Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (506)

Search Parameters:
Keywords = environmental DNA (eDNA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1241 KiB  
Review
PCOS and the Genome: Is the Genetic Puzzle Still Worth Solving?
by Mario Palumbo, Luigi Della Corte, Dario Colacurci, Mario Ascione, Giuseppe D’Angelo, Giorgio Maria Baldini, Pierluigi Giampaolino and Giuseppe Bifulco
Biomedicines 2025, 13(8), 1912; https://doi.org/10.3390/biomedicines13081912 - 5 Aug 2025
Abstract
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. Objective: This narrative review aims to provide an updated overview of the current evidence regarding the role of genetic variants, gene expression patterns, and epigenetic modifications in the etiopathogenesis of PCOS, with a focus on their impact on ovarian function, fertility, and systemic alterations. Methods: A comprehensive search was conducted across MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Library using MeSH terms including “PCOS”, “Genes involved in PCOS”, and “Etiopathogenesis of PCOS” from January 2015 to June 2025. The selection process followed the SANRA quality criteria for narrative reviews. Seventeen studies published in English were included, focusing on original data regarding gene expression, polymorphisms, and epigenetic changes associated with PCOS. Results: The studies analyzed revealed a wide array of molecular alterations in PCOS, including the dysregulation of SIRT and estrogen receptor genes, altered transcriptome profiles in cumulus cells, and the involvement of long non-coding RNAs and circular RNAs in granulosa cell function and endometrial receptivity. Epigenetic mechanisms such as the DNA methylation of TGF-β1 and inflammation-related signaling pathways (e.g., TLR4/NF-κB/NLRP3) were also implicated. Some genetic variants—particularly in DENND1A, THADA, and MTNR1B—exhibit signs of positive evolutionary selection, suggesting possible ancestral adaptive roles. Conclusions: PCOS is increasingly recognized as a syndrome with a strong genetic and epigenetic background. The identification of specific molecular signatures holds promise for the development of personalized diagnostic markers and therapeutic targets. Future research should focus on large-scale genomic studies and functional validation to better understand gene–environment interactions and their influence on phenotypic variability in PCOS. Full article
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

17 pages, 3099 KiB  
Article
Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China
by Shilong Feng, Xu Wang, Liangmin Huang, Jiaqiao Wang, Lin Lin, Jun Li, Guangjie Dai, Qianwen Cai, Haoqi Xu, Yapeng Hui and Fenfen Ji
Biology 2025, 14(8), 988; https://doi.org/10.3390/biology14080988 (registering DOI) - 4 Aug 2025
Viewed by 164
Abstract
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the [...] Read more.
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the total species. Among the identified species, there were ten non-native fish species. Compared with the TSM, the eDNA detected 13 additional fish species, including two additional non-native fish species—Gambusia affinis (Baird and Girard, 1853) and Micropterus salmoides (Lacepède, 1802). In addition, the relative abundance of fish from both methods revealed that tilapia was overwhelmingly dominant, accounting for 80.75% and 75.68%, respectively. Furthermore, the AS-ISK assessment revealed that all non-native fish species were classified as medium or high-risk, with five identified as high-risk species, four of which belong to tilapia. These findings demonstrated that tilapia are the dominant and high-risk invasive species in Xinglin Bay and should be prioritized for management. Population reduction through targeted harvesting of tilapia is recommended as the primary control strategy. Additionally, the study highlights the effectiveness of eDNA in monitoring fish community structure in brackish ecosystems. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

