Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Specimen Collection Using Conventional Survey Techniques
2.3. Environmental DNA (eDNA) Sampling and Analytical Procedures
2.4. Community-Level Data Acquisition and Analysis
2.4.1. Fish Species Richness
2.4.2. Relative Abundance
2.4.3. Dominant Species Analysis
2.4.4. Risk Screening Assessment
2.5. Statistical Analyses
3. Results
3.1. Community Profile in Xinglin Bay
3.2. Relative Abundance
3.3. Species Relative Importance Value
3.4. Body Length and Weight Characteristics of Fish
3.5. Assessment of Invasion Risk for Non-Native Fish
4. Discussion
4.1. Application of eDNA for Fish Community Assessment in Xinglin Bay
4.2. Fish Community Structure and Risk Assessment of Non-Native Fish Species in Xinglin Bay
4.3. Recommendations for Controlling and Managing Tilapia in Xinglin Bay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Olden, R.J.D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 2010, 22, 521–533. [Google Scholar]
- Bernery, C.; Bellard, C.; Courchamp, F.; Brosse, S.; Leroy, B. A global analysis of the introduction pathways and characteristics associated with non-native fish species introduction, establishment, and impacts. Ecol. Process. 2024, 13, 22. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Yasui, S.L.E.; Livingstone, S.; MacIvor, J.S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 2017, 19, 3489–3503. [Google Scholar] [CrossRef]
- Santana Marques, P.; Resende Manna, L.; Clara Frauendorf, T.; Zandonà, E.; Mazzoni, R.; El-Sabaawi, R. Urbanization can increase the invasive potential of alien species. J. Anim. Ecol. 2020, 89, 2345–2355. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Y.; Zhan, A.; Dong, C.; Zhao, J.; Yao, M. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. Sci. Adv. 2022, 8, eabk0097. [Google Scholar] [CrossRef]
- Boët, P.; Belliard, J.; Berrebi-dit-Thomas, R.; Tales, E. Multiple human impacts by the City of Paris on fish communities in the Seine river basin, France. Man River Syst. Funct. River Syst. Basin Scale 1999, 410, 59–68. [Google Scholar]
- Haubrock, P.J.; Pilotto, F.; Innocenti, G.; Cianfanelli, S.; Haase, P. Two centuries for an almost complete community turnover from native to non-native species in a riverine ecosystem. Glob. Change Biol. 2021, 27, 606–623. [Google Scholar] [CrossRef]
- Cunico, A.M.; Allan, J.D.; Agostinho, A.A. Functional convergence of fish assemblages in urban streams of Brazil and the United States. Ecol. Indic. 2011, 11, 1354–1359. [Google Scholar] [CrossRef]
- Yang, B.; Qu, X.; Liu, H.; Yang, M.; Xin, W.; Wang, W.; Chen, Y. Urbanization reduces fish taxonomic and functional diversity while increases phylogenetic diversity in subtropical rivers. Sci. Total Environ. 2024, 908, 168178. [Google Scholar] [CrossRef]
- García-Machado, E.; Laporte, M.; Normandeau, E.; Hernández, C.; Côté, G.; Paradis, Y.; Mingelbier, M.; Bernatchez, L. Fish community shifts along a strong fluvial environmental gradient revealed by eDNA metabarcoding. Environ. DNA 2022, 4, 117–134. [Google Scholar] [CrossRef]
- Qiu, L.; Ji, F.; Qiu, Y.; Xie, H.; Li, G.; Shen, J. Water-Level Fluctuation Control of the Trophic Structure of a Yangtze River Oxbow. Biology 2023, 12, 1359. [Google Scholar] [CrossRef]
- Zou, K.; Chen, J.; Ruan, H.; Li, Z.; Guo, W.; Li, M.; Liu, L. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 2020, 702, 134704. [Google Scholar] [CrossRef]
