17 | 1.24 | 0.93 | 0.62 | |||
36 | C | CI | H | 24 | 1.38 | 1.28 | 1.4 | 1.21 | 1.41 | 1.11 | 1.37 | |||
37 | C | H | H | 38 | 1.58 | 1.35 | 1.15 | 1.08 | 1.50 | 1.23 | 1.57 | |||
38 | N | H | -CH3 | CI | 71 | 1.85 | 2.28 | 1.9 | 1.30 | 1.67 | 2.32 | 1.86 | ||
39 | N | H | -CH3 | -OCH3 | 204 | 2.31 | 2.29 | 2.03 | 1.42 | 1.93 | 2.45 | 2.30 | ||
40 | N | H | CI | 4.6 | 0.66 | 1.27 | 0.92 | 1.17 | 1.10 | 1 | 0.67 | |||
41 | N | CI | -CH3 | -NO2 | 100 | 2.00 | 1.80 | 2.08 | 1.21 | 1.76 | 2.33 | 2.01 | ||
42 | C | H | H | 1.9 | 0.28 | 0.42 | 0.57 | 1.08 | 0.82 | 0.51 | 0.29 | |||
43 | C | H | CI | 2.8 | 0.45 | 0.51 | 0.87 | 2.44 | 0.87 | 0.91 | 0.71 | |||
44 | N | CI | -CH3 | -CH3 | 92 | 1.96 | 2.28 | 1.87 | 2.11 | 1.76 | 1.63 | 1.97 | ||
45 * | C | H | -CF3 | 14 | 1.15 | 0.64 | 1.08 | 1.22 | 1.07 | 1.5 | 1.15 | |||
46 | C | H | -CH3 | -NO2 | 100 | 2.00 | 1.71 | 1.74 | 0.83 | 1.76 | 2.33 | 1.99 | ||
47 | N | -NH2 | H | H | 30 | 1.48 | 1.57 | 1.78 | 2.40 | 1.49 | 1.76 | 1.53 | ||
Compound | R1 | R2 | Measured IC50 (nM) | Measured lg (IC50) | Predicted Ig (IC50) | |||||||||
HM | RF | GEP | GBDT | Poly-SVM | MIX-SVM | |||||||||
48 | 4-F | 17 | 1.23 | 1.83 | 1.65 | 0.66 | 1.36 | 1.56 | 1.48 | |||||
49 | 4-CI | 86 | 1.93 | 1.83 | 1.77 | 0.89 | 1.72 | 1.76 | 1.92 | |||||
50 | 4-OMe | 289 | 2.46 | 1.86 | 2.18 | 2.17 | 2.01 | 2.12 | 2.45 | |||||
51 | 3-F | 90 | 1.95 | 1.86 | 1.78 | 2.33 | 1.71 | 1.6 | 1.52 | |||||
52 | 4-F | 63 | 1.80 | 1.83 | 1.88 | 1.96 | 1.68 | 1.91 | 1.81 | |||||
53 | 4-F | 127 | 2.10 | 1.83 | 1.94 | 2.10 | 1.81 | 1.95 | 2.09 | |||||
54 | 4-F | 28 | 1.45 | 2.34 | 1.65 | 2.10 | 1.43 | 1.84 | 1.46 | |||||
Compound | R1 | R2 | Measured IC50 (nM) | Measured lg (IC50) | Predicted Ig (IC50) | |||||||||
HM | RF | GEP | GBDT | Poly-SVM | MIX-SVM | |||||||||
55 | -NH2 | 2.1 | 0.32 | 1.00 | 0.99 | 2.27 | 1.08 | 0.66 | 0.33 | |||||
56 | -NHCH3 | 19 | 1.28 | 1.02 | 1.07 | 2.07 | 1.16 | 0.97 | 1.27 | |||||
57 | -CH3 | 11 | 1.04 | 1.34 | 1.04 | 1.89 | 1.29 | 0.87 | 1.05 | |||||
58 | -CH(CH3)2 | 20 | 1.30 | 1.44 | 1.08 | 2.31 | 1.29 | 0.97 | 1.29 | |||||
59 | 26 | 1.41 | 1.70 | 1.39 | 1.92 | 1.32 | 0.99 | 1.40 | ||||||
60 | -NHCOCH3 | 3.2 | 0.51 | 0.93 | 0.79 | 1.06 | 1.03 | 0.73 | 0.52 | |||||
61 | -NHSO2Me | 2.5 | 0.40 | 0.46 | 0.48 | 1.10 | 0.88 | 0.49 | 0.39 | |||||
62 | -NHSO2Et | 0.9 | −0.05 | 0.52 | 0.47 | 1.08 | 0.74 | 0.34 | 0.18 | |||||
63 | -NHSO2iPr | 3.4 | 0.53 | 0.55 | 0.42 | 1.00 | 0.95 | 0.27 | 0.52 | |||||
64 | -NHSO2nBu | 4.3 | 0.63 | 0.61 | 0.54 | 0.98 | 0.99 | 0.45 | 0.64 | |||||
65 * | 15 | 1.18 | 1.04 | 0.9 | 0.83 | 1.00 | 1.17 | 0.84 | ||||||