29 pages, 1477 KiB  
Review
Bioinformation and Monitoring Technology for Environmental DNA Analysis: A Review
by Hyo Jik Yoon, Joo Hyeong Seo, Seung Hoon Shin, Mohamed A. A. Abdelhamid and Seung Pil Pack
Biosensors 2025, 15(8), 494; https://doi.org/10.3390/bios15080494 - 1 Aug 2025
Viewed by 269
Abstract
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, [...] Read more.
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, soil, groundwater, sediment, and aquatic environments. Advances in molecular biology, high-throughput sequencing, bioinformatics tools, and field-deployable detection systems have significantly improved eDNA detection sensitivity, allowing for early identification of invasive species, monitoring ecosystem health, and tracking pollutant degradation processes. Airborne eDNA monitoring has demonstrated potential for assessing microbial shifts due to air pollution and tracking pathogen transmission. In terrestrial environments, eDNA facilitates soil and groundwater pollution assessments and enhances understanding of biodegradation processes. In aquatic ecosystems, eDNA serves as a powerful tool for biodiversity assessment, invasive species monitoring, and wastewater-based epidemiology. Despite its growing applicability, challenges remain, including DNA degradation, contamination risks, and standardization of sampling protocols. Future research should focus on integrating eDNA data with remote sensing, machine learning, and ecological modeling to enhance predictive environmental monitoring frameworks. As technological advancements continue, eDNA-based approaches are poised to revolutionize environmental assessment, conservation strategies, and public health surveillance. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

25 pages, 1473 KiB  
Review
Environmental Hazards and Glial Brain Tumors: Association or Causation?
by Robert P. Ostrowski, Albert Acewicz, Zhaohui He, Emanuela B. Pucko and Jakub Godlewski
Int. J. Mol. Sci. 2025, 26(15), 7425; https://doi.org/10.3390/ijms26157425 - 1 Aug 2025
Viewed by 160
Abstract
Progress in establishing environmental risk factors and, consequently, prophylactic measures for glial tumors, particularly for glioblastomas, is of utmost importance, considering the dismal prognosis and limited treatment options. This report surveyed updates on established and recently identified factors that can predispose a patient [...] Read more.
Progress in establishing environmental risk factors and, consequently, prophylactic measures for glial tumors, particularly for glioblastomas, is of utmost importance, considering the dismal prognosis and limited treatment options. This report surveyed updates on established and recently identified factors that can predispose a patient to glioma formation while highlighting possible mechanistic links and further research directions. In addition to established factors that increase the risk of glioma, i.e., brain irradiation and several genetic syndromes, another group consists of likely factors contributing to such risks, such as the use of tobacco and those yielding ambiguous results (e.g., UV exposure). Oxidative stress is a common denominator for several types of exposure, and a mechanistic background for other factors remains elusive. Nevertheless, the analysis of clinical and basic research strongly suggests that, apart from the effect of environmental stressors on DNA alterations and mutation burden, the impact of modifying the tumor microenvironment should be considered. Identifying the involvement of environmental hazards in gliomagenesis and glial tumor progression would lower overall risk by modifying clinical practice, patient management, and lifestyle choices. Further verifying the environmental hazards in glioma formation and progression would have far-reaching implications for neurologists, neurosurgeons, and patients. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
Composition and Structure of Gut Microbiota of Wild and Captive Epinephelus morio via 16S rRNA Analysis and Functional Prediction
by Grecia Montalvo-Fernández, Joanna M. Ortiz-Alcantara, Claudia Durruty-Lagunes, Laura Espinosa-Asuar, Mariela Beatriz Reyes-Sosa and María Leticia Arena-Ortiz
Microorganisms 2025, 13(8), 1792; https://doi.org/10.3390/microorganisms13081792 - 31 Jul 2025
Viewed by 189
Abstract
The gut microbiota plays an essential role in the host’s metabolism. Its composition and structure depend on biological and environmental factors. This work was designed to identify the composition and structure of the wild and captive red grouper (Epinephelus morio) microbiota [...] Read more.
The gut microbiota plays an essential role in the host’s metabolism. Its composition and structure depend on biological and environmental factors. This work was designed to identify the composition and structure of the wild and captive red grouper (Epinephelus morio) microbiota and make predictions regarding its metabolic functions. Our hypothesis stated that wild and captive individuals would share the most abundant taxonomic groups, forming a core microbiota, and individuals in captivity might have exclusive taxonomic groups. Metagenomic DNA was extracted from the intestinal contents of wild and captive individuals. The 16S rRNA gene was amplified and sequenced using Illumina pair-end technology. QIIME2 pipeline was used for sequence analysis and alpha and beta diversity assessment. PICRUSt was used to infer metabolic functions. Twenty-nine phyla were identified; the most abundant were Pseudomonadota, Bacillota, Fusobacteriota, and Actinomycetota. The dominant genera were Photobacterium, Vibrio, Cetobacterium, and Escherichia-Shigella. The metabolic prediction analysis suggested that the Epinephelus morio gut microbiota is related to food digestion, the immune system, antioxidant enzymes, antibiotic resistance, and vitamin B12 transport. We concluded that the microbiota of E. morio established in captivity is sensitive to environmental changes such as water pollution, which can cause a decrease in diversity. Full article
(This article belongs to the Special Issue Aquatic Microorganisms and Their Application in Aquaculture)
Show Figures