- Ji, F.; Han, D.; Yan, L.; Yan, S.; Zha, J.; Shen, J. Assessment of benthic invertebrate diversity and river ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey method. Sci. Total Environ. 2022, 806, 150587. [Google Scholar] [CrossRef] [PubMed]
- Blabolil, P.; Harper, L.R.; Říčanová, Š.; Sellers, G.; Di Muri, C.; Jůza, T.; Vašek, M.; Sajdlová, Z.; Rychtecký, P.; Znachor, P. Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats. Ecol. Indic. 2021, 126, 107698. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Shen, E.W.; Seemann, J.; Correa, A.M.; O’Donnell, J.L.; Altieri, A.H.; Knowlton, N.; Crandall, K.A.; Egan, S.P.; McMillan, W.O. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci. Rep. 2020, 10, 6729. [Google Scholar] [CrossRef]
- Van Driessche, C.; Everts, T.; Neyrinck, S.; Halfmaerten, D.; Haegeman, A.; Ruttink, T.; Bonte, D.; Brys, R. Using environmental DNA metabarcoding to monitor fish communities in small rivers and large brooks: Insights on the spatial scale of information. Environ. Res. 2023, 228, 115857. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Deng, Y.; Wang, P.; Li, C.; Shi, D.; Wang, S. Assessing riverine fish community diversity and stability by eDNA metabarcoding. Ecol. Indic. 2023, 157, 111222. [Google Scholar] [CrossRef]
- Copp, G.H.; Vilizzi, L.; Mumford, J.; Fenwick, G.V.; Godard, M.J.; Gozlan, R.E. Calibration of FISK, an Invasiveness Screening Tool for Nonnative Freshwater Fishes. Risk Anal. 2009, 29, 457–467. [Google Scholar] [CrossRef]
- Copp, G.H.; Vilizzi, L.; Tidbury, H.; Stebbing, P.D.; Trakan, A.S.; Miossec, L.; Goulletquer, P. Development of a generic decision-support tool for identifying potentially invasive aquatic taxa: AS-ISK. Manag. Biol. Invasions 2016, 7, 4. [Google Scholar] [CrossRef]
- Kolar, C.S.; Lodge, D.M. Ecological Predictions and Risk Assessment for Alien Fishes in North America. Science 2002, 298, 1233–1236. [Google Scholar] [CrossRef] [PubMed]
- Vilizzi, L.; Copp, G.H.; Hill, J.E.; Adamovich, B.; Aislabie, L.; Akin, D.; Al-Faisal, A.J.; Almeida, D.; Azmai, M.N.A.; Bakiu, R.; et al. A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions. Sci. Total Environ. 2021, 788, 147868. [Google Scholar] [CrossRef]
- Luo, A.; Chen, H.; Gao, X.; Carvalho, L.; Zhang, H.; Yang, J. The impact of rainfall events on dissolved oxygen concentrations in a subtropical urban reservoir. Environ. Res. 2024, 244, 117856. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Lin, L.; Huang, L.; Liu, K.; Dai, G.; Cai, Q.; Li, J.; Feng, S.; Wang, G. Comparison of Environmental DNA Metabarcoding and a Traditional Survey Method for Assessing Fish Diversity and Distribution Along Salinity Gradient in an Urban Brackish Reservoir, China. Biology 2024, 13, 930. [Google Scholar] [CrossRef]
- SL167-1996; Standard for the Investigation of Reservoir Fishery Resources. Ministry of Water Resources, People’s Republic of China: Beijing, China, 1996.
- Galacatos, K.; Barriga-Salazar, R.; Stewart, D.J. Seasonal and Habitat Influences on Fish Communities within the Lower Yasuni River Basin of the Ecuadorian Amazon. Environ. Biol. Fishes 2004, 71, 33–51. [Google Scholar] [CrossRef]
- Zhu, Y.D. Fishes of Fujian; Fujian Science and Technology Press: Fuzhou, China, 1984. (In Chinese) [Google Scholar]
