Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment
Abstract
1. Introduction
- (1)
- Benchmark the performance of the AI-GIS-eDNA framework against conventional monitoring approaches;
- (2)
- Examine the technological and methodological synergies among AI, GIS, and eDNA tools;
- (3)
- Identify the institutional, regulatory, and infrastructural conditions necessary for the scalable adoption of this framework in diverse geographical contexts.
2. Literature Review
2.1. Traditional Water Quality Assessment Methods and Their Limitations
2.2. Emerging Technologies in River Health Monitoring
2.3. Research Gaps and the Need for an Integrated AI-GIS-eDNA Framework
3. Research Methodology
3.1. Study Area and Data Collection
3.2. Development of AI-Based Prediction Framework
3.3. GIS-Based Spatial Analysis and Hydrological Modeling
3.4. eDNA-Based Biodiversity Assessment
3.5. Model Performance Evaluation and Benchmarking
4. Research Findings and Analysis
4.1. Performance Evaluation of AI Models
4.2. GIS-Based Pollution Dispersion Analysis
4.3. eDNA-Based Biodiversity Monitoring
4.4. Policy Implications and Future Applications of AI-GIS-eDNA Monitoring
5. Discussion
5.1. Advancing River Health Monitoring: From Conventional to Integrated Approaches
5.2. Performance and Cost-Efficiency of the AI-GIS-eDNA Framework
5.3. Implementation Challenges and Policy Considerations in Resource-Limited Regions
- In the Mississippi River Basin, federal agencies such as the U.S. EPA and USGS have begun integrating AI-based water quality prediction models under existing regulatory mandates [120].
- The Amazon Basin, though governed by multiple bilateral treaties, has yet to formally incorporate eDNA into national biodiversity assessments, despite increasing regional interest in molecular tools for ecological diagnostics [148].
- In China’s Yangtze River, national ecological modernization initiatives have supported pilot applications of AI for environmental forecasting, with ongoing development of regulatory instruments for emerging indicators [127].
- The Danube River, managed by the International Commission for the Protection of the Danube River (ICPDR), represents a successful transboundary governance model. Recent ICPDR initiatives have included exploratory discussions on integrating novel indicators such as eDNA and AI-based classifiers [79].
5.4. Institutional and Regulatory Challenges
5.5. Toward Scalable and Equitable Adoption
5.6. Future Research and Implementation Priorities
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
CFD | Computational Fluid Dynamics |
COI | Cytochrome Oxidase I (mitochondrial gene) |
DEMs | Digital Elevation Models |
DO | Dissolved Oxygen |
DL | Deep Learning |
eDNA | Environmental DNA |
GBIF | Global Biodiversity Information Facility |
GBM | Gradient Boosting Machine |
GISs | Geographic Information Systems |
HTS | High-Throughput Sequencing |
ICPDR | International Commission for the Protection of the Danube River |
IDW | Inverse Distance Weighting |
IoT | Internet of Things |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
ML | Machine Learning |
MODIS | Moderate Resolution Imaging Spectroradiometer |
PCR | Polymerase Chain Reaction |
RF | Random Forest |
RMSE | Root Mean Square Error |
SILVA | Ribosomal RNA gene reference database for taxonomic classification |
SVM | Support Vector Machine |
SWAT | Soil and Water Assessment Tool |
TN | Total Nitrogen |
TP | Total Phosphorus |
UAV | Unmanned Aerial Vehicle |
US EPA | United States Environmental Protection Agency |
WFD | Water Framework Directive |
XAI | Explainable Artificial Intelligence |
References
- Ahmed, S.F.; Kumar, P.S.; Kabir, M.; Zuhara, F.T.; Mehjabin, A.; Tasannum, N.; Hoang, A.T.; Kabir, Z.; Mofijur, M. Threats, challenges, and sustainable conservation strategies for freshwater biodiversity. Environ. Res. 2022, 214, 113808. [Google Scholar] [CrossRef] [PubMed]
- Bănăduc, D.; Curtean-Bănăduc, A.; Barinova, S.; Lozano, V.L.; Afanasyev, S.; Leite, T.; Branco, P.; Gomez Isaza, D.F.; Geist, J.; Tegos, A.; et al. Multi-interacting natural and anthropogenic stressors on freshwater ecosystems: Their current status and future prospects for 21st century. Water 2024, 16, 1483. [Google Scholar] [CrossRef]
- Barange, M.; Bahri, T.; Beveridge, M.C.M.; Cochrane, K.L.; Funge-Smith, S.; Poulain, F. (Eds.) Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation, and Mitigation Options (FAO Fisheries and Aquaculture Technical Paper No. 627); Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: https://www.fao.org/documents/card/en/c/I9705EN (accessed on 15 June 2025).
- Birnie-Gauvin, K.; Lynch, A.J.; Franklin, P.A.; Reid, A.J.; Landsman, S.J.; Tickner, D.; Dalton, J.; Aarestrup, K.; Cooke, S.J. The RACE for freshwater biodiversity: Essential actions to create the social context for meaningful conservation. Conserv. Sci. Pract. 2023, 5, e12911. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Hascic, I.; Wu, J. Land use and watershed health in the United States. Land Econ. 2006, 82, 214–239. [Google Scholar] [CrossRef]
- Talukdar, S.; Shahfahad; Ahmed, S.; Naikoo, M.W.; Rahman, A.; Mallik, S.; Ningthoujam, S.; Bera, S.; Ramana, G.V. Predicting lake water quality index with sensitivity-uncertainty analysis using deep learning algorithms. J. Clean. Prod. 2023, 406, 136885. [Google Scholar] [CrossRef]
- Adebayo, A.S. AI driven species recognition and digital systematics: Applying artificial intelligence for automated organism classification in ecological and environmental monitoring. Int. J. Res. Publ. Rev. 2025, 6, 31–49. [Google Scholar] [CrossRef]
- Choi, I.-C.; Shin, H.-J.; Nguyen, T.; Tenhunen, J. Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management. Water 2017, 9, 717. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef]
- Ismail, A.H.; Robescu, D. Assessment of water quality of the Danube River using water quality indices technique. Environ. Eng. Manag. J. 2019, 18, 1727–1737. [Google Scholar] [CrossRef]
- US EPA (United States Environmental Protection Agency). Detecting and Monitoring Aquatic Invasive Species. 2022. Available online: https://www.epa.gov/water-research/detecting-and-monitoring-aquatic-invasive-species (accessed on 15 June 2025).