Figure 1

23 pages, 1080 KiB  
Review
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by Narimane Kebieche, Seungae Yim, Claude Lambert and Rachid Soulimani
Toxics 2025, 13(8), 629; https://doi.org/10.3390/toxics13080629 - 26 Jul 2025
Viewed by 395
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia
by Gopika Bhasi, Gemma Zerna and Travis Beddoe
Insects 2025, 16(8), 764; https://doi.org/10.3390/insects16080764 - 25 Jul 2025
Viewed by 421
Abstract
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include [...] Read more.
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include bacteria, fungi, mites, and pests. With the increasing demand for pollination and the movement of bee colonies, monitoring these threats is essential. It has been demonstrated that honey constitutes an easily accessible source of environmental DNA. Environmental DNA in honey comes from all organisms that either directly or indirectly aid in its production and those within the hive environments. In this study, we extracted eDNA from 135 honey samples and tested for the presence of DNA for seven key honey bee pathogens and pests—Paenibacillus larvae, Melissococcus plutonius (bacterial pathogens), Nosema apis, Nosema ceranae (microsporidian fungi), Ascosphaera apis (fungal pathogen), Aethina tumida, and Galleria mellonella (arthropod pests) by using end-point singleplex and multiplex PCR assays. N. ceranae emerged as the most prevalent pathogen, present in 57% of the samples. This was followed by the pests A. tumida (40%) and G. mellonella (37%), and the pathogens P. larvae (21%), N. apis (19%), and M. plutonius (18%). A. apis was detected in a smaller proportion of the samples, with a prevalence of 5%. Additionally, 19% of the samples tested negative for all pathogens and pests analysed. The data outlines essential information about the prevalence of significant arthropod, fungal, and bacterial pathogens and pests affecting honey bees in Australia, which is crucial for protecting the nation’s beekeeping industry. Full article
(This article belongs to the Special Issue Recent Advances in Bee Parasite, Pathogen, and Predator Interactions)
Show Figures

Figure 1

13 pages, 436 KiB  
Opinion
It Is Time to Consider the Lost Battle of Microdamaged Piezo2 in the Context of E. coli and Early-Onset Colorectal Cancer
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7160; https://doi.org/10.3390/ijms26157160 - 24 Jul 2025
Viewed by 340
Abstract
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, [...] Read more.
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, including lifestyle and diet, are highly suspected. The identification of colibactin from Escherichia coli as a potential pathogenic source is a major step forward in addressing this public health challenge. Therefore, the following opinion manuscript aims to outline the likely onset of the pathomechanism and the critical role of acquired Piezo2 channelopathy in early-onset colorectal cancer, which skews proton availability and proton motive force regulation toward E. coli within the microbiota–host symbiotic relationship. In addition, the colibactin produced by the pks island of E. coli induces host DNA damage, which likely interacts at the level of Wnt signaling with Piezo2 channelopathy-induced pathological remodeling. This transcriptional dysregulation eventually leads to tumorigenesis of colorectal cancer. Mechanotransduction converts external physical cues to inner chemical and biological ones. Correspondingly, the proposed quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling, initiated by Piezo2, seems to be the principal and essential underlying novel oscillatory signaling that could be lost in colorectal cancer onset. Hence, Piezo2 channelopathy not only contributes to cancer initiation and impaired circadian regulation, including the proposed hippocampal ultradian clock, but also to proliferation and metastasis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