66 | 20 | 1.30 | 1.05 | 1.11 | 1.02 | 1.39 | 0.97 | 1.29 | ||||||
67 * | -NHSO2Et | 4.1 | 0.61 | 0.62 | 0.55 | 0.94 | 1.08 | 0.56 | 0.41 | |||||
68 | -NHSO2Et | 6.3 | 0.80 | 1.09 | 0.67 | 0.49 | 1.06 | 1.03 | 0.81 | |||||
69 * | -NHSO2Et | 1.8 | 0.26 | 0.44 | 0.4 | 0.76 | 1.11 | 0.12 | 0.44 | |||||
70 * | -NHSO2Et | 2.2 | 0.34 | 0.53 | 0.41 | 0.90 | 0.99 | 0.36 | 0.53 | |||||
71 | -NHSO2Et | 3.7 | 0.57 | 0.58 | 0.57 | 0.61 | 0.97 | 0.53 | 0.48 | |||||
72 | -NHSO2Et | 2.1 | 0.32 | 0.50 | 0.41 | 0.53 | 0.88 | 0.01 | 0.33 | |||||
73 | -NHSO2Et | 3.6 | 0.56 | 0.53 | 0.41 | 0.67 | 0.99 | 0.2 | 0.51 | |||||
74 * | -NHSO2Et | 2.5 | 0.40 | 0.55 | 0.59 | 0.97 | 1.02 | 0.74 | 0.67 | |||||
75 | -NHSO2Et | 10 | 1.00 | 1.27 | 1.2 | 0.67 | 1.19 | 1.47 | 1.01 | |||||
76 * | -NHSO2Et | 3.7 | 0.57 | 0.40 | 0.4 | 1.19 | 1.00 | 0.19 | 0.46 | |||||
77 * | -NHSO2Et | 8.5 | 0.93 | 0.48 | 0.7 | 1.65 | 1.33 | 0.93 | 0.75 | |||||
78 | -NHSO2Et | 4.1 | 0.61 | 0.39 | 0.57 | 0.73 | 1.0 | 0.65 | 0.62 | |||||
79 | -NHSO2Et | 70.1 | 1.85 | 1.13 | 1.36 | 1.24 | 1.67 | 1.62 | 1.84 | |||||
80 | 5.1 | 0.71 | 1.39 | 1.23 | 0.52 | 1.03 | 1.39 | 1.28 | ||||||
81 | 34 | 1.53 | 1.46 | 1.6 | 0.97 | 1.50 | 1.47 | 1.52 | ||||||
82 * | 71 | 1.85 | 1.93 | 1.68 | 0.53 | 0.85 | 1.52 | 1.85 | ||||||
83 | 7.9 | 0.90 | 1.33 | 1.16 | 0.78 | 1.07 | 1.36 | 1.21 | ||||||
84 | 18 | 1.26 | 1.37 | 1.19 | 1.12 | 1.35 | 1.37 | 1.27 | ||||||
85 | 26 | 1.41 | 1.41 | 1.54 | 1.16 | 1.43 | 1.41 | 1.42 | ||||||
86 | 49 | 1.69 | 1.44 | 1.48 | 1.42 | 1.59 | 1.42 | 1.44 | ||||||
87 | 15 | 1.18 | 1.39 | 1.53 | 0.95 | 1.31 | 1.38 | 1.21 | ||||||
88 * | 36 | 1.56 | 1.41 | 1.54 | 1.02 | 1.25 | 1.52 | 1.53 | ||||||
89 | 71 | 1.85 | 1.43 | 1.72 | 1.95 | 1.67 | 1.65 | 1.84 | ||||||
90 | 58 | 1.76 | 1.32 | 1.56 | 1.72 | 1.62 | 1.39 | 1.37 | ||||||
91 | 71 | 1.85 | 1.38 | 1.73 | 1.52 | 1.67 | 1.73 | 1.84 | ||||||
92 | 77 | 1.89 | 1.31 | 1.58 | 1.82 | 1.70 | 1.38 | 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Dong, W.; Qu, A. Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO. Pharmaceuticals 2025, 18, 1092. https://doi.org/10.3390/ph18081092
Li S, Dong W, Qu A. Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO. Pharmaceuticals. 2025; 18(8):1092. https://doi.org/10.3390/ph18081092
Chicago/Turabian StyleLi, Shaokang, Wenzhe Dong, and Aili Qu. 2025. "Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO" Pharmaceuticals 18, no. 8: 1092. https://doi.org/10.3390/ph18081092
APA StyleLi, S., Dong, W., & Qu, A. (2025). Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO. Pharmaceuticals, 18(8), 1092. https://doi.org/10.3390/ph18081092