- Blanco, S. What do diatom indices indicate? Modeling the specific pollution sensitivity index. Environ. Sci. Pollut. Res. Int. 2024, 31, 29449–29459. [Google Scholar] [CrossRef] [PubMed]
- Buçinca, A.; Bilalli, A.; Ibrahimi, H.; Slavevska-Stamenković, V.; Mitić-Kopanja, D.; Hinić, J.; Grapci-Kotori, L. Water quality assessment in the Ibër River Basin (Kosovo) using macroinvertebrate and benthic diatom indices. J. Ecol. Eng. 2024, 25, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Castillejo, P.; Ortiz, S.; Jijón, G.; Lobo, E.A.; Heinrich, C.; Ballesteros, I.; Rios-Touma, B. Response of macroinvertebrate and epilithic diatom communities to pollution gradients in Ecuadorian Andean rivers. Hydrobiologia 2024, 851, 431–446. [Google Scholar] [CrossRef]
- Kim, J.Y.; An, K.-G. Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water 2015, 7, 6378–6403. [Google Scholar] [CrossRef]
- Lavoie, I.; Vincent, W.F.; Pienitz, R.; Painchaud, J. Benthic algae as bioindicators of agricultural pollution in the streams and rivers of southern Québec (Canada). Aquat. Ecosyst. Health Manag. 2004, 7, 43–58. [Google Scholar] [CrossRef]
- Mamun, M.; Jargal, N.; Atique, U.; An, K.-G. Ecological river health assessment using multi-metric models in an Asian temperate region with land use/land cover as the primary factor regulating nutrients, organic matter, and fish composition. Int. J. Environ. Res. Public Health 2022, 19, 9305. [Google Scholar] [CrossRef] [PubMed]
- Mathuriau, C.; Silva, N.M.; Lyons, J.; Rivera, L.M.M. Fish and macroinvertebrates as freshwater ecosystem bioindicators in Mexico: Current state and perspectives. In Water Resources in Mexico. Hexagon Series on Human and Environmental Security and Peace 7; Spring, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 251–261. [Google Scholar] [CrossRef]
- Danovaro, R.; Carugati, L.; Berzano, M.; Cahill, A.E.; Carvalho, S.; Chenuil, A.; Corinaldesi, C.; Cristina, S.; David, R.; Dell’Anno, A.; et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 2016, 3, 213. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Metzeling, L.; Chessman, B.; Hardwick, R.; Wong, V. Rapid assessment of rivers using macroinvertebrates: The role of experience, and comparisons with quantitative methods. Hydrobiologia 2003, 510, 39–52. [Google Scholar] [CrossRef]
- Wang, B.; Jiao, L.; Ni, L.; Wang, M.; You, P. Bridging the gap: The integration of eDNA techniques and traditional sampling in fish diversity analysis. Front. Mar. Sci. 2024, 11, 1289589. [Google Scholar] [CrossRef]
- Aras, S.; Findik, O.; Kalipci, E.; Sahinkaya, S. Assessment of concentration physicochemical parameters and heavy metals in Kızılırmak River, Turkey. Desalin. Water Treat. 2017, 72, 328–334. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.-P.; Gires, A.; Pina, R.D.; Reinoso-Rondinel, R.; Bruni, G.; Ichiba, A.; Gaitan, S.; Cristiano, E.; van Assel, J.; et al. Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J. Hydrol. 2015, 531, 389–407. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Dong, J.; Yao, Z.; Chen, X.; Fan, H. Multi-step ahead dissolved oxygen concentration prediction based on knowledge guided ensemble learning and explainable artificial intelligence. J. Hydrol. 2024, 636, 131297. [Google Scholar] [CrossRef]
- Mavromati, E.; Kemitzoglou, D.; Tsiaoussi, V.; Lazaridou, M. A new WFD-compliant littoral macroinvertebrate index for monitoring and assessment of Mediterranean lakes (HeLLBI). Environ. Monit. Assess. 2021, 193, 745. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Vidal, T.; Gonçalves, F.J.M.; Castro, B.B.; Pereira, J.L. Challenges to water quality assessment in Europe—Is there scope for improvement of the current Water Framework Directive bioassessment scheme in rivers? Ecol. Indic. 2021, 121, 107030. [Google Scholar] [CrossRef]
- Yepremyan, H.; Asatryan, V.; Dallakyan, M.; Shahnazaryan, G.; Pusch, M. Testing macrophyte-based assessment tools developed under the EU Water Framework Directive for application in a Caucasus region country (Armenia). Water 2025, 17, 1352. [Google Scholar] [CrossRef]
- Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The role of deep learning in urban water management: A critical review. Water Res. 2022, 223, 118973. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Kim, M.; Son, H.W.; Min, B.; Choi, J.H. Machine-learning-based water quality management of river with serial impoundments in the Republic of Korea. J. Hydrol. Reg. Stud. 2022, 41, 101069. [Google Scholar] [CrossRef]
- Merabet, K.; Di Nunno, F.; Granata, F.; Kim, S.; Adnan, R.M.; Heddam, S.; Kisi, O.; Zounemat-Kermani, M. Predicting water quality variables using gradient boosting machine: Global versus local explainability using SHapley Additive Explanations (SHAP). Earth Sci. Inform. 2025, 18, 298. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.H.; Kim, K.T.; Park, C.Y.; Lee, S.; Heo, T.-Y. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 2022, 832, 155070. [Google Scholar] [CrossRef] [PubMed]
- Solangi, G.S.; Ali, Z.; Bilal, M.; Junaid, M.; Panhwar, S.; Keerio, H.A.; Sohu, I.H.; Shahani, S.G.; Zaman, N. Machine learning, water quality index, and GIS-based analysis of groundwater quality. Water Pract. Technol. 2024, 19, 384–400. [Google Scholar] [CrossRef]