15 pages, 1570 KiB  
Article
Benzalkonium Chloride Significantly Improves Environmental DNA Detection from Schistosomiasis Snail Vectors in Freshwater Samples
by Raquel Sánchez-Marqués, Pablo Fernando Cuervo, Alejandra De Elías-Escribano, Alberto Martínez-Ortí, Patricio Artigas, Maria Cecilia Fantozzi, Santiago Mas-Coma and Maria Dolores Bargues
Trop. Med. Infect. Dis. 2025, 10(8), 201; https://doi.org/10.3390/tropicalmed10080201 - 22 Jul 2025
Viewed by 225
Abstract
Urogenital schistosomiasis, caused by Schistosoma haematobium and transmitted by Bulinus snails, affects approximately 190 million individuals globally and remains a major public health concern. Effective surveillance of snail vectors is critical for disease control, but traditional identification methods are time-intensive and require specialized [...] Read more.
Urogenital schistosomiasis, caused by Schistosoma haematobium and transmitted by Bulinus snails, affects approximately 190 million individuals globally and remains a major public health concern. Effective surveillance of snail vectors is critical for disease control, but traditional identification methods are time-intensive and require specialized expertise. Environmental DNA (eDNA) detection using qPCR has emerged as a promising alternative for large-scale vector surveillance. To prevent eDNA degradation, benzalkonium chloride (BAC) has been proposed as a preservative, though its efficacy with schistosomiasis snail vectors has not been evaluated. This study tested the impact of BAC (0.01%) on the stability of Bulinus truncatus eDNA under simulated field conditions. Water samples from aquaria with varying snail densities (0.5–30 snails/L) were stored up to 42 days with BAC. eDNA detection via qPCR and multivariable linear mixed regression analysis revealed that BAC enhanced eDNA stability. eDNA was detectable up to 42 days in samples with ≥1 snail/L and up to 35 days at 0.5 snails/L. Additionally, a positive correlation between snail density and eDNA concentration was observed. These findings support the development of robust eDNA sampling protocols for field surveillance, enabling effective monitoring in remote areas and potentially distinguishing between low- and high-risk schistosomiasis transmission zones. Full article
Show Figures

Figure 1

30 pages, 2062 KiB  
Article
Building a DNA Reference for Madagascar’s Marine Fishes: Expanding the COI Barcode Library and Establishing the First 12S Dataset for eDNA Monitoring
by Jean Jubrice Anissa Volanandiana, Dominique Ponton, Eliot Ruiz, Andriamahazosoa Elisé Marcel Fiadanamiarinjato, Fabien Rieuvilleneuve, Daniel Raberinary, Adeline Collet, Faustinato Behivoke, Henitsoa Jaonalison, Sandra Ranaivomanana, Marc Leopold, Roddy Michel Randriatsara, Jovial Mbony, Jamal Mahafina, Aaron Hartmann, Gildas Todinanahary and Jean-Dominique Durand
Diversity 2025, 17(7), 495; https://doi.org/10.3390/d17070495 - 18 Jul 2025
Viewed by 461
Abstract
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, [...] Read more.
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, this study aims to strengthen biodiversity monitoring tools. Its objectives were to enrich the COI database for Malagasy marine fishes, create the first 12S reference library, and evaluate the taxonomic resolution of different 12S metabarcodes for eDNA analysis, namely MiFish, Teleo1, AcMDB, Ac12S, and 12SF1/R1. An integrated approach combining morphological, molecular, and phylogenetic analyses was applied for specimen identification of fish captured using various types of fishing gear in Toliara and Ranobe Bays from 2018 to 2023. The Malagasy COI database now includes 2146 sequences grouped into 502 Barcode Index Numbers (BINs) from 82 families, with 14 BINs newly added to BOLD (The Barcode of Life Data Systems), and 133 cryptic species. The 12S library comprises 524 sequences representing 446 species from 78 families. Together, the genetic datasets cover 514 species from 84 families, with the most diverse being Labridae, Apogonidae, Gobiidae, Pomacentridae, and Carangidae. However, the two markers show variable taxonomic resolution: 67 species belonging to 35 families were represented solely in the COI dataset, while 10 species from nine families were identified exclusively in the 12S dataset. For 319 species with complete 12S gene sequences associated with COI BINs (Barcode Index Numbers), 12S primer sets were used to evaluate the taxonomic resolution of five 12S metabarcodes. The MiFish marker proved to be the most effective, with an optimal similarity threshold of 98.5%. This study represents a major step forward in documenting and monitoring Madagascar’s marine biodiversity and provides a valuable genetic reference for future environmental DNA (eDNA) applications. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