- Zhang, S.; Lu, Q.; Wang, Y.; Wang, X.; Yao, M. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Mol. Ecol. Resour. 2020, 20, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Cilleros, K.; Valentini, A.; Allard, L.; Dejean, T.; Etienne, R.; Grenouillet, G.L.; Iribar, A.; Taberlet, P.; Vigouroux, R.; Brosse, S. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Mol. Ecol. Resour. 2019, 19, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.T.; Olds, B.P.; Renshaw, M.A.; Turner, C.R.; Li, Y.; Jerde, C.L.; Mahon, A.R.; Pfrender, M.E.; Lamberti, G.A.; Lodge, D.M. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 2016, 16, 29–41. [Google Scholar] [CrossRef]
- Mago, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.; Tiedje, J.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.; Shokralla, S.; Porter, T.M.; King, I.; Van Konynenburg, S.; Janzen, D.H.; Hallwachs, W.; Hajibabaei, M. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Natl. Acad. Sci. USA 2014, 111, 8007–8012. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Zhang, X.; Huang, Z.; Xiao, L.; Huang, L.; Kano, Y.; Sato, T.; Shimatani, Y.; Zhang, C. Fish biodiversity conservation and restoration, yangtze river basin, china, urgently needs ‘scientific’ and ‘ecological’ action. Water 2020, 12, 3043. [Google Scholar] [CrossRef]
- Pinkas, L.; Oliphant, M.S.; Iverson, I.L.K. Food habits of albacore, bluefin tuna, and bonito in Californian waters. Calif. Fish Game 1970, 152. [Google Scholar]
- Ruykys, L.; Ta, K.A.T.; Bui, T.D.; Vilizzi, L.; Copp, G.H. Risk screening of the potential invasiveness of non-native aquatic species in Vietnam. Biol. Invasions 2021, 23, 2047–2060. [Google Scholar] [CrossRef]
- Lawson, L.L.; Hill, J.E.; Hardin, S.; Vilizzi, L.; Copp, G.H. Evaluation of the Fish Invasiveness Screening Kit (FISK v2) for peninsular Florida. Manag. Biol. Invasions 2015, 6, 413–422. [Google Scholar] [CrossRef]
- Balasingham, K.D.; Walter, R.P.; Mandrak, N.E.; Heath, D.D. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries. Mol. Ecol. 2018, 27, 112–127. [Google Scholar] [CrossRef]
- Jeunen, G.J.; Lamare, M.D.; Knapp, M.; Spencer, H.G.; Taylor, H.R.; Stat, M.; Bunce, M.; Gemmell, N.J. Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal. Environ. DNA 2020, 2, 99–111. [Google Scholar] [CrossRef]
- Saito, T.; Doi, H. A model and simulation of the influence of temperature and amplicon length on environmental DNA degradation rates: A meta-analysis approach. Front. Ecol. Evol. 2021, 9, 623831. [Google Scholar] [CrossRef]
- Alberdi, A.; Aizpurua, O.; Gilbert, M.T.P.; Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 2018, 9, 134–147. [Google Scholar] [CrossRef]
- Hart, P.J.B. Inland Fisheries: Ecology and Management. Fish Fish. 2010, 3, 139–140. [Google Scholar] [CrossRef]
- Nazeer, S.; Hashmi, M.Z.; Malik, R.N. Spatial and seasonal dynamics of fish assemblage along river Soan, Pakistan and its relationship with environmental conditions. Ecol. Indic. 2016, 69, 780–791. [Google Scholar] [CrossRef]
- Pont, D.; Rocle, M.; Valentini, A.; Civade, R.; Jean, P.; Maire, A.; Roset, N.; Schabuss, M.; Zornig, H.; Dejean, T. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 2018, 8, 10361. [Google Scholar] [CrossRef]
- Champneys, T.; Genner, M.; Ioannou, C. Invasive Nile tilapia dominates a threatened indigenous tilapia in competition over shelter. Hydrobiologia 2021, 848, 3747–3762. [Google Scholar] [CrossRef]
- O’Mara, K.; Venarsky, M.; Marshall, J.; Stewart-Koster, B. Diet-habitat ecology of invasive tilapia and native fish in a tropical river catchment following a tilapia invasion. Biol. Invasions 2024, 26, 489–504. [Google Scholar] [CrossRef]
- Córdova-Tapia, F.; Contreras, M.; Zambrano, L. Trophic niche overlap between native and non-native fishes. Hydrobiologia 2015, 746, 291–301. [Google Scholar] [CrossRef]
- Lintermans, M. Fishes of the Murray-Darling Basin: An Introductory Guide; Murray-Darling Basin Authority: Canberra, Australia, 2009. [Google Scholar]
- Martin, C.W.; Valentine, M.M.; Valentine, J.F. Competitive interactions between invasive Nile tilapia and native fish: The potential for altered trophic exchange and modification of food webs. PLoS ONE 2010, 5, e14395. [Google Scholar] [CrossRef]
- Shuai, F.; Li, J.; Lek, S. Nile tilapia (Oreochromis niloticus) invasion impacts trophic position and resource use of commercially harvested piscivorous fishes in a large subtropical river. Ecol. Process. 2023, 12, 22. [Google Scholar] [CrossRef]
- Yongo, E.; Zhang, P.; Mutethya, E.; Zhao, T.; Guo, Z. The invasion of tilapia in South China freshwater systems: A review. Lakes Reserv. Res. Manag. 2023, 28, e12429. [Google Scholar] [CrossRef]
- Gu, D.E.; Ma, G.M.; Zhu, Y.J.; Xu, M.; Hu, Y.C. The impacts of invasive Nile tilapia (Oreochromis niloticus) on the fisheries in the main rivers of Guangdong Province, China. Biochem. Syst. Ecol. 2015, 59, 1–7. [Google Scholar] [CrossRef]
- Gu, D.E.; Yu, F.D.; Hu, Y.C.; Wang, J.W.; Xu, M.; Mu, X.D.; Yang, Y.X.; Luo, D.; Wei, H.; Shen, Z.X. The Species Composition and Distribution Patterns of Non-Native Fishes in the Main Rivers of South China. Sustainability 2020, 12, 4566. [Google Scholar] [CrossRef]
- Sorensen, P.W. Introduction to the biology and control of invasive fishes and a special issue on this topic. Fishes 2021, 6, 69. [Google Scholar] [CrossRef]
- Nico, L.G.; Englund, R.A.; Jelks, H.L. Evaluating the piscicide rotenone as an option for eradication of invasive Mozambique tilapia in a Hawaiian brackish-water wetland complex. Manag. Biol. Invasions 2015, 6, 83. [Google Scholar] [CrossRef]
- Russell, D.J.; Thuesen, P.A.; Thomson, F.E. A review of the biology, ecology, distribution and control of Mozambique tilapia, Oreochromis mossambicus (Peters 1852) (Pisces: Cichlidae) with particular emphasis on invasive Australian populations. Rev. Fish Biol. Fish. 2012, 22, 533–554. [Google Scholar] [CrossRef]
- Dj, R.; Pa, T.; Small, F.E. Tilapia in Australia: Development of management strategies for the control and eradication of feral tilapia populations in Australia. Invasive Anim. Coop. Res. Cent. 2012. Available online: https://era.dpi.qld.gov.au/id/eprint/2318/ (accessed on 15 March 2025).
Species | Number | Weight | N | W | IRI |
---|---|---|---|---|---|
Coptodon zillii | 214 | 8614.33 | 30.31% | 18.03% | 4834.50 |
Sarotherodon galilaeus | 139 | 10,719.52 | 19.69% | 22.44% | 4212.88 |
Oreochromis niloticus | 114 | 10,883.95 | 16.15% | 22.78% | 3244.33 |
Hybrid tilapia | 34 | 1869.26 | 4.82% | 3.91% | 436.45 |
Konosirus punctatus | 80 | 6507.9 | 11.33% | 13.62% | 415.92 |
Clupanodon thrissa | 32 | 2267.72 | 4.53% | 4.75% | 309.33 |
Elops saurus | 21 | 887.78 | 2.97% | 1.86% | 241.65 |
Oreochromis mossambicus | 26 | 1631.33 | 3.68% | 3.42% | 236.59 |
Glossogobius giuris | 15 | 339.17 | 2.12% | 0.71% | 236.22 |
Clarias gariepinus | 3 | 657 | 0.42% | 1.38% | 60.01 |
Mugil cephalus | 1 | 1647 | 0.14% | 3.45% | 59.83 |
Acanthopagrus latus | 10 | 896.1 | 1.42% | 1.88% | 54.87 |
Parachromis managuensis | 4 | 294.8 | 0.57% | 0.62% | 39.46 |
Hemiculter leucisculus | 4 | 137.09 | 0.57% | 0.29% | 28.45 |