- Jiang, J.; Jin, A. Study on the dispersion law of typical pollutants in winter by complex geographic environment based on the coupling of GIS and CFD—A case study of the Urumqi region. Appl. Sci. 2025, 15, 2469. [Google Scholar] [CrossRef]
- Keck, F.; Brantschen, J.; Altermatt, F. A combination of machine-learning and eDNA reveals the genetic signature of environmental change at the landscape levels. Mol. Ecol. 2023, 32, 4791–4800. [Google Scholar] [CrossRef] [PubMed]
- Megahed, H.A.; Farrag, A.E.-H.A.; Mohamed, A.A.; Darwish, M.H.; AbdelRahman, M.A.E.; El-Bagoury, H.; D’Antonio, P.; Scopa, A.; Saad, M.A.A. GIS-based modeling and analytical approaches for groundwater quality suitability for different purposes in the Egyptian Nile Valley, a case study in Wadi Qena. Front. Water 2025, 7, 1502169. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Fediajevaite, J.; Priestley, V.; Arnold, R.; Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 2021, 11, 4803–4815. [Google Scholar] [CrossRef] [PubMed]
- Miya, M. Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities. Annu. Rev. Mar. Sci. 2022, 14, 161–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; You, X.; Zhao, G. Harnessing the power of artificial intelligence for human living organoid research. Bioact. Mater. 2024, 42, 140–164. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tang, L.; Long, L.; Sina, M. Comparison of deep and conventional machine learning models for prediction of one supply chain management distribution cost. Sci. Rep. 2024, 14, 24195. [Google Scholar] [CrossRef] [PubMed]
- Aldrees, A.; Khan, M.; Taha, A.T.B.; Ali, M. Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches. J. Water Process Eng. 2024, 58, 104789. [Google Scholar] [CrossRef]
- Najah Ahmed, A.; Binti Othman, F.; Abdulmohsin Afan, H.; Khaleel Ibrahim, R.; Ming Fai, C.; Shabbir Hossain, M.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Narayanan, D.; Bhat, M.; Samuel Paul, N.R.S.; Khatri, N.; Saroliya, A. Artificial intelligence driven advances in wastewater treatment: Evaluating techniques for sustainability and efficacy in global facilities. Desalin. Water Treat. 2024, 320, 100618. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, C.; Dong, L.; Liu, L.; Li, H.; Wu, J.; Ye, C. Microplastic pollution in the Yangtze River Basin: Heterogeneity of abundances and characteristics in different environments. Environ. Pollut. 2021, 287, 117580. [Google Scholar] [CrossRef] [PubMed]
- Akpoti, K.; Dembélé, M.; Forkuor, G.; Obuobie, E.; Mabhaudhi, T.; Cofie, O. Integrating GIS and remote sensing for land use/land cover mapping and groundwater potential assessment for climate-smart cocoa irrigation in Ghana. Sci. Rep. 2023, 13, 16025. [Google Scholar] [CrossRef] [PubMed]
- Budde, S.; Agrawal, S.; Chani, P.S. Utilising GIS for studying urban entropy, population dynamics, and ventilation disparity: A case study of changing land use, land cover, and socially vulnerable hotspots in Hyderabad, India. Phys. Chem. Earth Parts A/B/C 2024, 136, 103748. [Google Scholar] [CrossRef]
- Di Luzio, M.; Srinivasan, R.; Arnold, J.G. A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Trans. GIS 2004, 8, 113–136. [Google Scholar] [CrossRef]
- Mohan, S.; Kumar, B.; Nejadhashemi, A.P. Integration of machine learning and remote sensing for water quality monitoring and prediction: A review. Sustainability 2025, 17, 998. [Google Scholar] [CrossRef]
- Muhammad, A.; Shangguan, D.; Rasool, G.; Khan, A.A.; Butt, A.Q.; Hussain, A.; Mukhtar, M.A. A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan. ISPRS Int. J. Geo Inf. 2024, 13, 393. [Google Scholar] [CrossRef]
- Capurso, G.; Carroll, B.; Stewart, K.A. Transforming marine monitoring: Using eDNA metabarcoding to improve the monitoring of the Mediterranean Marine Protected Areas network. Mar. Policy 2023, 156, 105807. [Google Scholar] [CrossRef]
- Rousso, B.Z.; Do, N.C.; Gao, L.; Monks, I.; Wu, W.; Stewart, R.A.; Lambert, M.F.; Gong, J. Transitioning practices of water utilities from reactive to proactive: Leveraging Australian best practices in digital technologies and data analytics. J. Hydrol. 2024, 641, 131808. [Google Scholar] [CrossRef]
- Mangadze, T.; Bere, T.; Mwedzi, T. Choice of biota in stream assessment and monitoring programs in tropical streams: A comparison of diatoms, macroinvertebrates and fish. Ecol. Indic. 2016, 63, 128–143. [Google Scholar] [CrossRef]
- Ashraf Rather, M.; Ahmad, I.; Shah, A.; Ahmad Hajam, Y.; Amin, A.; Khursheed, S.; Ahmad, I.; Rasool, S. Exploring opportunities of artificial intelligence in aquaculture to meet increasing food demand. Food Chem. X 2024, 22, 101309. [Google Scholar] [CrossRef] [PubMed]
- Dalton, D.; Berger, V.; Kirchmeir, H.; Adams, V.; Botha, J.; Halloy, S.; Hart, R.; Švara, V.; Torres Ribeiro, K.; Chaudhary, S.; et al. A Framework for Monitoring Biodiversity in Protected Areas and Other Effective Area-Based Conservation Measures: Concepts, Methods and Technologies (IUCN WCPA Technical Report Series No. 7); IUCN: Gland, Switzerland, 2024. [Google Scholar] [CrossRef]
