Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,782)

Search Parameters:
Keywords = energy storage management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4895 KiB  
Article
Scalable Energy Management Model for Integrating V2G Capabilities into Renewable Energy Communities
by Niccolò Pezzati, Eleonora Innocenti, Lorenzo Berzi and Massimo Delogu
World Electr. Veh. J. 2025, 16(8), 450; https://doi.org/10.3390/wevj16080450 (registering DOI) - 7 Aug 2025
Abstract
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by [...] Read more.
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by integrating smart charging strategies, such as Vehicle-to-Grid (V2G), EV storage can actively support the energy balance within RECs. In this context, this work proposes a comprehensive and scalable model for leveraging smart charging capabilities in RECs. This approach focuses on an external cooperative framework to optimize incentive acquisition and reduce dependence on Medium Voltage (MV) grid substations. It adopts a hybrid strategy, combining Mixed-Integer Linear Programming (MILP) to solve the day-ahead global optimization problem with local rule-based controllers to manage power deviations. Simulation results for a six-month case study, using historical demand data and synthetic charging sessions generated from real-world events, demonstrate that V2G integration leads to a better alignment of overall power consumption with zonal pricing, smoother load curves with a 15.5% reduction in consumption ramps, and enhanced cooperation with a 90% increase in shared power redistributed inside the REC. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
29 pages, 2129 KiB  
Review
Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies
by Tiansi Wang, Haoran Liu, Wanlin Wang, Weiran Jiang, Yixiang Xu, Simeng Zhu and Qingliang Sheng
Processes 2025, 13(8), 2499; https://doi.org/10.3390/pr13082499 (registering DOI) - 7 Aug 2025
Abstract
With the widespread use of lithium-ion batteries in electric vehicles, energy storage systems, and portable electronic devices, concerns regarding their thermal runaway have escalated, raising significant safety issues. Despite advances in existing thermal management technologies, challenges remain in addressing the complexity and variability [...] Read more.
With the widespread use of lithium-ion batteries in electric vehicles, energy storage systems, and portable electronic devices, concerns regarding their thermal runaway have escalated, raising significant safety issues. Despite advances in existing thermal management technologies, challenges remain in addressing the complexity and variability of battery thermal runaway. These challenges include the limited heat dissipation capability of passive thermal management, the high energy consumption of active thermal management, and the ongoing optimization of material improvement methods. This paper systematically examines the mechanisms through which three main triggers—mechanical abuse, thermal abuse, and electrical abuse—affect the thermal runaway of lithium-ion batteries. It also reviews the advantages and limitations of passive and active thermal management techniques, battery management systems, and material improvement strategies for enhancing the thermal stability of batteries. Additionally, a comparison of the principles, characteristics, and innovative examples of various thermal management technologies is provided in tabular form. The study aims to offer a theoretical foundation and practical guidance for optimizing lithium-ion battery thermal management technologies, thereby promoting their development for high-safety and high-reliability applications. Full article
(This article belongs to the Section Energy Systems)
18 pages, 4155 KiB  
Article
Economic-Optimal Operation Strategy for Active Distribution Networks with Coordinated Scheduling of Electric Vehicle Clusters
by Guodong Wang, Huayong Lu, Xiao Yang, Haiyang Li, Xiao Song, Jiapeng Rong and Yi Wang
Electronics 2025, 14(15), 3154; https://doi.org/10.3390/electronics14153154 (registering DOI) - 7 Aug 2025
Abstract
With the continuous increase in the proportion of distributed energy output in the distribution network and the limited equipment on the management side of the active distribution network, it is very important to give full play to the regulating role of the dispatchable [...] Read more.
With the continuous increase in the proportion of distributed energy output in the distribution network and the limited equipment on the management side of the active distribution network, it is very important to give full play to the regulating role of the dispatchable potential of large-scale electric vehicles for the economic operation of the distribution network. To deal with this issue, this paper proposes an optimal dispatching model of the distribution network considering the combination of the dispatchable potential of electric vehicle clusters and demand response. Firstly, the active distribution network dispatching model with the demand response is introduced, and the equipment involved in the active distribution network dispatching is modeled. Secondly, the bidirectional long short-term memory network algorithm is used to process the historical data of electric vehicles to reduce the uncertainty of the model. Then, the shared energy-storage characteristics based on the dispatchable potential of electric vehicle clusters are fully explored and the effect of peak shaving and valley filling after the demand response is fully explored. This approach significantly reduces the network loss and operating cost of the active distribution network. Finally, the modified IEEE-33 bus test system is utilized for test analysis in the case analysis, and the test results show that the established active distribution network model can reduce the early construction cost of the system’s energy-storage equipment, improve the energy-utilization efficiency, and realize the economic operation of the active distribution network. Full article