19 pages, 2552 KiB  
Article
The Biogeographic Patterns of Two Typical Mesopelagic Fishes in the Cosmonaut Sea Through a Combination of Environmental DNA and a Trawl Survey
by Yehui Wang, Chunlin Liu, Mi Duan, Peilong Ju, Wenchao Zhang, Shuyang Ma, Jianchao Li, Jianfeng He, Wei Shi and Yongjun Tian
Fishes 2025, 10(7), 354; https://doi.org/10.3390/fishes10070354 - 17 Jul 2025
Viewed by 285
Abstract
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a [...] Read more.
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a more cost-effective and sustainable alternative to traditional sampling approaches. To study the biogeographic patterns of two typical mesopelagic fishes, Antarctic lanternfish (Electrona antarctica) and Antarctic deep-sea smelt (Bathylagus antarcticus), in the Cosmonaut Sea in the Indian Ocean sector of the Southern Ocean, we conducted both eDNA and trawling sampling at a total of 86 stations in the Cosmonaut Sea during two cruises in 2021–2022. Two sets of species-specific primers and probes were developed for a quantitative eDNA analysis of two fish species. Both the eDNA and trawl results indicated that the two fish species are widely distributed in the Cosmonaut Sea, with no significant difference in eDNA concentration, biomass, or abundance between stations. Spatially, E. antarctica tended to be distributed in shallow waters, while B. antarcticus tended to be distributed in deep waters. Vertically, E. antarctica was more abundant above 500 m, while B. antarcticus had a wider range of habitat depths. The distribution patterns of both species were affected by nutrients, with E. antarctica additionally affected by chlorophyll, indicating that their distribution is primarily influenced by food resources. Our study provides broader insight into the biogeographic patterns of the two mesopelagic fishes in the remote Cosmonaut Sea, demonstrates the potential of combining eDNA with traditional methods to study biodiversity and ecosystem dynamics in the Southern Ocean and even at high latitudes, and contributes to future ecosystem research and biodiversity conservation in the region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

11 pages, 2797 KiB  
Article
Illuminating the Invisible: Green Fluorescent Protein as a Beacon for Antibiotic-Induced Phage Activity in Escherichia coli
by Maria João Silva, Tim Van Den Bossche, Mattias Collin and Rolf Lood
Antibiotics 2025, 14(7), 714; https://doi.org/10.3390/antibiotics14070714 - 16 Jul 2025
Viewed by 284
Abstract
Background/Objectives: Antibiotic resistance presents an urgent public health threat. By developing a streamlined and effective method for studying bacteriophage induction, this research marks a step further in understanding how antibiotic-resistant genes might spread across different environments. This knowledge is essential for creating strategies [...] Read more.
Background/Objectives: Antibiotic resistance presents an urgent public health threat. By developing a streamlined and effective method for studying bacteriophage induction, this research marks a step further in understanding how antibiotic-resistant genes might spread across different environments. This knowledge is essential for creating strategies to reduce the spread of antimicrobial resistance (AMR), particularly from a One Health perspective. In this study, we develop and validate a Green Fluorescent Protein (GFP)-based method as a proxy for bacteriophage induction. This method screens compounds for their potential to promote bacteriophage induction. Methods: This study utilized a recA-GFP construct in Escherichia coli to measure fluorescence as an indicator of SOS response activation. The experiments involved treating E. coli cultures with varying concentrations of the DNA-damaging chemical mitomycin C and measuring fluorescence over time. Additionally, droplet digital PCR (ddPCR) quantified bacteriophage induction in a lambda phage-carrying E. coli strain, allowing for correlation analysis between the two methods. Results: The recA-driven SOS response depended on both dose and time, with increasing concentrations of mitomycin C leading to higher fluorescence. ddPCR analysis confirmed that mitomycin C induced prophage activation, with gene ratios increasing at higher drug concentrations over time. A strong Spearman correlation (>0.7) was noted between fluorescence and ddPCR results at elevated concentrations and relevant time points, indicating the validity of the GFP-based model as a proxy for bacteriophage induction. Conclusions: The findings demonstrate a strong association between the two methods of measuring phage induction, suggesting that the GFP-based E. coli model is a reliable, cost-effective, and efficient tool for studying phage induction and its potential role in AMR spread. This method could facilitate the screening of environmental samples and specific drugs to evaluate their impact on bacteriophage induction, which opens the door for applications such as screening for antibiotic resistance dissemination. Full article
(This article belongs to the Section Bacteriophages)
Show Figures