- Dickens, J.; Dickens, C.; Eriyagama, N.; Xie, H.; Tickner, D. Towards a Global River Health Assessment Framework (Project Report Submitted to the CGIAR Research Program on Water, Land and Ecosystems [WLE]); International Water Management Institute (IWMI): Colombo, Sri Lanka, 2022. [Google Scholar] [CrossRef]
- Fonseca, V.G.; Davison, P.I.; Creach, V.; Stone, D.; Bass, D.; Tidbury, H.J. The application of eDNA for monitoring aquatic non-indigenous species: Practical and policy considerations. Diversity 2023, 15, 631. [Google Scholar] [CrossRef]
- Biney, E.E.; Gyamfi, C.; Karikari, A.Y.; Darko, D. Reservoir ecological health assessment methods: A systematic review. Ecol. Indic. 2025, 171, 113130. [Google Scholar] [CrossRef]
- Guidi, L.; Fernandez Guerra, A.; Canchaya, C.; Curry, E.; Foglini, F.; Irisson, J.-O.; Malde, K.; Marshall, C.T.; Obst, M.; Ribeiro, R.P.; et al. Big Data in Marine Science (Future Science Brief No. 6); European Marine Board: Oostende, Belgium, 2020. [Google Scholar] [CrossRef]
- Kamyab, H.; Khademi, T.; Chelliapan, S.; SaberiKamarposhti, M.; Rezania, S.; Yusuf, M.; Farajnezhad, M.; Abbas, M.; Hun Jeon, B.H.; Ahn, Y. The latest innovative avenues for the utilization of artificial intelligence and big data analytics in water resource management. Results Eng. 2023, 20, 101566. [Google Scholar] [CrossRef]
- Lapointe, N.W.R.; Cooke, S.J.; Imhof, J.G.; Boisclair, D.; Casselman, J.M.; Curry, R.A.; Langer, O.E.; McLaughlin, R.L.; Minns, C.K.; Post, J.R.; et al. Principles for ensuring healthy and productive freshwater ecosystems that support sustainable fisheries. Environ. Rev. 2014, 22, 110–134. [Google Scholar] [CrossRef]
- UNEP (United Nations Environment Programme). AI for Earth: Leveraging Artificial Intelligence for Environmental Sustainability; United Nations Environment Programme: Washington, DC, USA, 2022. [Google Scholar]
- Jia, Y.T.; Chen, Y.F. River health assessment in a large river: Bioindicators of fish population. Ecol. Indic. 2013, 26, 24–32. [Google Scholar] [CrossRef]
- Jo, C.; Kwon, H.; Kim, S. Temporal and spatial water quality assessment of the Geumho River, Korea, using multivariate statistics and water quality indices. Water 2022, 14, 1761. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, Q.; Zuo, Q.; Cui, Y. Impact of land use and urbanization on river water quality and ecology in a dam dominated basin. J. Hydrol. 2020, 584, 124655. [Google Scholar] [CrossRef]
- Schwab, M.S.; Gies, H.; Freymond, C.V.; Lupker, M.; Haghipour, N.; Eglinton, T.I. Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: Insights from a time series. Biogeosciences 2022, 19, 5591–5616. [Google Scholar] [CrossRef]
- Mukundan, R.; Moknatian, M.; Gelda, R.K. Investigation and modeling of land use effects on water quality in two NYC water supply streams. J. Environ. Manag. 2025, 373, 123993. [Google Scholar] [CrossRef] [PubMed]
- Mulenga, M.; Monde, C.; Johnson, T.; Ouma, K.O.; Syampungani, S. Advances in the integration of microalgal communities for biomonitoring of metal pollution in aquatic ecosystems of sub-Saharan Africa. Environ. Sci. Pollut. Res. Int. 2024, 31, 40795–40817. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Saccò, M.; Kestel, J.H.; Nester, G.; Campbell, M.A.; van der Heyde, M.; Heydenrych, M.J.; Juszkiewicz, D.J.; Nevill, P.; Dawkins, K.L.; et al. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Sci. Total Environ. 2023, 873, 162322. [Google Scholar] [CrossRef] [PubMed]
- Nallakaruppan, M.K.; Gangadevi, E.; Shri, M.L.; Balusamy, B.; Bhattacharya, S.; Selvarajan, S. Reliable water quality prediction and parametric analysis using explainable AI models. Sci. Rep. 2024, 14, 7520. [Google Scholar] [CrossRef] [PubMed]
- Rajitha, A.; Aravinda, K.; Nagpal, A.; Kalra, R.; Maan, P.; Kumar, A.; Abdul-Zahra, D.S. Machine learning and AI-driven water quality monitoring and treatment. E3S Web Conf. 2024, 505, 03012. [Google Scholar] [CrossRef]
- Ramírez-Amaro, S.; Bassitta, M.; Picornell, A.; Ramon, C.; Terrasa, B. Environmental DNA: State-of-the-art of its application for fisheries assessment in marine environments. Front. Mar. Sci. 2022, 9, 1004674. [Google Scholar] [CrossRef]
- Rishan, S.T.; Kline, R.J.; Rahman, M.S. Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA metabarcoding. Environ. Adv. 2023, 12, 100370. [Google Scholar] [CrossRef]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sens. 2023, 15, 3926. [Google Scholar] [CrossRef]
- Ramadan, M.N.A.; Ali, M.A.H.; Khoo, S.Y.; Alkhedher, M.; Alherbawi, M. Real-time IoT-powered AI system for monitoring and forecasting of air pollution in industrial environment. Ecotoxicol. Environ. Saf. 2024, 283, 116856. [Google Scholar] [CrossRef] [PubMed]
- Rane, N.; Choudhary, S.; Rane, J. Enhancing water and air pollution monitoring and control through ChatGPT and similar generative artificial intelligence implementation. SSRN Electron. J. 2024. preprint. [Google Scholar] [CrossRef]
- Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build. 2018, 158, 1533–1543. [Google Scholar] [CrossRef]
- Lugga, M.S. Integrating artificial intelligence (AI) with geographic information systems (GIS) and remote sensing technologies for security management. Direct Res. J. Eng. Inf. Technol. 2025, 13, 1. Available online: https://journals.directresearchpublisher.org/index.php/drjeit/article/view/300 (accessed on 10 June 2025).