(This article belongs to the Section Circuit and Signal Processing)
28 pages, 3533 KiB  
Article
Sustainable Integration of Prosumers’ Battery Energy Storage Systems’ Optimal Operation with Reduction in Grid Losses
by Tomislav Markotić, Damir Šljivac, Predrag Marić and Matej Žnidarec
Sustainability 2025, 17(15), 7165; https://doi.org/10.3390/su17157165 (registering DOI) - 7 Aug 2025
Abstract
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this [...] Read more.
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this study, an optimization model formulated as a mixed-integer linear programming problem is proposed to evaluate the integration of battery storage systems for 10 prosumers on the radial feeder in Croatia and to quantify the benefits both from the prosumers’ perspective and that of the reduction in grid losses. The results show significant annual cost reductions for prosumers, totaling EUR 1798.78 for the observed feeder, with some achieving a net profit. Grid losses are significantly reduced by 1172.52 kWh, resulting in an annual saving of EUR 216.25 for the distribution system operator. However, under the current Croatian market conditions, the integration of battery storage systems is not profitable over the entire lifetime due to the high initial investment costs of EUR 720/kWh. The break-even analysis reveals that investment cost needs to decrease by 52.78%, or an inflation rate of 4.87% is required, to reach prosumer profitability. This highlights the current financial barriers to the widespread adoption of battery storage systems and emphasizes the need for significant cost reductions or targeted incentives. Full article
14 pages, 3207 KiB  
Article
Grid-Tied PV Power Smoothing Using an Energy Storage System: Gaussian Tuning
by Ahmad I. Alyan, Nasrudin Abd Rahim and Jeyraj Selvaraj
Energies 2025, 18(15), 4206; https://doi.org/10.3390/en18154206 (registering DOI) - 7 Aug 2025
Abstract
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This [...] Read more.
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This paper confirms this pattern by using the bell curve as a reference; however, climate variations can significantly alter this pattern. Therefore, this study aimed to smooth the power supplied to the grid by a PV system. The proposed controller manages the charge and discharge processes of the energy storage system (ESS) to ensure a smooth Gaussian bell curve output. It adjusts the parameters of this curve to closely match the generated energy, absorbing or supplying fluctuations to maintain the desired profile. This system also aims to provide accurate predictions of the power that should be supplied to the grid by the PV system, based on the capabilities of the ESS and the overall system performance. Although experimental results were not included in this analysis, the system was implemented in SIMULINK using real-world data. The controller utilizes a hybrid ESS comprising a vanadium redox battery (VRB) and supercapacitors (SCs). The design and operation of the controller, including curve tuning and ESS charge–discharge management, are detailed. The simulation results demonstrate excellent performance and are thoroughly discussed. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 6784 KiB  
Article
Surface Temperature Assisted State of Charge Estimation for Retired Power Batteries
by Liangyu Xu, Wenxuan Han, Jiawei Dong, Ke Chen, Yuchen Li and Guangchao Geng
Sensors 2025, 25(15), 4863; https://doi.org/10.3390/s25154863 - 7 Aug 2025
Abstract
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered [...] Read more.
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered internal resistance, capacity fade, and uneven heat generation, which distort the relationship between electrical signals and actual SOC. To address these limitations, this study proposes a surface temperature-assisted SOC estimation method, leveraging the distinct thermal characteristics of retired batteries. By employing infrared thermal imaging, key temperature feature regions—the positive/negative tabs and central area—are identified, which exhibit strong correlations with SOC dynamics under varying operational conditions. A Gated Recurrent Unit (GRU) neural network is developed to integrate multi-region temperature data with electrical parameters, capturing spatial–temporal thermal–electrical interactions unique to retired batteries. The model is trained and validated using experimental data collected under constant current discharge conditions, demonstrating superior accuracy compared to conventional methods. Specifically, our method achieves 64.3–68.1% lower RMSE than traditional electrical-parameter-only approaches (V-I inputs) across 0.5 C–2 C discharge rates. Results show that the proposed method reduces SOC estimation errors compared to traditional voltage-based models, achieving RMSE values below 1.04 across all tested rates. This improvement stems from the model’s ability to decode localized heating patterns and their hysteresis effects, which are particularly pronounced in aged batteries. The method’s robustness under high-rate operations highlights its potential for enhancing the reliability of retired battery management systems in secondary applications such as energy storage. Full article
Show Figures