Figure 1

21 pages, 1415 KiB  
Review
Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment
by Su-Ok Hwang, Byeong-Hun Han, Hyo-Gyeom Kim and Baik-Ho Kim
Hydrobiology 2025, 4(3), 19; https://doi.org/10.3390/hydrobiology4030019 - 16 Jul 2025
Viewed by 509
Abstract
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system [...] Read more.
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system was applied to four representative river basins—the Mississippi, Amazon, Yangtze, and Danube—demonstrating enhanced predictive accuracy (up to 94%), spatial pollution mapping precision (85–95%), and species detection sensitivity (+18–30%) compared to conventional methods. Furthermore, the framework reduces operational costs by up to 40%, highlighting its potential for cost-effective deployment in low-resource regions. Despite its strengths, challenges persist in the areas of regulatory acceptance, data standardization, and digital infrastructure. We recommend legal recognition of AI and eDNA indicators, investment in explainable AI (XAI), and global data harmonization initiatives. The integrated AI-GIS-eDNA framework offers a scalable and policy-relevant tool for adaptive freshwater governance in the Anthropocene. Full article
(This article belongs to the Special Issue Ecosystem Disturbance in Small Streams)
Show Figures

Figure 1

15 pages, 2742 KiB  
Article
Resistome and Phylogenomics of Escherichia coli Strains Obtained from Diverse Sources in Jimma, Ethiopia
by Mulatu Gashaw, Esayas Kebede Gudina, Guenter Froeschl, Ralph Matar, Solomon Ali, Liegl Gabriele, Amelie Hohensee, Thomas Seeholzer, Arne Kroidl and Andreas Wieser
Antibiotics 2025, 14(7), 706; https://doi.org/10.3390/antibiotics14070706 - 14 Jul 2025
Viewed by 356
Abstract
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods [...] Read more.
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods: Phenotypic antibiotic resistance patterns of E. coli isolates were determined using automated Kirby–Bauer disc diffusion and minimum inhibitory concentration (MIC). Isolates exhibiting phenotypic resistance to beta-lactam antibiotics were further analyzed with a DNA microarray to confirm the presence of resistance-encoding genes. Additionally, multilocus sequence typing (MLST) of seven housekeeping genes was conducted using PCR and Oxford Nanopore-Technology (ONT) to assess the phylogenetic relationships among the E. coli isolates. Results: A total of 611 E. coli isolates from human, animal, and environmental sources were analyzed. Of these, 41.6% (254) showed phenotypic resistance to at least one of the tested beta-lactams, 96.1% (244) thereof were confirmed genotypically. More than half of the isolates (53.3%) had two or more resistance genes present. The most frequent ESBL-encoding gene was CTX-M-15 (74.2%; 181), followed by TEM (59.4%; 145) and CTX-M-9 (4.1%; 10). The predominant carbapenemase gene was NDM-1, detected in 80% (12 out of 15) of carbapenem-resistant isolates. A phylogenetic analysis revealed clonality among the strains obtained from various sources, with international high-risk clones such as ST131, ST648, ST38, ST73, and ST405 identified across various niches. Conclusions: The high prevalence of CTX-M-15 and NDM-1 in multidrug-resistant E. coli isolates indicates the growing threat of AMR in Ethiopia. The discovery of these high-risk clones in various niches shows possible routes of transmission and highlights the necessity of a One Health approach to intervention and surveillance. Strengthening antimicrobial stewardship, infection prevention, and control measures are crucial to mitigate the spread of these resistant strains. Full article
Show Figures

Figure 1

Back to TopTop