- Rana, R.; Kalia, A.; Boora, A.; Alfaisal, F.M.; Alharbi, R.S.; Berwal, P.; Alam, S.; Khan, M.A.; Qamar, O. Artificial intelligence for surface water quality evaluation, monitoring and assessment. Water 2023, 15, 3919. [Google Scholar] [CrossRef]
- Georgescu, P.-L.; Moldovanu, S.; Iticescu, C.; Calmuc, M.; Calmuc, V.; Topa, C.; Moraru, L. Assessing and forecasting water quality in the Danube River by using neural network approaches. Sci. Total Environ. 2023, 879, 162998. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Qiu, Z.; Zhang, Z. Assessing the impacts of land use on downstream water quality using a hydrologically sensitive area concept. J. Environ. Manag. 2018, 213, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Rammohan, B.; Partheeban, P.; Ranganathan, R.; Balaraman, S. Groundwater quality prediction and analysis using machine learning models and geospatial technology. Sustainability 2024, 16, 9848. [Google Scholar] [CrossRef]
- Sibindi, R.; Mwangi, R.W.; Waititu, A.G. A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices. Eng. Rep. 2023, 5, e12599. [Google Scholar] [CrossRef]
- Jansky, L.; Murakami, M.; Pachova, N.I. The Danube: Environmental Monitoring of an International River; United Nations University Press: Tokyo, Japan, 2004. [Google Scholar]
- Maity, R.; Srivastava, A.; Sarkar, S.; Khan, M.I. Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning. Appl. Comput. Geosci. 2024, 24, 100206. [Google Scholar] [CrossRef]
- Poulos, R.C.; Hains, P.G.; Shah, R.; Lucas, N.; Xavier, D.; Manda, S.S.; Anees, A.; Koh, J.M.S.; Mahboob, S.; Wittman, M.; et al. Strategies to enable large-scale proteomics for reproducible research. Nat. Commun. 2020, 11, 3793. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, E.; Nassif, N. Artificial intelligence in environmental monitoring: In-depth analysis. Discov. Artif. Intell. 2024, 4, 84. [Google Scholar] [CrossRef]
- Balasubramaniam, N.; Kauppinen, M.; Rannisto, A.; Hiekkanen, K.; Kujala, S. Transparency and explainability of AI systems: From ethical guidelines to requirements. Inf. Softw. Technol. 2023, 159, 107197. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B. Interpretable and explainable AI (XAI) model for spatial drought prediction. Sci. Total Environ. 2021, 801, 149797. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Xu, J.; Liu, C.; Wu, J.; Chen, D. Assessment and prediction of water quality index (WQI) by seasonal key water parameters in a coastal city: Application of machine learning models. Environ. Monit. Assess. 2024, 196, 1008. [Google Scholar] [CrossRef] [PubMed]
- Enhancing Access to and Sharing of Data in the Age of Artificial Intelligence. Policy Brief. Available online: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0463 (accessed on 6 February 2025).
- Cheng, B.; Zhang, Y.; Xia, R.; Wang, L.; Zhang, N.; Zhang, X. Spatiotemporal analysis and prediction of water quality in the Han River by an integrated nonparametric diagnosis approach. J. Clean. Prod. 2021, 328, 129583. [Google Scholar] [CrossRef]
- Giakoumis, T.; Voulvoulis, N. The transition of EU water policy towards the water Framework Directive’s integrated river basin management paradigm. Environ. Manag. 2018, 62, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Goolsby, D.A.; Battaglin, W.A.; Thurman, E.M. Occurrence and Transport of Agricultural Chemicals in the Mississippi River Basin, July Through August 1993; U.S. Geological Survey Circular 1120-C; U.S. Government Printing Office: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Rahim, F.; Bodnar, N.; Qasim, N.H.; Jawad, A.M.; Ahmed, O.S. Integrating machine learning in environmental DNA metabarcoding for improved biodiversity assessment: A review and analysis of recent studies. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Stark, J.D.; Maxted, J.R. A User Guide for the Macroinvertebrate Community Index (Cawthron Report No. 1166); Prepared for the Ministry for the Environment; Cawthron Institute: Nelson, New Zealand, 2007. [Google Scholar]
- Wu, W.; Lin, Z.; Chen, C.; Chen, Z.; Zhao, Z.; Su, H. Tracking the dynamics of tidal wetlands with time-series satellite images in the Yangtze River Estuary, China. Int. J. Digit. Earth 2024, 17, 2330684. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, S.; Liu, Y.; Li, X.; Shen, W.; Mao, Z.; Wu, S. Enhancing water depth inversion accuracy in the Yangtze River’s Nantong Channel using random forest and coordinate attention mechanisms. Opt. Express 2024, 32, 46657–46676. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Mu, Y.; Wang, J.; Yu, H.; Zhang, X. Unsupervised biological integrity assessment by eDNA biomonitoring of multi-trophic aquatic taxa. Environ. Int. 2023, 175, 107950. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef]
- Pont, D.; Rocle, M.; Valentini, A.; Civade, R.; Jean, P.; Maire, A.; Roset, N.; Schabuss, M.; Zornig, H.; Dejean, T. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 2018, 8, 10361. [Google Scholar] [CrossRef] [PubMed]
- Saarela, M.; Podgorelec, V. Recent applications of explainable AI (XAI): A systematic literature review. Appl. Sci. 2024, 14, 8884. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, H.; Wang, Y.Q.; Zhang, L.J.; Wu, Y. Machine learning-based dissolved oxygen prediction modeling and evaluation in the Yangtze River Estuary. Huan Jing Ke Xue 2024, 45, 7123–7133. [Google Scholar] [CrossRef] [PubMed]
- Saturday, A.; Lyimo, T.J.; Machiwa, J.; Pamba, S. Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda. SN Appl. Sci. 2021, 3, 684. [Google Scholar] [CrossRef]
- Infant, S.S.; Vickram, S.; Saravanan, A.; Mathan Muthu, C.M.; Yuarajan, D. Explainable artificial intelligence for sustainable urban water systems engineering. Results Eng. 2025, 25, 104349. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in marine and freshwater ecosystems. Ecol. Evol. 2019, 9, 1135–1150. [Google Scholar] [CrossRef]
- Kundu, S.; Datta, P.; Pal, P.; Ghosh, K.; Das, A.; Das, B.K. Unveiling the hidden connections: Using explainable artificial intelligence to assess water quality criteria in nine giant rivers. J. Clean. Prod. 2025, 492, 144861. [Google Scholar] [CrossRef]
- Smith, R.H.; Glendinning, L.; Walker, A.W.; Watson, M. Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome. Anim. Microbiome 2022, 4, 57. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, X.; Yang, Q.; Srinivasan, R.; Arnold, J.G.; Li, J.; Waldholf, S.T.; Cole, J. SWAT ungauged: Water quality modeling in the Upper Mississippi River Basin. J. Hydrol. 2020, 584, 124601. [Google Scholar] [CrossRef] [PubMed]
- Stackpoole, S.; Sabo, R.; Falcone, J.; Sprague, L. Long-term Mississippi River trends expose shifts in the river load response to watershed nutrient balances between 1975 and 2017. Water Resour. Res. 2021, 57, e2021WR030318. [Google Scholar] [CrossRef] [PubMed]
- Giles, N.A.; Babbar-Sebens, M.; Srinivasan, R.; Ficklin, D.L.; Barnhart, B. Optimization of linear stream temperature model parameters in the soil and water assessment tool for the continental United States. Ecol. Eng. 2019, 127, 125–134. [Google Scholar] [CrossRef]
- Kutty, S.N.; Loh, R.K.; Bannister, W.; Taylor, D. Evaluation of a diatom eDNA-based technique for assessing water quality variations in tropical lakes and reservoirs. Ecol. Indic. 2022, 141, 109108. [Google Scholar] [CrossRef]
- Rimet, F.; Vasselon, V.; A-Keszte, B.; Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 2018, 18, 51–62. [Google Scholar] [CrossRef]
- Gasparini, L.; Crookes, S.; Prosser, R.S.; Hanner, R. Detection of freshwater mussels (Unionidae) using environmental DNA in riverine systems. Environ. DNA 2020, 2, 321–329. [Google Scholar] [CrossRef]
- Kuehne, L.M.; Dickens, C.; Tickner, D.; Messager, M.L.; Olden, J.D.; O’Brien, G.; Lehner, B.; Eriyagama, N. The future of global river health monitoring. PLoS Water 2023, 2, e0000101. [Google Scholar] [CrossRef]
- Popescu, S.M.; Mansoor, S.; Wani, O.A.; Kumar, S.S.; Sharma, V.; Sharma, A.; Arya, V.M.; Kirkham, M.B.; Hou, D.; Bolan, N.; et al. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Front. Environ. Sci. 2024, 12, 1336088. [Google Scholar] [CrossRef]
- Wägele, J.W.; Bodesheim, P.; Bourlat, S.J.; Denzler, J.; Diepenbroek, M.; Fonseca, V.; Frommolt, K.-H.; Geiger, M.F.; Gemeinholzer, B.; Glöckner, F.O.; et al. Towards a multisensor station for automated biodiversity monitoring. Basic Appl. Ecol. 2022, 59, 105–138. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- ICPDR (International Commission for the Protection of the Danube River). Danube River Basin Management Plan Update 2021. Draft Version 10. ICPDR. 2021. Available online: https://www.icpdr.org (accessed on 6 February 2025).
- Beng, K.C.; Corlett, R.T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges, and prospects. Biodivers. Conserv. 2020, 29, 2089–2121. [Google Scholar] [CrossRef]
- Fu, M.; Hemery, L.; Sather, N. Cost Efficiency of Environmental DNA as Compared to Conventional Methods for Biodiversity Monitoring Purposes at Marine Energy Sites (PNNL-32310). Pacific Northwest National Laboratory. Prepared for the U.S. Department of Energy. 2021. Available online: https://tethys.pnnl.gov/sites/default/files/publications/Fu_et_al_2021.pdf (accessed on 15 June 2025).
- Freitas, H.; Gouveia, A.C. Biodiversity futures: Digital approaches to knowledge and conservation of biological diversity. Web Ecol. 2025, 25, 29–37. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Wang, H.; Deng, M. A machine learning ensemble approach based on random forest and radial basis function neural network for risk evaluation of regional flood disaster: A case study of the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2019, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Konda, S.R. Neural networks and explainable AI: Bridging the gap between models and interpretability. Int. J. Comput. Sci. Inf. Technol. 2021, 5, 163–176. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Lenaers, I.; De Moor, L. Exploring XAI techniques for enhancing model transparency and interpretability in real estate rent prediction: A comparative study. Fin. Res. Lett. 2023, 58, 104306. [Google Scholar] [CrossRef]
- Sheik, A.G.; Kumar, A.; Sharanya, A.G.; Amabati, S.R.; Bux, F.; Kumari, S. Machine learning-based monitoring and design of managed aquifer rechargers for sustainable groundwater management: Scope and challenges. Environ. Sci. Pollut. Res. Int. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.P.; Le, H.D.; Phuong, T.T.; Nguyen, D.C. Traditional or advanced machine learning approaches: Which one is better for housing price prediction and uncertainty risk reduction? Risk Gov. Control Financ. Mark. Inst. 2025, 15, 27–36. [Google Scholar] [CrossRef]
- Leong, W.C.; Bahadori, A.; Zhang, J.; Ahmad, Z. Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM). Int. J. River Basin Manag. 2021, 19, 149–156. [Google Scholar] [CrossRef]
- UN Environment. A Framework for Freshwater Ecosystem Management: 4: Scientific Background for Implementation; UN Environment: London, UK, 2018. [Google Scholar]
- Mersha, M.; Lam, K.; Wood, J.; AlShami, A.K.; Kalita, J. Explainable artificial intelligence: A survey of needs, techniques, applications, and future direction. Neurocomputing 2024, 599, 128111. [Google Scholar] [CrossRef]
- Shams, M.Y.; Elshewey, A.M.; El-kenawy, E.S.M.; Ibrahim, A.; Talaat, F.M.; Tarek, Z. Water quality prediction using machine learning models based on grid search method. Multimed. Tools Appl. 2023, 83, 35307–35334. [Google Scholar] [CrossRef]
- Ayoola, V.B.; Idoko, P.I.; Eromonsei, S.O.; Afolabi, O.; Apampa, A.R.; Oyebanji, O.S. The role of big data and AI in enhancing biodiversity conservation and resource management in the USA. World J. Adv. Res. Rev. 2024, 23, 1851–1873. [Google Scholar] [CrossRef]
- Cha, G.W.; Moon, H.J.; Kim, Y.C. Comparison of random forest and gradient boosting machine models for predicting demolition waste based on small datasets and categorical variables. Int. J. Environ. Res. Public Health 2021, 18, 8530. [Google Scholar] [CrossRef] [PubMed]
- Sidek, L.M.; Mohiyaden, H.A.; Marufuzzaman, M.; Noh, N.S.M.; Heddam, S.; Ehteram, M.; Kisi, O.; Sammen, S.S. Developing an ensembled machine learning model for predicting water quality index in Johor River Basin. Environ. Sci. Eur. 2024, 36, 67. [Google Scholar] [CrossRef]
- Chisom, O.N.; Biu, P.W.; Umoh, A.A.; Obaedo, B.O.; Adegbite, A.O.; Abatan, A. Reviewing the role of AI in environmental monitoring and conservation: A data-driven revolution for our planet. World J. Adv. Res. Rev. 2024, 21, 161–171. [Google Scholar] [CrossRef]
- Sharma, N.A.; Chand, R.R.; Buksh, Z.; Ali, A.B.M.S.; Hanif, A.; Beheshti, A. Explainable AI frameworks: Navigating the present challenges and unveiling innovative applications. Algorithms 2024, 17, 227. [Google Scholar] [CrossRef]
- Kovari, A. AI for decision support: Balancing accuracy, transparency, and trust across sectors. Information 2024, 15, 725. [Google Scholar] [CrossRef]
- de Souza, M.T.V.; Sales-Shimomoto, V.; da Silva, G.S.; Val, A.L. Microplastics and the Amazon: From the rivers to the estuary. Quim. Nova 2023, 46, 655–667. [Google Scholar] [CrossRef]
- Dos Santos Silva, J.; Cidade, M.J.A.; Panero, F.D.S.; Ribeiro, L.B.; Campos da Rocha, F.O. Microplastic pollution in the Amazon Basin: Current scenario, advances, and perspectives. Sci. Total Environ. 2024, 946, 174150. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Gao, B.; Hao, H.; Zhou, H.; Lu, J.; Sun, K. Lead contamination in sediments in the past 20 years: A challenge for China. Sci. Total Environ. 2018, 640–641, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, S.; Zhang, Y. Dynamic water quality changes in the main stream of the Yangtze River from multi-source remote sensing data. Remote Sens. 2023, 15, 2526. [Google Scholar] [CrossRef]
- OECD Digital Education Outlook 2023; OECD Publishing: Paris, France, 2023. [CrossRef]
- Kim, S.; Seo, Y.; Malik, A.; Kim, S.; Heddam, S.; Yaseen, Z.M.; Kisi, O.; Singh, V.P. Quantification of river total phosphorus using integrative artificial intelligence models. Ecol. Indic. 2023, 153, 110437. [Google Scholar] [CrossRef]
- Cappello, C.; Congedi, A.; De Iaco, S.; Mariella, L. Traditional prediction techniques and machine learning approaches for financial time series analysis. Mathematics 2025, 13, 537. [Google Scholar] [CrossRef]
- Khan, A.A.; Chaudhari, O.; Chandra, R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst. Appl. 2024, 244, 122778. [Google Scholar] [CrossRef]
- Khan, M.S.; Umer, H.; Faruqe, F. Artificial intelligence for low income countries. Humanit. Soc. Sci. Commun. 2024, 11, 1422. [Google Scholar] [CrossRef]
- Hasan, T.F.; Kabashi, N.A.; Saleh, T.; Alam, M.Z.; Wahab, M.F.; Hamid Nour, A.H. Water quality monitoring using machine learning and IoT: A review. Chem. Nat. Resour. Eng. J. 2024, 8, 32–54. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, S.; Liu, Y.; Shi, X.; Zhao, S.; Kang, X.; Quan, D.; Sun, B.; Arvola, L.; Li, G. Spatiotemporal variation in water quality and identification and quantification of areas sensitive to water quality in Hulun Lake, China. Ecol. Indic. 2023, 149, 110176. [Google Scholar] [CrossRef]
- Forhad, H.M.; Uddin, M.R.; Chakrovorty, R.S.; Ruhul, A.M.; Faruk, H.M.; Kamruzzaman, S.; Sharmin, N.; Jamal, A.S.I.M.; Haque, M.M.-U.; Morshed, A.M. IoT based real-time water quality monitoring system in water treatment plants (WTPs). Heliyon 2024, 10, e40746. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Durlik, I.; Kostecka, E.; Kozlovska, P.; Łobodzińska, A.; Sokołowska, S.; Nowy, A. Integrating artificial intelligence agents with the Internet of Things for enhanced environmental monitoring: Applications in water quality and climate data. Electronics 2025, 14, 696. [Google Scholar] [CrossRef]
- Kim, H.-K.; Cho, I.-H.; Hwang, E.-A.; Han, B.-H.; Kim, B.-H. Advancing river health assessments: Integrating microscopy and molecular techniques through diatom indices. Water 2024, 16, 853. [Google Scholar] [CrossRef]
- Hwang, S.-O.; Cho, I.-H.; Kim, H.-K.; Hwang, E.-A.; Han, B.-H.; Kim, B.-H. Toward a brighter future: Enhanced sustainable methods for preventing algal blooms and improving water quality. Hydrobiology 2024, 3, 100–118. [Google Scholar] [CrossRef]
- Deng, F.; Liu, W.; Sun, M.; Xu, Y.; Wang, B.; Liu, W.; Yuan, Y.; Cui, L. Fine estimation of water quality in the Yangtze River basin based on a geographically weighted random forest regression model. Remote Sens. 2025, 17, 731. [Google Scholar] [CrossRef]
- Khoi, D.N.; Quan, N.T.; Linh, D.Q.; Nhi, P.T.T.; Thuy, N.T.D. Using machine learning models for predicting the water quality index in the La Buong River, Vietnam. Water 2022, 14, 1552. [Google Scholar] [CrossRef]
- Nørgaard, L.; Olesen, C.R.; Trøjelsgaard, K.; Pertoldi, C.; Nielsen, J.L.; Taberlet, P.; Ruiz-González, A.; De Barba, M.; Iacolina, L. eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants. Sci. Rep. 2021, 11, 6820. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mao, Y.; Zhao, R. GIS application in environmental monitoring and risk assessment. In International Conference on Geology, Mapping and Remote Sensing; IEEE: Piscataway, NJ, USA, 2022; pp. 908–917. [Google Scholar] [CrossRef]
- Holman, L.E.; de Bruyn, M.; Creer, S.; Carvalho, G.; Robidart, J.; Rius, M. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 2019, 9, 11559. [Google Scholar] [CrossRef] [PubMed]
- Raihan, A. Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Nat. Resour. Conserv. Res. 2023, 6, 3825. [Google Scholar] [CrossRef]
Performance Metric | Random Forest (RF) | Gradient Boosting (GBM) | Support Vector Machine (SVM) | Artificial Neural Network (ANN) | Long Short-Term Memory (LSTM) |
---|---|---|---|---|---|
R2 Score | 0.85–0.92 | 0.86–0.91 | 0.78–0.88 | 0.89–0.94 | 0.88–0.93 |
RMSE (mg/L) | 2.45–3.12 | 2.30–3.05 | 2.80–3.50 | 2.10–2.90 | 2.20–2.85 |
MAE (mg/L) | 1.85–2.60 | 1.75–2.50 | 2.00–2.75 | 1.70–2.40 | 1.75–2.55 |
Computational Load | Moderate | Low | High | High | High |
Interpretability Tools | SHAP, LIME [126,127] | SHAP, LIME [128,129] | LIME, Permutation [130,131] | SHAP, Grad-CAM [132,133] | SHAP, Attention [105,134] |
Optimal Use Case | Robust under missing data; general-purpose [135] | Effective with high-dimensional datasets [136] | Small datasets with low noise; less suited for time-series [130] | Long-term predictions with large data [137] | Time-series environmental modeling [138] |
River System | GIS Accuracy (%) | Primary Pollution Source | Policy Response | Key References |
---|---|---|---|---|
Mississippi | 91% | Agricultural runoff | Nutrient control zones, riparian buffer enforcement | [57,97,118,139] |
Amazon | 90% | Microplastic accumulation | Urban waste separation, microplastic source tracking | [51,110,140,141] |
Yangtze | 87% | Industrial effluents | Discharge regulation, zoning of manufacturing corridors | [48,142] |
Danube | 85% | Urban wastewater | Cross-border monitoring platforms, regulatory alignment | [81,102,111,120] |
River System | Total eDNA Reads (Reads/Sample Avg.) | Detected Species (Taxonomic Richness) | Rare Species (%) | Dominant Taxa Identified | Key References |
---|---|---|---|---|---|
Mississippi | 120,500 | 158 | 18% | Fish, Mollusks, Amphibians, Crustaceans | [20,75,102] |
Amazon | 97,800 | 189 | 24% | Fish, Amphibians, Reptiles, Crustaceans | [20,60,141] |
Yangtze | 105,200 | 141 | 22% | Fish, Crustaceans, Macroinvertebrates, Amphibians | [7,18,25,120] |
Danube | 113,900 | 167 | 21% | Fish, Mollusks, Macroinvertebrates, Amphibians | [9,17,106,144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-O.; Han, B.-H.; Kim, H.-G.; Kim, B.-H. Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment. Hydrobiology 2025, 4, 19. https://doi.org/10.3390/hydrobiology4030019
Hwang S-O, Han B-H, Kim H-G, Kim B-H. Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment. Hydrobiology. 2025; 4(3):19. https://doi.org/10.3390/hydrobiology4030019
Chicago/Turabian StyleHwang, Su-Ok, Byeong-Hun Han, Hyo-Gyeom Kim, and Baik-Ho Kim. 2025. "Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment" Hydrobiology 4, no. 3: 19. https://doi.org/10.3390/hydrobiology4030019
APA StyleHwang, S.-O., Han, B.-H., Kim, H.-G., & Kim, B.-H. (2025). Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment. Hydrobiology, 4(3), 19. https://doi.org/10.3390/hydrobiology4030019