Plotosus lineatus | 6 | 65.7 | 0.85% | 0.14% | 16.46 |
Pisodonophis cancrivorus | 1 | 153.8 | 0.14% | 0.32% | 7.73 |
Pterygoplichthys pardalis | 1 | 121.8 | 0.14% | 0.25% | 6.61 |
Anabas testudineus | 1 | 74.5 | 0.14% | 0.16% | 4.96 |
Species | Body Length/Anal Length (cm) | Body Weight (g) | ||
---|---|---|---|---|
Mean ± S.D. | Range | Mean ± S.D. | Range | |
Clarias gariepinus | 25.70 ± 4.48 | 21.50–31.90 | 219.00 ± 101.64 | 105.30–352.00 |
Elops saurus | 18.16 ± 2.40 | 13.40–22.50 | 42.28 ± 15.87 | 18.30–81.10 |
Konosirus punctatus | 17.40 ± 3.09 | 9.60–24.20 | 81.35 ± 36.74 | 13.00–196.70 |
Clupanodon thrissa | 16.65 ± 3.96 | 8.80–23.60 | 70.87 ± 43.51 | 10.40–174.90 |
Hemiculter leucisculus | 14.35 ± 1.91 | 12.40–17.50 | 34.27 ± 4.94 | 27.19–40.98 |
Acanthopagrus latus | 13.74 ± 1.06 | 11.90–15.30 | 89.61 ± 23.04 | 52.40–126.10 |
Sarotherodon galilaeus | 13.20 ± 3.08 | 3.30–17.00 | 95.47 ± 46.01 | 4.00–171.20 |
Oreochromis niloticus | 12.22 ± 4.77 | 3.10–23.20 | 77.12 ± 58.40 | 1.40–232.74 |
Oreochromis mossambicus | 12.22 ± 1.31 | 9.40–15.40 | 62.74 ± 26.02 | 28.84–152.93 |
Parachromis managuensis | 11.78 ± 3.34 | 9.40–17.50 | 73.70 ± 64.35 | 35.30–185.10 |
Hybrid tilapia | 10.78 ± 2.71 | 8.50–24.50 | 54.98 ± 51.71 | 26.64–327.50 |
Plotosus lineatus | 10.67 ± 1.09 | 9.00–12.00 | 10.95 ± 3.20 | 6.30–15.10 |
Glossogobiuss giuris | 10.29 ± 2.18 | 5.50–14.70 | 22.61 ± 11.99 | 3.70–52.60 |
Coptodon zillii | 9.12 ± 4.39 | 2.10–17.50 | 40.25 ± 35.11 | 0.50–137.70 |
Mugil cephalus | - | 43.50 | - | 1647.00 |
Pterygoplichthys pardalis | - | 18.60 | - | 121.80 |
Anabas testudineus | - | 12.70 | - | 74.50 |
Pisodonophis cancrivorus | - | 19.50 | - | 153.80 |
Species | A Priori Categorization | Results | Confidence | ||||
---|---|---|---|---|---|---|---|
BRA | Level | BRA + CCA | BRA + CCA | BRA | CCA | ||
Coptodon zillii | Y | 43 | High | 55 | 0.78 | 0.78 | 0.75 |
Sarotherodon galilaeus | Y | 35 | High | 48 | 0.79 | 0.79 | 0.79 |
Oreochromis niloticus | Y | 38 | High | 50 | 0.80 | 0.81 | 0.75 |
Hybrid tilapia | Y | 27.5 | High | 33.5 | 0.77 | 0.77 | 0.75 |
Oreochromis mossambicus | N | 17 | Medium | 23 | 0.75 | 0.75 | 0.75 |
Parachromis managuensis | Y | 13.5 | Medium | 13.5 | 0.82 | 0.83 | 0.75 |
Pterygoplichthys pardalis | Y | 24.5 | High | 26.5 | 0.80 | 0.80 | 0.75 |
Clarias gariepinus | Y | 23.5 | Medium | 25.5 | 0.75 | 0.75 | 0.75 |
Gambusia affinis | N | 15.5 | Medium | 19.5 | 0.78 | 0.78 | 0.75 |
Micropterus salmoides | N | 14.5 | Medium | 14.5 | 0.80 | 0.79 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Wang, X.; Huang, L.; Wang, J.; Lin, L.; Li, J.; Dai, G.; Cai, Q.; Xu, H.; Hui, Y.; et al. Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China. Biology 2025, 14, 988. https://doi.org/10.3390/biology14080988
Feng S, Wang X, Huang L, Wang J, Lin L, Li J, Dai G, Cai Q, Xu H, Hui Y, et al. Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China. Biology. 2025; 14(8):988. https://doi.org/10.3390/biology14080988
Chicago/Turabian StyleFeng, Shilong, Xu Wang, Liangmin Huang, Jiaqiao Wang, Lin Lin, Jun Li, Guangjie Dai, Qianwen Cai, Haoqi Xu, Yapeng Hui, and et al. 2025. "Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China" Biology 14, no. 8: 988. https://doi.org/10.3390/biology14080988
APA StyleFeng, S., Wang, X., Huang, L., Wang, J., Lin, L., Li, J., Dai, G., Cai, Q., Xu, H., Hui, Y., & Ji, F. (2025). Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China. Biology, 14(8), 988. https://doi.org/10.3390/biology14080988