Figure 1

22 pages, 6392 KiB  
Article
Comparison of Triple-Tube Heat Exchanger and Spherical Ice Balls for Energy Storage Performance: A Numerical Study
by Gülşah Karaca Dolgun
Energies 2025, 18(15), 4199; https://doi.org/10.3390/en18154199 - 7 Aug 2025
Abstract
Ice energy storage systems have gained significant attention as sustainable solutions for energy management, particularly in applications with fluctuating energy demands. This study aims to compare two different designs, a triple-tube heat exchanger (TTHE) and spherical ice balls, the latter being the most [...] Read more.
Ice energy storage systems have gained significant attention as sustainable solutions for energy management, particularly in applications with fluctuating energy demands. This study aims to compare two different designs, a triple-tube heat exchanger (TTHE) and spherical ice balls, the latter being the most widely used traditional design in the industry. The TTHE design was first analyzed theoretically, then optimized using Computational Fluid Dynamics (CFD) simulations, and validated by the literature. Finally, it was compared with spherical ice balls under identical conditions. The analyses were conducted for an ice storage volume of 1000 kg, with the complete solidification process designed to occur within 8 h. The results indicate that the TTHE reduced solidification time by 25% while simultaneously increasing energy storage by 8%. This study contributes to the advancement of sustainable energy technologies by providing a comparative analysis of spherical ice balls and triple-tube heat exchangers for optimizing ice storage systems. The implementation of a TTHE for thermal storage can lower energy costs, mitigate peak demand, and address the intermittency challenges associated with renewable energy sources. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

30 pages, 7051 KiB  
Review
Review of Material-Handling Challenges in Energy Production from Biomass and Other Solid Waste Materials
by Tong Deng, Vivek Garg and Michael S. A. Bradley
Energies 2025, 18(15), 4194; https://doi.org/10.3390/en18154194 - 7 Aug 2025
Abstract
Biomass and other solid wastes create potential environmental and health hazards in our modern society. Conversion of the wastes into energy presents a promising avenue for sustainable energy generation. However, the feasibility of the approach is limited by the challenges in material handling [...] Read more.
Biomass and other solid wastes create potential environmental and health hazards in our modern society. Conversion of the wastes into energy presents a promising avenue for sustainable energy generation. However, the feasibility of the approach is limited by the challenges in material handling because of the special properties of the materials. Despite their critical importance, the complexities of material handling often evade scrutiny until operational implementation. This paper highlights the challenges inherent in standard solid material-handling processes, preceded by a concise review of common solid waste typologies and their physical properties, particularly those related to biomass and biowastes. It delves into the complexities of material flow, storage, compaction, agglomeration, separation, transport, and hazard management. Specialised characterisation techniques essential for informed process design are also discussed to mitigate operational risks. In conclusion, this paper emphasises the necessity of a tailored framework before the establishment of any further conversion processes. Given the heterogeneous nature of biomaterials, material-handling equipment must demonstrate adaptability to accommodate the substantial variability in material properties in large-scale production. This approach aims to enhance feasibility and efficacy of any energy conversion initiatives by using biomass or other solid wastes, thereby advancing sustainable resource utilisation and environmental stewardship. Full article
Show Figures

Figure 1

37 pages, 13501 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2108 KiB  
Article
Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
by Connor Scott and Alhussein Albarbar
Energies 2025, 18(15), 4160; https://doi.org/10.3390/en18154160 - 5 Aug 2025
Abstract
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods [...] Read more.
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method. Full article
Show Figures

Figure 1

22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Viewed by 37
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Viewed by 166
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 262
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 262
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop